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Abstract We investigate the possibility of inflation with
models of antisymmetric tensor field having minimal and
nonminimal couplings to gravity. Although the minimal
model does not support inflation, the nonminimal models,
through the introduction of a nonminimal coupling to gravity,
can give rise to stable de-Sitter solutions with a bound on the
coupling parameters. The values of field and coupling param-
eters are sub-planckian. Slow roll analysis is performed and
slow-roll parameters are defined which can give the required
number of e-folds for sufficient inflation. Stability analysis
has been performed for perturbations to antisymmetric field
while keeping the metric unperturbed, and it is found that
only the sub-horizon modes are free of ghost instability for
de-Sitter space.

1 Introduction

Inflation as a theory, has been successfull in describing the
structure and evolution of our universe [1,2]. As ordinary
matter or radiation can not source inflation, several models
have been built to describe inflation where a hypothetical
field may it be scalar, vector or tensor drives the inflation
[3]. Many theories have considered the scalar field called
“inflaton” as the source for inflation and are able to describe
the cosmology of universe [4–9]. Most of the scalar field
models having simple form of potential are ruled out as they
are not compatible with the Planck’s observational data for
the cosmic microwave background [3,10,11]. Another class
of models considers a vector field as an alternative to the
inflaton [12–16]. But almost all of these models suffer from
instabilities like ghost instability [17] and gradient instability
[18] which leads to an unstable vacuum.
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As the quantum corrections in cosmology and their pos-
sible phenomenological implications are becoming relevant
[19–21], models with connections to high energy theories
like the string theories provide an interesting alternative to
traditional inflation model building. A particular theory of
interest is that of a rank-2 antisymmetric tensor field, which
appears in all superstring models [22,23]. Antisymmetric
tensors have been studied before in several aspects, includ-
ing phase transitions, strong-weak coupling duality [24–35]
and even some astrophysical aspects [36]. More recently,
quantum aspects of antisymmetric fields in different settings
have been studied [37–41]. However, efforts for cosmologi-
cal studies with antisymmetric tensors were rare until the past
decade. A few pertinent works with regard to inflation scenar-
ios with N -form fields in anisotropic spacetime was carried
out in Refs. [42], [43] and near a Schwarzschild metric in
Ref. [44]. More recently, two-form fields have been studied
in the context of anisotropic inflation [45] and gravitational
waves [46].

In this paper, we study the possibility of inflation with
antisymmetric tensor field by considering minimal and non-
minimal models originally considered in Altschul et al. [37].
We find that the minimal model does not support inflation.
However, introducing a new parameter in the form of non-
minimal coupling to gravity helps to achieve inflation. The
nonminimal coupling terms we incorporate here are part of a
general action constructed in [37] and are inspired by sponta-
neous Lorentz violation theories. The most general nonmin-
imal nonderivative couplings upto quadratic order in anti-
symmetric tensor Bμν (restricted to parity-even terms) are
written as [37]

LNM = 1

2κ
ξ BμνBμνR + 1

2κ
ζ BλνBμ

νRλμ

+ 1

2κ
γ BκλBμνRκλμν (1)

Demanding a stable Schwarzschild solution, we do not con-
sider the coupling with Rκλμν , but we will consider the
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remaining couplings (ξ and ζ term) because our model does
not contain the cosmological constant (�) [44]. We also set
up a perfect slow roll scenario for this inflationary model,
prior to developing a full perturbation theory for antisym-
metric tensor in future works. However, an instability anal-
ysis for the perturbations to only the antisymmetric tensor
field is performed. Although, in Ref. [42] a similar instabil-
ity analysis was done for R coupling and possibility of ghosts
was found, the present analysis is different in the following
ways: (1) the spacetime is isotropic and homogeneous; (2)
background structure of Bμν is specified; and (3) choice of
parameter space takes into account the conditions for slow-
rolling inflation.

This work is organized as follows. In Sect. 2, we introduce
background structures of the metric and the antisymmetric
tensor, and establish the general setup of our analysis through
a simple model of a massive antisymmetric tensor field min-
imally coupled to gravity. It is shown that minimal model
cannot give rise to inflation. Three cases of nonminimally
coupled extensions of this model are considered in Sect. 3.
The conditions for inflation and the de-Sitter space solutions
have been derived. In Sect. 4, we check the stability of pos-
sible de-Sitter space. In Sect. 5, the slow roll parameters for
the nonminimal models are constructed and the number of
e-folds are calculated. Sect. 6 presents stability analysis for
perturbations to antisymmetric tensor field, while keeping
the metric unperturbed.

2 Minimal model and the setup

2.1 Setup

As a first step towards studying an inflation model and as
a precursor to extracting phenomenological results like the
power spectrum, which come from the dynamics of pertur-
bations to background fields (the metric and inflation field),
it makes sense to establish a theory of background fields that
ensures [47,48]:

1. a de-Sitter space solution exists,
2. the de-Sitter space should be stable, i.e. perturbations to

solutions must decay with time, and
3. more than 70 efolds of slow-roll inflation.

