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1. Introduction

Inflation in the early universe has recently been studied much more extensively because of the BICEP2
experiment [1] in terms of the primordial gravitational waves, in addition to the Wilkinson Microwave
anisotropy probe (WMAP) [2–6] and the Planck satellite [7,8] on the unisotropy of the cosmic microwave
background (CMB) radiation. For a standard inflationary scenario like chaotic inflation [9], the existence
of the inflaton field is assumed, whose potential contributes to inflation.

On the other hand, the accelerated expansion of the universe including inflation and the late-time
acceleration, i.e., dark energy problem, can be realized in modified gravity theories such as F (R) gravity
(for reviews on inflation, see, e.g., [10,11], whereas for dark energy and modified gravity, see, for
example, References [12–20]). For instance, the trace-anomaly driven inflation such as the Starobinsky
inflation [21,22] is well known.

Indeed, the WMAP and Planck data [2–8] support a kind of the trace-anomaly driven inflation with the
R2 term. Such a theory can be regarded as modified gravity because the R2 term or its higher derivative
term of the trace-anomaly term �R, which leads to the long enough inflation and graceful exit from
it [21], is the effective action of gravity, where� is the covariant d’Alembertian for a scalar quantity. (In
References [23–25], the features of inflation in non-local gravity including such a non-local term as �R
has been analyzed in detail.)

In this paper, we review the main results in References [26–28]. The main purpose of this paper is to
explain the recent developments on inflationary models to realize the Planck results in the so-called R2

gravity (namely, the action consist of the Einstein-Hilbert term plus R2 term) with further extensions,
which can be regarded as a kind of F (R) gravity. Particularly, we consider inflation (i) derived by
modification terms of gravity [26]; (ii) through the quantum anomaly [27]; and (iii) in R2 gravity in the
framework of the so-called loop quantum cosmology (LQC) [29–33] to include quantum effects [28]
(for reviews on LQC, see, for example, [34–40]). In addition, we state the recent progress of the bounce
cosmology in F (R) gravity by presenting the important consequences in References [41,42]. We use
units of kB = c = ~ = 1 and express the gravitational constant 8πGN by κ2 ≡ 8π/MPl

2 with the Planck
mass of MPl = G

−1/2
N = 1.2× 1019 GeV.

The organization of the paper is the following. In Section 2, we study inflation induced by
modification of gravity. In Section 3, we explore the trace-anomaly driven inflation in modified gravity.
In Section 4, we investigate R2 gravity in the context of LQC. Furthermore, in Section 5, we reconstruct
F (R) gravity to realize the cosmological bounce in LQC. Finally, conclusions are described in Section 6.

2. Inflation Induced by Modification of Gravity

In this section, we review inflation in modified gravity, particularly F (R) gravity, based on
Reference [26]. The deviation of F (R) gravity from general relativity may be interpreted as a kind
of quantum corrections in the early universe, or such a modification of gravity could be motivated by the
so-called ultraviolet (UV) completion of quantum gravity. In fact, the Starobinsky inflation [21] can be
regarded as inflation induced by the modification term of R2 from general relativity. We here attempt to
examine inflation by the other forms of modification of gravity.
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2.1. Conformal Transformation

We first explain the conformal transformation from F (R) gravity in the Jordan frame to the
corresponding scalar field theory in the Einstein frame [19,43]. The action of F (R) gravity is represented
as S =

∫
d4x
√
−g [F (R)/ (2κ2)], where g is the determinant of the metric tensor gµν . We use a

conformal transformation ĝµν = Ω−2gµν with Ω2 ≡ FR, where the hat denotes quantities in the Einstein
frame, and the subscription of FR denotes the derivative with respect to R as FR(R) ≡ dF (R)/dR.
Here, we introduce a scalar field ϕ ≡ −

√
3/2 (1/κ) lnFR. Through the conformal transformation, the

action in the Einstein frame reads [44,45]

SE =

∫
d4x
√
−ĝ

(
R̂

2κ2
− 1

2
ĝµν∂µϕ∂νϕ− V (ϕ)

)
(1)

V (ϕ) =
FRR̂− F
2κ2 (FR)2 (2)

with FR = exp
(
−
√

2/3κϕ
)

. This is the action for a canonical scalar field ϕ with its potential V (ϕ).

For the Starobinsky inflation model [21] with F (R) = R + αSκ
2R2, where αS is a constant, we have

V (ϕ) = [1/ (8αSκ
2)]
(

1− exp
(
−
√

2/3κϕ
))2

.