An obvious choice for the background metric is the Fried-
mann Lematre Robertson Walker (FLRW) metric, motivated
by the cosmological principle that imposes homogeneity and
isotropy symmetries on the background universe. With the
choice of metric signature (−+++), the (background) met-
ric components gμν read,

g00 = −1, gi j = a(t)2δi j , (2)

where a(t) is the scale factor for expansion of universe. The
Riemann Christoffel tensor, Ricci tensor and Ricci scalar in
terms of metric components in Eq. (2) are given by,

R0i0 j = −aäδi j , Ri jkl = δikδ jl(aȧ)2 i < j; (3)

R00 = −3
ä

a
, Ri j = δi j (aä + 2ȧ2); (4)

R = 6

[
ä

a
+

(
ȧ

a

)2
]

. (5)

We are interested in a theory where the inflation-driving
field is an antisymmetric tensor Bμν ,

Bμν = − Bνμ. (6)

In general, Bμν has six independent components and a struc-
ture similar to that of the electromagnetic field strength ten-
sor. A convenient representation of Bμν , analogous to the
electrodynamic decomposition of field strength into electric
and magnetic fields, is given by [37],

B0 j = −
 j , Bjk = ε jkl�
l . (7)

An interesting but also challenging aspect of cosmology
with antisymmetric tensors is that the perturbations to all
six components will play a role in the dynamics, and could
offer important phenomenology. However, for setting up
the background dynamics, we can exploit the freedom to
choose a structure for Bμν that simplifies the calculations
of the present work without losing generality. As will be
seen shortly, this choice of Bμν structure manifests in the
constraint equations for off-diagonal components of spatial
part of energy–momentum tensor, ensuring homogeneity and
isotropy of background metric gμν . For our convenience, we
choose 
 j = 0, and �l = B(t), l = 1, 2, 3, so that,

Bμν =

⎛
⎜⎜⎝

0 0 0 0
0 0 B(t) −B(t)
0 −B(t) 0 B(t)
0 B(t) −B(t) 0

⎞
⎟⎟⎠ . (8)

2.2 Minimal model

At this point, to set up our approach, we consider a “minimal”
model of an antisymmetric tensor first considered in Ref.
[37],

S =
∫

d4x
√−g

[
R

2κ
− 1

12
Hλμν(B)Hλμν(B) − V (B)

]
,

(9)

where Hλμν = ∇λBμν + ∇μBνλ + ∇νBλμ is the gauge-
invariant kinetic term [37] (∇μ is the covariant derivative),
and V (B) is the potential term. Rest of the symbols have their
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usual meanings, with g being the metric determinant, R the
Ricci scalar and κ the inverse square of Planck mass Mpl . For
the present problem, we will only consider quadratic poten-
tial of the form m2BμνBμν/4, though some of the expres-
sions (especially for slow roll analysis) will be written in
terms of V (B) for generality.

Here onwards, we omit the arguments of functions and
functionals (a(t), B(t), V (B), etc.) for notational conve-
nience and their functional dependence is assumed until
stated otherwise.

Our starting point for finding de-Sitter space solutions is
the Einstein equation, obtained by varying the action (9) with
respect to metric gμν ,

Gμν = κT M
μν, (10)

where Gμν is the Einstein tensor and the energy momentum
tensor T M

μν is given by,

T M
μν = 1

2
Hαβ

μHναβ + m2Bα
μBαν

− gμν

(
1

12
Hαβγ H

αβγ + 1

4
m2BαβB

αβ

)
. (11)

It can be inferred from Eq. (11) that T M
μν in general has off-

diagonal elements. One can always choose a structure for
Bμν that renders the off-diagonal elements of the spatial
components of EM tensor, T M

i j , equal to zero albeit with

a caveat that the pressure (T M
ii ) becomes anisotropic, i.e.

T M
11 �= T M

22 �= T M
33 . For our choice of Bμν , Eq. (8), the

isotropy of pressure is ensured while introducing an addi-
tional constraint on the off-diagonal components T M

i j .
We define,

B(t) = a(t)2φ(t), (12)

so as to obtain a familiar form of equations of motion, resem-
bling that of scalar field models. Choosing the quadratic
potential, V (B) = m2BμνBμν/4 = 3m2φ2/2 in the back-
ground FRW metric Eq. (2) and the background tensor field
Eqs. (8), (10) takes the form,

G00 = T M
00 �⇒ H2 κ

2
[(φ̇ + 2Hφ)2 + m2φ2], (13)

Gi j = T M
i j �⇒ 2Ḣ + 3H2

= κ

2
[(φ̇ + 2Hφ)2 − m2φ2], i = j, (14)

As pointed out before, in addition to Eqs. (13) and (14), the
off-diagonal components T M

i j (i �= j) satisfy the following
constraint equation:
κ

2
[(φ̇ + 2Hφ)2 − m2φ2] = 0, (15)

ensuring that the symmetries of spacetime (homogeneity and
isotropy) are maintained. The equation of motion for φ can be
obtained from the energy–momentum conservation equation

∇μT M
μν = 0, but we do not write it here explicitly because

it is not an independent equation and hence is irrelevant for
the current calculations. Using the constraint Eq. (15) in Eq.
(14), we obtain

ä

a
= −H2

2
. (16)

Clearly, the acceleration of a(t) is negative and hence the
minimal model does not support the possibility of inflation.
Equation (16) provides an insight into what modifications
could be made to the action (9) to allow inflation. A straight-
forward solution for positive acceleration would be to incor-
porate additional parameter in the rhs of Eq. (16) such that
ä has nontrivial solutions. In subsequent sections, we con-
sider an extension of this model consisting of nonminimal
coupling of Bμν with gravity that resolves this issue.

3 Nonminimal models

3.1 The models

The requirement of positive acceleration of the scale factor
is met by a simple extension of theory (9) consisting of a
nonminimal coupling to gravity [37] given by:

S =
∫

d4x
√−g

[
R

2κ
− 1

12
HλμνH

λμν

−m2

4
BμνB

μν + LNM

]
, (17)

where LNM is the non-minimal coupling term. As men-
tioned before, we will consider two cases, with LNM =
1

2κ
ξ BμνBμνR and LNM = 1

2κ
ζ BλνBμ

νRλμ separately,
for convenience. The non-minimal coupling term LNM , is
parametrized by ξ and ζ for couplings with R and Rμν respec-
tively. The parameters ξ and ζ have dimensions of M−2

pl .

3.1.1 Case: LNM = 1
2κ

ξ BμνBμνR

With LNM = 1
2κ

ξ BμνBμνR in Eq. (17), the corresponding
energy momentum tensor is given by,

Tμν = T M
μν + T ξ

μν, (18)

where

T ξ
μν = ξ

κ
[∇μ∇ν(BαβB

αβ) − gμν∇λ∇λ(BαβB
αβ)

− Gμν(BαβB
αβ) − 2RBα

μBαν]. (19)

Following the steps of previous section, we write the Einstein
equations,

G00 = κT00 �⇒ H2 + 6ξ(2Hφφ̇ + H2φ2)
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= κ

2
[(φ̇ + 2Hφ)2 + m2φ2], (20)

Gi j = κTi j �⇒ 2Ḣ + 3H2 + 6ξ(2φφ̈ + 2φ̇2 − 2Ḣφ2

− 5H2φ2 + 4Hφφ̇)

= κ

2
[(φ̇ + 2Hφ)2 − m2φ2], i = j, (21)

Similarly, the constraint equation for off-diagonal compo-
nents of Ti j becomes,

κ

2
[(φ̇ + 2Hφ)2 − m2φ2] = − 6ξ(Ḣ + 2H2)φ2. (22)

3.1.2 Case: LNM = 1
2κ

ζ BλνBμ
νRλμ

Substituting Rμν coupling term, LNM = ζ
√−g

2κ
BλνBμ

νRλμ,
in the action (17), the energy momentum tensor in this case
is given by,

Tμν = T M
μν + T ζ

μν, (23)

where

T ζ
μν = ζ

κ

[
1

2
gμν

(
Bαγ Bβ

γ Rαβ − ∇α∇βB
αγ Bβ

γ

)
− Bα

μB
β
νRαβ − BαβBμβ Rνα − BαβBνβ Rμα

+1

2

(∇α∇μBνβB
αβ + ∇α∇νBμβB

αβ

− ∇λ∇λB
α
μBαν

) ]
, (24)

Similarly, the Einstein equations are found to be

G00 = κT00 �⇒ H2 + 2ζHφφ̇

= κ

2
[(φ̇ + 2Hφ)2 + m2φ2], (25)

Gi j = κTi j �⇒ 2Ḣ + 3H2 + ζ(2φφ̈

+2φ̇2 − 4Ḣφ2 − 12H2φ2)

= κ

2
[(φ̇ + 2Hφ)2 − m2φ2], i = j, (26)

For the off-diagonal components, the constraint equation
reads,

κ

2
[(φ̇ + 2Hφ)2 − m2φ2] = − ζ(Ḣ + 3H2)φ2

+ζ

2
(φφ̈ + φ̇2 + 3Hφφ̇), i �= j (27)

3.2 de-Sitter solutions

To find the de-Sitter solutions, we consider the fact that
an exponential expansion of the universe (during inflation)
implies a constant Hubble parameter, H = H0. Moreover, it
helps to further take into account the slow rolling of field
φ during inflation, so that it can be thought of as nearly
constant, φ ≈ φ0. The question of whether an exact de-
Sitter space exists boils down to finding non-zero solutions

Table 1 The de-Sitter space solutions of φ and H , along with the con-
dition on parameters ξ and ζ corresponding to R and Rμν coupling
terms respectively

LNM φ2
0 H2

0 Condition

1

2κ
ξ BμνBμν R

1

6ξ

κm2

4(6ξ − κ)
ξ >

κ

6

1

2κ
ζ BλνBμ

ν Rλμ

1

3ζ

κm2

2(3ζ − 2κ)
ζ >

2κ

3

(φ0, H0) to the Einstein equations (20)–(22) in the de-Sitter
limit, Ḣ = φ̇ = 0. First, using the constraint Eq. (22) in Eq.
(21), we get for the coupling with R,

2Ḣ + 3H2 + 12ξ

(
φφ̈ + φ̇2 + 2Hφφ̇

−1

2
Ḣφ2 − 3

2
H2φ2

)
= 0. (28)

Then, applying the de-Sitter limit to Eqs. (20) and (28), de-
Sitter solutions φ0 and H0 are obtained. The results, including
a similar calculation for the Rμν coupling, are given in Table 1
above.