2.2. Slow-Roll Inflation

We describe the procedures to deal with the so-called slow-roll inflation. We consider
the action in Equation (1) and regard ϕ as the inflaton field. We suppose the flat
Friedmann-Lemaître-Robertson-Walker (FLRW) metric ds2 = −dt2 + a2(t)d~x2. Here, a(t)

is the scale factor. The Hubble parameter is defined as H ≡ ȧ/a, where the dot
denotes the time derivative. The gravitational field equations in this background read
3H2/κ2 = ϕ̇2/2 + V (ϕ) and −

(
2Ḣ + 3H2

)
/κ2 = ϕ̇2/2− V (ϕ). Moreover, the equation of motion

(EoM) for ϕ becomes ϕ̈+ 3Hϕ̇+ dV (ϕ)/dϕ = 0.
For the slow-roll regime, we impose the slow-roll approximations of ϕ̇2/2� V (ϕ) on the Friedmann

equation and |ϕ̈| � |3Hϕ̇| on the EoM for ϕ, so that we can find 3H2/κ2 ≈ V (ϕ) ≈ constant

and 3Hϕ̇ + dV (ϕ)/dϕ ≈ 0. Furthermore, we define the slow-roll parameters ε ≡ −Ḣ/H2 =

[1/ (2κ2)] [(dV (ϕ)/dϕ) /V (ϕ)]2 (� 1) and η ≡ −Ḧ/
(

2HḢ
)

= [1/κ2] [(d2V (ϕ)/dϕ2) /V (ϕ)] (�1).
During inflation, these parameters should be much smaller than unity. In addition, the number of e-folds
is Ne ≡ ln (af/ai) =

∫ tf
ti
Hdt ≈ κ2

∫ ϕi

ϕf
[V/ (dV (ϕ)/dϕ)] dϕ. Here, ai (ϕi) and af (ϕf) are the values

of the scale factor a (the scalar field ϕ) at the initial time ti and end of time tf of inflation, respectively.
Moreover, in deriving the second approximate equality, we have used the second gravitational field
equation with the slow-roll approximation. The amplitude of the power spectrum for the curvature
perturbations is expressed as ∆2

R = κ2H2/ (8π2ε) ≈ κ4V/ (24π2ε), where in the second approximate
equality follows from the Friedmann equation operated the slow-roll approximation, and ns and r are
written as ns − 1 = −6ε + 2η and r = 16ε [46,47]. The detailed explanations on the reconstruction of
potential of inflationary models has been executed in Reference [48].
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2.3. Reconstruction of F (R) Gravity

There are two possible ways to reconstruct F (R) gravity models to realize inflation. One is to start
from the action in the Einstein frame. The other is to reconstruct the action in the Jordan frame. In this
subsection, we consider the former way. We also explain the latter way in the next subsection.

The main purpose of our investigations is that we study the generalization of the Starobinsky inflation
model. To execute it, we take an appropriate form of V (ϕ) in the Jordan frame, which is an extended
form from that in the Starobinsky inflation model. By taking the derivative of Equation (2) with respect
to R, we find

RFR = −
√

6κ
d

dϕ

(
V (ϕ) exp

(
−2

√
2

3
κϕ

))
(3)

Through this equation, i.e., Equation (2), we reconstruct the form of F (R) in the Jordan frame from
the potential V (ϕ) in the Einstein frame.

2.3.1. Extension of the Starobinsky Inflation Model

As the simplest model, we explore the following potential

V (ϕ) = c1 + c2 exp

(√
2

3
κϕ

)
+ c3 exp

(
2

√
2

3
κϕ

)
(4)

where c1( 6= 0), c2, and c3 are constants. In this case, from Equation (3) we have 2c1F
2
R+c2FR−RFR = 0.

By solving this equation with FR 6= 0, we eventually find that the corresponding form of F (R) can be
expressed as

F (R) = R +
R2

4c1

+ c1 − c3 (5)

Here, we have set −c2/ (2c1) = 1 in order to reproduce the Einstein-Hilbert term in F (R) and used
Equation (2) in determining the integration constant. If c1 = c3 (which leads to c3 = −c2/2), this model

is equivalent to the Starobinsky inflation model with V (ϕ) = c1

(
1− exp

(
−
√

2/3κϕ
))2

, whereas for
c1 > c3, this corresponds to an extended model of the Starobinsky inflation with a cosmological constant.
As the possibile origins of such a cosmological constant emerging at the large curvature regime could
originate from the quantum effects, or a modification term of gravity removing the cosmological constant
at the small curvature regime [49–52].