It is worth noting that value of φ is sub-planckian in both
cases. An interesting observation in the context of theories
(9) and (17) is that adding a nonminimal coupling gives rise
to de-Sitter solutions, which are otherwise absent in minimal
model. This is a unique feature of antisymmetric field models
in contrast to the nonminimal models of scalar field inflation
(see [49] and references therein).

4 Stability analysis of the de-Sitter background

In this section, the dynamics of nonminimal model (17)
around the de-Sitter background is analyzed. Whether a sta-
ble de-Sitter background is possible or not, can be checked by
perturbing the field φ(t) and Hubble parameter H(t) about
de-Sitter solutions H0 and φ0. The condition for stability is
that the perturbations δφ(t) and δH(t) must decay over time.
The corresponding perturbations are given by,

H = H0 + δH ; φ = φ0 + δφ, (29)

where δH and δφ are small perturbation about (H0, φ0) in
linear order. Substituting Eq. (29) in Eqs. (20) and (28), and
using the results in Table 1, we obtain, upto first order in
perturbations,

˙δφ = 6ξ

6ξ − κ
H0δφ − 2φ0δH, (30)

˙δH =
(

12ξ(8ξ − κ)

(6ξ − κ)2

)
κH2

0 φ0δφ − 8

3

(
9ξ − κ

6ξ − κ

)
H0δH.

(31)
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Equations (30) and (31) can be together expressed in the
matrix form as follows:

�̇ = A�, (32)

where � is a column matrix and A is a (2×2) square matrix,
given by,

� =
(

δφ

δH

)
;

A =

⎛
⎜⎜⎝

6ξ

6ξ − κ
H0 −2φ0(

12ξ(8ξ − κ)

(6ξ − κ)2

)
κH2

0 φ0 −8

3

(
9ξ − κ

6ξ − κ

)
H0

⎞
⎟⎟⎠ .

(33)

Upon solving Eq. (32) the solution for �(t) has a general
form,

�(t) = A1e
λ1t + A2e

λ2t . (34)

The eigenvalues λ1 and λ2 of the matrix A can be calculated
from its trace and determinant, which are

Tr [A] = λ1 + λ2 = −H0

(
3 + κ

3(6ξ − κ)

)
≡ − τH0,

(35)

det[A] = λ1λ2 = − 4H2
0 . (36)

From Eqs. (35) and (36), one can deduce that one of the
λ1 and λ2 is negative, and the negative eigenvalue strongly
dominates the positive one. Moreover, due to the condition
on ξ as in Table 1, λ1 + λ2 < − 3H0. In view of Eq. (34), it
implies that the perturbations will grow exponentially over
time due to the small positive eigenvalue, and thus will be
unstable. However, it should still be possible to suppress this
instability by constraining the coefficient of the growing part
of �(t) in Eq. (34), but it needs to be checked whether or
how that can be achieved for the epoch of interest. In fact,
considering the explicit solutions for λ1,2,

λ1(2) = −H0

2
[τ − (+)

√
τ 2 + 16], (37)

in the limiting case where 6ξ/κ → 1+, λ1 → 0 and λ2 <<

0. Substituting in Eq. (34) leads to �(t) ≈ A1 + A2eλ2t , and
will provide a decaying solution if A1 ≈ 0. Though, it is not
clear at this time how such a solution can be obtained without
heavily constraining the parameters (ξ, ζ ) and coefficients
(A1,2), thus we leave this problem for consideration in future.

4.1 Case: LNM = 1
2κ

ζ BλνBμ
νRλμ

A similar analysis for the second case, LNM = 1
2κ

ζ BλνBμ
ν

Rλμ, leads to the following structure for matrix A of Eq. (32),

A =
⎛
⎜⎝

3ζ

ζ − κ
H0

2κ − 3ζ

ζ − κ
φ0

−9
(ζ − 4κ)(2ζ − κ)

(ζ − κ)
H2

0 φ0 − (2ζ + κ)(3ζ − 2κ)

ζ(ζ − κ)
H0

⎞
⎟⎠ .

(38)

The eigen values are calculated to be

λ1(2) = −3H0

2

{
− 1 − 2κ

3ζ

−(+)

√[
1 + 2κ

3ζ

]2

+ 16

[
1 − 2κ

3ζ

]}
, (39)

which are again similar to ξ case, Eq. (37), in the sense that
one of the eigenvalues dominates over the other.

5 Slow roll parameters

We now consider a nearly de-Sitter spacetime for building
an inflationary model. For a successful inflation, the dura-
tion of inflation should be more than 70 efolds [47]. Slow
roll parameters are introduced in a theory to control (1) the
acceleration of universe, and (2) the duration of inflation.
One of the slow roll conditions relevant for the acceleration
is ε, given in terms of Hubble parameter,

ε = − Ḣ

H2 . (40)

Equation (40) can be rewritten as

ä

a
= H2(1 − ε), (41)

and it can be seen that ε has to be small in order for accel-
eration to be positive. A second slow roll parameter in terms
of φ must be introduced to control the duration of inflation.
A standard approach is to choose a parameter such that the
equations of motions can be expressed in terms of slow roll
parameters, and a relation between the two parameters can
be obtained. Slow roll condition is satisfied if the smallness
of one parameter is compatible with that of the other.

For any arbitrary potential the equations of motion for this
model can be written as

H2 + (6ξ − 2κ)H2φ2 + (12ξ − 2κ)Hφφ̇

−κ

2
φ̇2 − κV

3
= 0, (42)

2Ḣ + 3H2 + 12ξ

(
φφ̈ + φ̇2 + 2Hφφ̇
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Table 2 Relation between the slow-roll parameters ε and δ for each
case of nonminimal coupling

LNM ε

1

2κ
ξ BμνBμν R ε ≈ δ

(6ξ − 2κ)−1φ−2 + 1
∼ δ

1

2κ
ζ BλνBμ

ν Rλμ ε ≈ δ

1 − (2κφ2)−1 ∼ δ

−1

2
Ḣφ2 − 3

2
H2φ2

)
= 0. (43)

We now introduce a second slow roll parameter δ ≡ φ̇

Hφ
.

Dividing by H2, Eq. (43) can be expressed in terms of the
new slow roll parameter δ,

3 − 18τ − 2ε + 12τ

[
δ̇

H
+ 2δ2 + (2 − ε)δ + ε

2

]
= 0,

(44)

where τ ≡ ξφ2. During inflation, we can take the value of τ

to be of the same order as that in a de-Sitter spacetime, i.e.
τ ≈ 1/6. In Eq. (42), using the slow roll condition φ̇2 < V
and taking its derivative, we obtain

ε = δ

[
(6ξ − 2κ)φ2

1 + (6ξ − 2κ)φ2 + δ(12ξ − 2κ)φ2 − φVφ

2V

]
. (45)

where Vφ = dV/dφ. An explicit relation between ε and δ

is obtained by using the flat potential condition, Vφ << V .
The results for the two cases of nonminimal couplings are
given in Table 2.

The small δ indicates that the background field should
be nearly constant which eventually leads to flat potential
satisfying the requirement of slow roll. It is evident from
Table 2 that in both cases of nonminimal coupling, small δ

gives rise to small ε, thereby allowing slow-roll inflation. The
duration of inflation can be expressed by the number of e-
folds. Before calculating the number of e-fold it is important
to calculate δ̇.

δ̇ = φ̈

Hφ
− φ̇2

Hφ2 − φ̇ Ḣ

φH2 = Hδ(ε − δ). (46)

During inflation H is nearly constant which says that δ̇ is
approximately zero or δ is nearly constant during inflation.
Now, the number of e-folds can be calculated to be,

N =
∫ t

ti
Hdt =

∫ φ

φi

dφ
H

φ̇
= 1

δ

∫ φ

φi

dφ

φ
= 1

δ
ln

(
φ

φi

)
.

(47)

Clearly, it is feasible now to get 70 or more e-folds since δ

is the only controlling parameter, and its smallness ensures
sufficient duration of slow-rolling inflation.

6 Stability of perturbations to Bμν

Although this model is able to provide a stable de-sitter type
inflation with a lightly tuned nonminimal coupling with cur-
vature terms, it should be free from the instabilities in order
to give a sustainable inflationary model. A complete stability
analysis would include perturbations to Bμν and the met-
ric. However, as an initial check, we consider here only the
perturbations to the background antisymmetric tensor field
Bμν , leaving the metric unperturbed. A similar analysis for
the R coupling was performed in Ref. [42] in anisotropic
spacetime. In the present case, we consider both couplings,
i.e.LNM = 1

2κ
ξ BμνBμνR+ 1

2κ
ζ BλνBμ

νRλμ, and the space-
time background is homogeneous and isotropic. The choice
of background structure of Bμν remains the same as in Eq.
(8). The perturbed field is given by Bμν + δBμν , where

δB0i = −Ei , δBi j = εi jkMk . (48)

Substituting this perturbation in the action (17) results in
the perturbed action containing terms upto quadratic order
in perturbation. We are essentially interested in the terms of
second order in perturbation, because these contain kinetic
terms corresponding to perturbations Ei and Mi . The second
order part of the perturbed action reads,

S2 =
∫

d4x

[
1

2a
( �̇M · �̇M + 2 �̇M · ( �∇ × �E) + ( �∇ × �E) · ( �∇ × �E))

− 1

2a3 ( �∇ · �M)2

+
(
m2

2
− (6ξ + 2ζ )

κ
Ḣ − (12ξ + 3ζ )

κ
H2

)
a( �E · �E)

−
(
m2

2
− (6ξ + ζ )

κ
Ḣ − (12ξ + 3ζ )

κ
H2

)
( �M · �M)

a

]
.