In the following, we set c3 = 0 for simplicity and introduce a positive γ1 (>0) to express
c1 as c1 = γ1/ (4κ2). Here, γ1 has the mass dimension 2 and the dimensionless quantity
γ1/MPl � 1, so that in the higher-curvature regime, the correction to the Einstein gravity
can appear. We explore the inflationary dynamics in this extended model with the potential
V (ϕ) = [γ1/ (4κ2)]− [γ1/ (2κ2)] exp

(√
2/3κϕ

)
. We consider the case that the inflaton slowly rolls

from the initial value with its large negative amplitude down to the minimum of the potential
as V (ϕ = 0) = −γ1/ (4κ2) (<0). In this case, from the gravitational field equations we
find that the exponential inflation can be realized as a(t) = ai exp (Hinft) with the Hubble
parameter Hinf ≡ (1/2)

√
γ1/3 during inflation and ai a constant. Furthermore, the solution

of ϕ reads ϕ = −
√

3/2κ ln
[
(1/3)

√
2γ1/3 (ti − t)

]
. Around the beginning of inflation t ' ti,
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|ϕ| � 1 and the slow-roll parameters are ε = (4/3)
[
1− exp

(
−
√

2/3κϕ
)]−2

� 1 and

|η| = (4/3)
∣∣∣1− exp

(
−
√

2/3κϕ
)∣∣∣−1

� 1. These slow-roll parameters become of order of unity

when ϕ approaches ϕf ≈ −0.17
√

3/2/κ. For |ϕi| � |ϕf |, the number of e-folds is given by
Ne ≈ (1/2)

√
γ1/6ti. In addition, we find tf = ti − 3

√
3/ (2γ1) exp (0.17). For Ne = 60, we have

ϕi ≈ 1.07MPl. The slow-roll parameters are also represented as ε ≈ 3/ (4N2
e ) and |η| ≈ 1/N . As a

consequence, we obtain

∆2
R ≈

κ2γ1N
2
e

72π2
, ns − 1 ≈ − 2

Ne

, r ≈ 12

N2
e

(6)

Here, we remark that ∆2
R ≈ κ2γ1N

2
e / (72π2)� κ2MPlN

2
e / (72π2) because γ1 �MPl.

The observations obtained from the Planck satellite suggest ns = 0.9603 ± 0.0073 (68% CL) and
r < 0.11 (95% CL) [7]. In this model, for ns < 1 and r < 0.11, we see that ns > 1−

√
0.11/3 = 0.809.

Accordingly, for Ne = 60, we acquire ns = 0.967 and r = 3.00 × 10−3. Thus, in this model,
the spectral index ns of the curvature perturbations and the tensor-to-scalar ratio r consistent with
the Planck result can be realized. Various descriptions of inflationary models in terms of scalar field
models [53] and perfect fluid as well as F (R) gravity [54] have been examined. Moreover, the effects
of quantum corrections on inflation have been explored in References [55–57]. We note that the
BICEP2 experiment has recently detected theB-mode polarization of the cosmic microwave background
(CMB) radiation with the tensor to scalar ratio r = 0.20+0.07

−0.05 (68% CL) [1]. There have been proposed
several discussions on the method to obtain this result regarding the subtraction of the foreground
data, e.g., References [58–62]. A study to support the BICEP2 results has also been reported in
Reference [63]. Very recently, the collaboration between BICEP2/Keck and Planck has released the
result of r < 0.12 for the wave number k = 0.05 Mpc−1 of tensor mode of the density perturbations [64].

2.3.2. Power-Law Corrections to General Relativity

Next, we examine the following potential.

V (ϕ) =
1

2κ2


(

1

βq

)1/(q−1)
(

1− exp

(√
2

3
κϕ

))q/(q−1)

exp

[(
q − 2

q − 1

)√
2

3
κϕ

](
q − 1

q

)

+Rc exp

(√
2

3
κϕ

)(
exp

(√
2

3
κϕ

)
− 1

)
− Λp exp

(
2

√
2

3
κϕ

)}
(7)

For this potential in the Einstein frame, a model in which a generic power-law correction term is
added to the Einstein-Hilbert term is reconstructed as

F (R) = R + β (R +Rc)
q + Λp (8)