(49)

From Eq. (49), it can be observed that the Ei are non-dynamic
modes since no Ėi terms are present. Hence, Ei ’s are merely
auxiliary fields, whose equations of motion give unique solu-
tions to Ei in terms of the dynamical modes Mi . To proceed, it
is convenient to transform to three-momentum space in order
to get rid of the spatial derivatives. A further simplification
is introduced by choosing the z-axis along the direction of
three-momentum �k, so that
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∂ f (t, �x)
∂z

= −i
∫

d3kke−ikz f̃ (t, �k);
∂ f (t, �x)

∂x
= 0 = ∂ f (t, �x)

∂y
. (50)

Substituting Eq. (50) into Eq. (49) yields,

SFT2

=
∫

dt d3k

[
1

2a

(
�̃̇M† · �̃̇M + ik( ˙̃M†

x Ẽy + h.c)

− ik( ˙̃M†
y Ẽx + h.c) + k2(Ẽ†

x Ẽx + Ẽ†
y Ẽy)

)
− k2

2a3 M̃
†
z M̃z

+
(
m2

2
− (6ξ + 2ζ )

κ
Ḣ − (12ξ + 3ζ )

κ
H2

)
a(

�̃E† · �̃E)

−
(
m2

2
− (6ξ + ζ )

κ
Ḣ − (12ξ + 3ζ )

κ
H2

)
(
�̃M† · �̃M)

a

]
, (51)

where the notations are as follows: for any function f , f̃ ≡
f̃ (t, �k) and f̃ † ≡ f̃ (t,−�k). Now, varying the action with
respect to E†

x , E†
y , E†

z , their equations of motion are found
to be,

Ẽx(y)

= +(−)
ikκ ˙̃My(x)

κ[k2 + m2a2] − [12ξ + 4ζ ]a2 Ḣ − [24ξ + 6ζ ]a2H2
;

Ẽz = 0. (52)

Substituting Eq. (52) in Eq. (51) yields an effective action,

Sef f , with only quadratic kinetic terms, namely ˙̃M†
x

˙̃Mx ,
˙̃M†
y

˙̃My and ˙̃M†
z

˙̃Mz . The complete expression of Sef f is not
of present interest, except for the kinetic part which is given
by,

(
Sef f

)
Kin.

=
∫

dt d3k

[
N

2a(N − κk2)

˙̃M†
x

˙̃Mx

+ N

2a(N − κk2)

˙̃M†
y

˙̃My + 1

2a
˙̃M†
z

˙̃Mz

]
, (53)

where N = κ(2k2 + m2a2) − (12ξ + 4ζ )a2 Ḣ − (24ξ +
6ζ )a2H2.

Clearly, Eq. (53) implies that there is no ghost instabil-
ity in the longitudinal mode M̃z whereas the coefficients of
the remaining two transverse modes may come with a nega-
tive sign and hence give rise to instability. This possibility of
ghosts is similar to that of vector inflation models, where the
condition is reversed: the longitudinal mode causes instabil-
ity while transverse modes are stable [17]. We also note that
for ζ = 0 case, our result is in agreement with the conclu-
sion of Ref. [42], and that instabilities exist for both isotropic
and anisotropic spacetimes. Moreover, adding Rμν coupling
(ζ �= 0) does not help in treating the instability. If we demand
that Sef f be free of ghosts, then the following condition needs

to be satisfied:

k2

a2 + m2 >
H2

κ
((24ξ + 6ζ ) − (12ξ + 4ζ )ε) . (54)

In a special case of exact de-sitter space and taking ζ = 0,
the condition (54) translates to,

k2 > 4a2H2
0 . (55)

Equation (55) indicates that there will be no ghost in the
action for sub-horizon modes only. While for super-horizon
modes the action will encounter ghost. This too is a familiar
situation encountered in vector field models of inflation [50].

7 Conclusion

We study the possibility of inflation with minimal and non-
minimal models of rank-2 antisymmetric tensor fields. We
find that the minimal model does not support inflation. Inter-
esting features appear when a model with non-minimal cou-
pling to gravity is considered, as a way to introduce a new
parameter in the form of couplings ξ and ζ . It is possible
to have solutions for de-Sitter space in nonminimal model
that can support inflation. A simple bound on the couplings
ξ and ζ has been obtained from the de-Sitter solutions, and
can support stable de-Sitter space under certain conditions.
A detailed fixed point analysis will be carried out in future
to ascertain the issue of stability of de-Sitter solutions. To
study inflation, the slow roll analysis has been performed,
and corresponding slow roll parameters ε and δ have been
obtained. Validity of slow roll conditions has been checked.
A notable feature of the present analysis is that the values of
ξ , ζ and φ are sub-planckian in these models.

The ghost instability analysis has been performed for per-
turbations to Bμν (keeping the metric unperturbed). We find
that while the longitudinal modes are ghost free, the trans-
verse modes may admit ghosts. For a special case of exact
de-Sitter space and ζ = 0, only the sub-horizon modes are
ghost free. It is noteworthy that the conditions encountered
here are common in vector field models as well [17,50].

The structure of Eqs. (53) and (54) hints towards the kind
of modifications one would have to include in action (17)
to build a successful model of inflation with antisymmet-
ric tensor field. An interesting possibility arises by adding
a U (1) symmetry breaking kinetic term to Eq. (17): there
are kinetic coulings between Ei and Mi modes, and any
claim about instabilities cannot be made until one solves
the coupled dynamical equations. This will be the subject
of our subsequent study, and we speculate that possibly,
instability problems could be resolved. In a future work, the
full perturbation theory for such models may be developed,
which will allow for phenomenologically relevant calcula-
tions. Possible extensions of this study include considering
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more combinations of coupling terms involving Ricci ten-
sors and scalars, particularly R2 coupling to tackle possible
instabilities. Further studies may also involve the study of
spontaneous Lorentz violation with antisymmetric fields in
cosmological context and could provide significant insights
for investigating signatures of new physics.

Acknowledgements The manipulations in Sect. 6 were done using
MapleTM [51] and cross-checked by hand. This work is partially sup-
ported by DST (Govt. of India), Science and Engineering Research
Board (Grant no. SERB/PHY/2017041). The authors thank Tomi
Koivisto for pointing out the results of Ref. [42].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. A.H. Guth, Phys. Rev. D 23, 347 (1981)
2. A. Starobinsky, Phys. Lett. B 91, 99 (1980)
3. J. Martin, C. Ringeval, V. Vennin, Phys. Dark Universe 5–6, 75

(2014). (hunt for Dark Matter)
4. S. Gottlober, V. Muller, A.A. Starobinsky, Phys. Rev. D 43, 2510

(1991)
5. D. Roberts, A.R. Liddle, D.H. Lyth, Phys. Rev. D 51, 4122 (1995).

arXiv:astro-ph/9411104
6. P. Parsons, J.D. Barrow, Phys. Rev. D 51, 6757 (1995).

arXiv:astro-ph/9501086
7. J.D. Barrow, P. Parsons, Phys. Rev. D 52, 5576 (1995).

arXiv:astro-ph/9506049
8. A.D. Linde, Mod. Phys. Lett. A 1, 81 (1986)
9. A.D. Linde, Phys. Rev. D 49, 748 (1994). arXiv:astro-ph/9307002

10. Z.-K. Guo, D.J. Schwarz, Y.-Z. Zhang, Phys. Rev. D 83, 083522
(2011)

11. C. Gomes, O. Bertolami, J a G Rosa, Phys. Rev. D 97, 104061
(2018)

12. L.H. Ford, Phys. Rev. D 40, 967 (1989)
13. A.B. Burd, J.E. Lidsey, Nucl. Phys. B 351, 679 (1991)
14. A. Golovnev, V. Mukhanov, V. Vanchurin, JCAP 0806, 009 (2008).

arXiv:0802.2068 [astro-ph]
15. F. Darabi, A. Parsiya, Int. J. Mod. Phys. D 23, 1450069 (2014).

arXiv:1401.1280 [gr-qc]
16. O. Bertolami, V. Bessa, J. Pramos, Phys. Rev. D 93, 064002 (2016).

arXiv:1511.03520 [gr-qc]
17. B. Himmetoglu, C.R. Contaldi, M. Peloso, Phys. Rev. D 80, 123530

(2009). arXiv:0909.3524 [astro-ph.CO]
18. R. Emami, S. Mukohyama, R. Namba, Y. li Zhang, J. Cosmol.

Astropart. Phys. 2017, 058 (2017)
19. J.C. Fabris, P.L.C. de Oliveira, D.C. Rodrigues, A.M. Velasquez-

Toribio, I.L. Shapiro, Proceedings, 10th Conference on Quantum

Field Theory Under the Influence o External Conditions (QFEXT
11): Benasque, Spain, September 18–24, 2011 (2011)

20. J.C. Fabris, P.L.C. de Oliveira, D.C. Rodrigues, A.M. Velasquez-
Toribio, I.L. Shapiro, Int. J. Mod. Phys. A 27, 1260006 (2012)

21. J.C. Fabris, P.L.C. de Oliveira, D.C. Rodrigues, A.M. Velasquez-
Toribio, I.L. Shapiro, Int. J. Mod. Phys. Conf. Ser. 14, 73 (2012).
arXiv:1203.2695 [astro-ph.CO]

22. R. Rohm, E. Witten, Ann. Phys. 170, 454 (1986)
23. A.M. Ghezelbash, JHEP 08, 045 (2009). arXiv:0901.1670 [hep-th]
24. F. Quevedo, C.A. Trugenberger, Nucl. Phys. B 501, 143 (1997).

arXiv:hep-th/9604196
25. D.I. Olive, S Duality and Mirror Symmetry. Proceedings, Confer-

ence, Trieste, Italy, June 5–9, 1995 (1995)
26. D.I. Olive, Nucl. Phys. Proc. Suppl. 45A, 88 (1996).

arXiv:hep-th/9508089
27. D.I. Olive, Nucl. Phys. Proc. Suppl. 45A, 1 (1995).

arXiv:hep-th/9508089
28. J. Polchinski,From the StandardModel to GrandUnified Theories.