Here, β (>0) is a dimensionful positive constant, Rc and Λp are constant, and q > 1 (q 6= 2).
Inflationary models in such a power-law type gravity with q . 2 has also been examined in
Reference [65]. Through the same procedures as those executed for the previous case in Equations (4)
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and (5), namely, by deriving the Hubble parameter at the inflationary stage, the scale factor, the solution
of the inflaton ϕ, the slow-roll parameters, and the number of e-folds, if n is close to 2, we find

∆2
R ≈

(q − 1)3

16π2q (2− q)2κ
2 exp

[
2

3
Ne

(q − 2)2

(q − 1)2

](
1

βq

)1/(q−1)

,

ns − 1 ≈ −8 (2− q)
3 (q − 1)

, r ≈ 16 (2− q)2

3 (q − 1)2 (9)

Indeed, for q = 1.99, we find ns = 0.962 and r = 1.08× 10−3. Therefore, this inflationary model can
be compatible with the Planck analysis.

2.4. Reconstruction Method of F (R) Gravity in the Jordan Frame

In this subsection, we reconstruct the form of F (R) in the Jordan frame. We note that cosmology
in the Einstein frame may differ from that in the Jordan frame due to their physical non-equivalence.
Hence, it is more convenient to consider these theories in the Einstein and Jordan frames as different
cosmological theories. Here, we discuss inflation in F (R) gravity without its transformation to
scalar-tensor theory. Eventually, the results may be different. Nevertheless, we demonstrate that F (R)

inflation is also consistent with the observations by the Planck satellite. From the other point of view, for
the fairness, it should also be remarked that there are the debates on the issue of the equivalence between
the (Jordan and Einstein) conformal frames in References [66–68]. Especially, the investigations in
Reference [68] seems to support equivalence of conformal frames for inflationary scenarios. It is an
issue of presentation rather than substance, but in the interest of fairness other points of view should
be mentioned.

The reconstruction method of F (R) gravity proposed in Reference [69] is as follows (for another
reconstruction method of F (R) gravity, see References [70–73]). We consider the action of F (R) gravity
with matter action Smatter as S =

∫
d4x
√
−g [F (R)/ (2κ2)] + Smatter. We define the number of e-folds

as N̄ ≡ ln (a∗/a) with a∗ the scale factor at the fiducial time t∗. We define Ḡ(N̄) ≡ H2(N̄), so that R
can be expressed as R(N̄) = 3

[(
dḠ(N̄)/dN

)
+ 4Ḡ(N̄)

]
. By solving this equation inversely, we get

N̄ = N̄(R). In the flat FLRW space-time, the Friedmann equation can represented as the second order
differential equation of F (R) with respect to R, given by

−9Ḡ(N̄(R))
(
4ḠN̄(N̄(R)) +GN̄N̄(N̄(R))

)
FRR(R)

+ 3

(
Ḡ(N̄(R)) +

1

2
GN̄(N̄(R))

)
FR(R)− F (R)

2
+ κ2ρmatter = 0 (10)

where FRR ≡ d2F (R)/dR2, ḠN̄ ≡ dḠ(N̄(R))/dN̄ , ḠN̄N̄ ≡ d2Ḡ(N̄(R))/dN̄2, and ρmatter is the
energy density of matter.

As an example found in Reference [54], we study an exponential form ḠN̄ = H2(N̄) =

Ḡ1eτN̄ + Ḡ2, where G1 (<0), G2 (>0), and τ (>0) are constants. For this expression, we have
eτN =

(
R− 12Ḡ2

)
/
[
3Ḡ1 (4 + τ)

]
. When the matter contribution is negligible, namely, ρmatter = 0,

the solution of Equation (10) is derived as

F (R) = Q1F (ω+, ω−, l;ϑ) +Q2

(
12Ḡ2 −R

)(1+1/τ)
F

(
1 + ω− +

1

τ
, 1 + ω+ +

1

τ
, 2 +

1

τ
;ϑ

)
(11)
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Here, ω± and ϑ are defined as

ω± ≡
−3τ − 2±

√
τ 2 − 20τ + 4

4τ
, ϑ ≡ 12Ḡ2 −R

3Ḡ2 (4 + τ)
(12)

with F (ς1, ς2, ς3;ϑ) the hypergeometric function, where ςi (i = 1, . . . , 3) are constants.
If (N̄ , G1, G2) = (50.0,−1.10, 10.0) and (60.0,−1.20, 15.0), we obtain (ns, r) = (0.963, 6.89 × 10−2)

and (0.965, 5.84× 10−2), respectively. (The running of the spectral index αs ≡ dns/d ln k is also
estimated as αs = −5.06 × 10−5 and −4.51 × 10−5 for (N̄ , G1, G2) = (50.0,−1.10, 10.0) and
(60.0,−1.20, 15.0), respectively.) Therefore, this model can yield the values of ns and r indicated by the
Planck analysis.

3. Trace-Anomaly Driven Inflation in Modified Gravity

In this section, we review inflation by the quantum anomaly in the framework of F (R) gravity by
following Reference [27]. The effect of the trace anomaly on inflation in F (T ) gravity with T the torsion
scalar in teleparallelism has also been studied in Reference [74] (the explanations of teleparallelism exist,
e.g., in References [15,19]).

3.1. Quantum Anomaly

It is known that the quantum anomaly appears via the procedure of the renormalization. For
four-dimensional space-time, the trace of the energy momentum tensor T (QA)

µν originating from the
quantum anomaly becomes [75–79]〈

T (QA)µ
µ

〉
= α1

(
W +

2

3
�R

)
− α2G + α3�R (13)

W ≡ CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1

3
R2 (14)

G ≡ RµνρσRµνρσ − 4RµνRµν +R2 (15)

Here, the brackets 〈 〉 denotes the vacuum expectation value. Moreover, Rµνρσ is the Riemann
tensor, Rµν is the Ricci tensor, R is the scalar curvature, Cµνρσ is the Weyl tensor, to whose square
W corresponds, G is the Gauss-Bonnet invariant, and � = gµν∇µ∇ν with ∇µ the covariant derivative
associated with the metric tensor gµν is the covariant d’Alembertian. In addition, the coefficients
are defined as α1 ≡ (NS + 6NF + 12NV) / (1920π2), α2 ≡ (NS + 11NF + 62NV) / (5760π2),
α3 ≡ −NV/ (96π2) with the number of real scalar fields NS, that of the Dirac (fermion) fields NF, and
that of vector fields NV, where we have neglected the contributions from gravitons and higher-derivative
conformal scalars.

We set the values of α1 and α2 positive, but the qualitative consequences do not
depend on α1, α2, and α3. For example, in the N = 4 SU(N) super Yang-Mills
theory, we have α1 = α2 = N̄2/ (64π2) (>0) and α3 = −N̄2/ (96π2), where we have
used NS = 6N̄2, NF = 2N̄2, and NV = N̄2 with N̄ � 1. Here, (2/3)α1 + α2 = 0. However,
if the action has an additional R2 term as [80]

[
α4N̄

2/ (192π2)
] ∫

d4x
√
−g R2, where

α4 (>0) is a positive constant, we find (2/3)α1 + α2 = −α4N̄
2/ (16π2). In the classical
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level, the vacuum expectation value of
〈
T

(QA)
µν

〉
in Equation (13) can be regarded as a

contribution of matter in the right-hand side as Rµν − (1/2) gµνR = κ2
〈
T

(QA)
µν

〉
. Its trace reads

R = α1 [W + (2/3)�R]− α2G + α3�R +
[
α4N̄

2κ2/ (16π2)
]
�R. Accordingly, for the Yang-Mills

theory in the curved space-time, the R2 term plays a role of correction of the higher curvature to the
Einstein gravity or it contributes to the energy-momentum tensor as matter.

3.2. F (R) Gravity with the Quantum Anomaly

The action describing F (R) gravity is given by

S =

∫
d4x
√
−g F (R)

2κ2
+ S(QA) (16)

F (R) ≡ R + 2κ2

(
α4N̄

2

192π2

)
R2 + f(R) (17)

where S(QA) is the action of the quantum anomaly and f(R) is a function of R. For the original
Starobinsky inflation [21], f(R) = 0. From the action in Equation (16), the gravitational field
equation reads

Rµν −
1

2
gµνR = κ2

〈
T (QA)
µν

〉
+ κ2

(
α4N̄

2

48π2

)(
−RRµν +

1

4
R2gµν +∇µ∇νR− gµν�R2

)
− fR(R)

(
Rµν −

1

2
Rgµν

)
+

1

2
gµν (f(R)−RfR(R))

+ (∇µ∇ν − gµν�) fR(R) (18)

where fR(R) ≡ df(R)/dR. The trace of this equation is expressed as
R = −κ2

{
α1W − α2G −

[
α4N̄

2/ (16π2)
]
�R
}
− 2f(R) +RfR(R) + 3�fR(R).