Proceedings, 6th Yukawa International Seminar, YKIS’95, Kyoto,
Japan, August 21–25, 1995 (1995)

29. J. Polchinski, Prog. Theor. Phys. Suppl. 123, 9 (1996).
arXiv:hep-th/9511157

30. W. Siegel, Phys. Lett. B 93, 170 (1980)
31. H. Hata, T. Kugo, N. Ohta, Nucl. Phys. B 178, 527 (1981)
32. I. Buchbinder, S. Kuzenko, Nucl. Phys. B 308, 162 (1988)
33. M. Duff, P. van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980)
34. F. Bastianelli, P. Benincasa, S. Giombi, JHEP 04, 010 (2005a).

arXiv:hep-th/0503155
35. F. Bastianelli, P. Benincasa, S. Giombi, JHEP 10, 114 (2005b).

arXiv:hep-th/0510010
36. T. Damour, N. Pinto-Neto, Class. Quantum Grav. 11, 1565 (1994)
37. B. Altschul, Q.G. Bailey, V.A. Kostelecky, Phys. Rev. D 81, 065028

(2010). arXiv:0912.4852 [gr-qc]
38. I.L. Buchbinder, E.N. Kirillova, N.G. Pletnev, Phys. Rev. D 78,

084024 (2008). arXiv:0806.3505 [hep-th]
39. T.P. Netto, I.L. Shapiro, Phys. Rev. D 94, 024040 (2016)
40. S. Aashish, S. Panda, Phys. Rev. D 97, 125005 (2018).

arXiv:1803.10157 [gr-qc]
41. S. Aashish, S. Panda, (2018). arXiv:1806.08194 [gr-qc]
42. T.S. Koivisto, D.F. Mota, C. Pitrou, J. High Energy Phys. 2009,

092 (2009)
43. T.S. Koivisto, N.J. Nunes, Phys. Rev. D 80, 103509 (2009)
44. T. Janssen, T. Prokopec, Class. Quantum Grav. 23, 4967 (2006)
45. A. Ito, J. Soda, Phys. Rev. D 92, 123533 (2015)
46. I. Obata, T. Fujita, (2018). arXiv:1808.00548 [astro-ph.CO]
47. S. Dodelson, Modern Cosmology (Academic Press, Burlington,

2003)
48. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)
49. Y. Nakanishi, Higgs inflation with nonminimal couplings, Ph.D.

thesis, Osaka U. (2018)
50. A. Padhy, S. Panda, Establishing a stable vector inflation model

(under preparation)
51. Maple 2017.3, Maplesoft, a division of Waterloo Maple

Inc., Waterloo, Ontario. https://www.maplesoft.com/support/help/
maple/view.aspx?path=author

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/astro-ph/9411104
http://arxiv.org/abs/astro-ph/9501086
http://arxiv.org/abs/astro-ph/9506049
http://arxiv.org/abs/astro-ph/9307002
http://arxiv.org/abs/0802.2068
http://arxiv.org/abs/1401.1280
http://arxiv.org/abs/1511.03520
http://arxiv.org/abs/0909.3524
http://arxiv.org/abs/1203.2695
http://arxiv.org/abs/0901.1670
http://arxiv.org/abs/hep-th/9604196
http://arxiv.org/abs/hep-th/9508089
http://arxiv.org/abs/hep-th/9508089
http://arxiv.org/abs/hep-th/9511157
http://arxiv.org/abs/hep-th/0503155
http://arxiv.org/abs/hep-th/0510010
http://arxiv.org/abs/0912.4852
http://arxiv.org/abs/0806.3505
http://arxiv.org/abs/1803.10157
http://arxiv.org/abs/1806.08194
http://arxiv.org/abs/1808.00548
https://www.maplesoft.com/support/help/maple/view.aspx?path=author
https://www.maplesoft.com/support/help/maple/view.aspx?path=author

	Inflation with an antisymmetric tensor field
	Abstract 
	1 Introduction
	2 Minimal model and the setup
	2.1 Setup
	2.2 Minimal model

	3 Nonminimal models
	3.1 The models
	3.1.1 Case: mathcalLNM=12κξBµν Bµν R
	3.1.2 Case: mathcalLNM = 12 κ ζBλν Bµ ν Rλµ

	3.2 de-Sitter solutions

	4 Stability analysis of the de-Sitter background
	4.1 Case: mathcalLNM = 12 κ ζBλν Bµ ν Rλµ

	5 Slow roll parameters
	6 Stability of perturbations to Bµν
	7 Conclusion
	Acknowledgements
	References