In the FLRW background, the gravitational field equations are represented as

3

κ2
H2 = ρeff − 1

κ2

(
2Ḣ + 3H2

)
= Peff (19)

Here, ρeff and Peff are the effective energy density and pressure and they obey the equation of the
conservation low ρ̇eff + 3H (ρeff + Peff) = 0. Their expressions are given by

ρeff ≡ ρ(QA) +
1

2κ2

(
RfR(R)− f(R)− 6H2fR(R)− 6HḟR(R)

)
(20)

Peff ≡ P (QA) +
1

2κ2

[
−RfR(R) + f(R) + (4Ḣ + 6H2)fR(R) + 4HḟR(R) + 2f̈R(R)

]
(21)

with the contributions from the quantum anomaly to the effective energy density and pressure

ρ(QA) ≡ ρ̄

a4
+ 6α2H

4 −
(
α4N̄

2

16π2

)(
18H2Ḣ + 6ḦH − 3Ḣ2

)
(22)

P (QA) ≡ ρ̄

3a4
− α2

(
6H4 + 8H2Ḣ

)
+

(
α4N̄

2

16π2

)(
9Ḣ2 + 12HḦ + 2

...
H + 18H2Ḣ

)
(23)

where ρ̄ is an integration constant, and in deriving these expressions, we have used the conservation
equation for ρeff and Peff . The ρ̄ term corresponds to the energy density of radiation of the quantum
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state [80]. In what follows, we take ρ̄ = 0 because at the inflationary stage around the Planck scale, the
contribution of radiation can be neglected in comparison with that of the quantum anomaly as well as
that of deviation of modified gravity from general relativity.

3.3. De Sitter Solutions by the Trace Anomaly

We consider the case that f(R) is given by an exponential form [49,50,81]

f(R) = −2Λc

[
1− exp

(
− R

Rc

)]
(24)

where Λc (>0) and Rc (>0) are positive constants. For R/Rc � 1, i.e., in the late-time (e.g., present)
universe, f(R) approaches zero, and therefore our model becomes equivalent to R2 gravity with the
quantum anomaly. While for R/Rc � 1, namely, in the early universe such as the inflationary stage,
the term of Λc plays a role of the cosmological constant. When we expand the exponential term as
exp (−R/Rc) = 1−R/Rc +O((R/Rc)

2), these terms make the de Sitter solution realized by the trace
anomaly unstable. This property can lead to the graceful exit from inflation.

We derive the de Sitter solution at the inflationary stage. In the limit R/Rc � 1, from Equation (24)
we get f(R) ≈ −2Λc. For this limit, the Friedmann (first) equation in Equation (19) becomes
(3/κ2)H2 ≈ 6α2H

4 − 3α4N̄
2/ (16π2)

(
6H2Ḣ + 2ḦH − Ḣ2

)
+ (Λc/κ

2). Solving this equation, we
acquire the de Sitter solution

Hde Sitter =

√√√√ 1

4α2κ2

[
1±

√
1− 8Λcα2κ2

3

]
(25)

where we impose the condition Λc < 3/ (8α2κ
2) with α2 > 0 so that the solution can be real.

We examine the instability condition of the de Sitter solution. If the de Sitter solution describes
inflation, it should be unstable because inflation has to end. We represent the perturbation as
H = Hde Sitter + δH(t), where |δH(t)| � 1. By combining it with the Friedmann equation, we obtain
δḦ(t)+3Hde SitterδḢ(t) = −

[
α4N̄

2/ (16π2)
]

[(1/κ2)− 4α2H
2
de Sitter] δH(t), where we have neglected

the terms proportional to exp (−R/Rc) in Equation (24) because the stability of the solution is only
related to Λc. The solution for δH(t) is written as δH(t) = H̄ exp (λ±t), where H̄ is a constant and
λ± ≡

(
−3Hde Sitter ±

√
D
)
/2 (the subscriptions ± of λ± correspond to the signs of ± in the r.h.s.).

The de Sitter solutions are unstable (and adopted to describe the inflation) only if the value of λ+ is a
real and positive number, namely,

D ≡ 9H2
de Sitter −

64π2

α4N̄2
J > 0 , J ≡ 1

κ2
− 4α2H

2
de Sitter > 0 (26)

where α2 > 0 and α4 > 0 have been used.

3.4. Trace-Anomaly Driven Inflation

We investigate the observable quantities of the spectral index ns of the power spectrum for the the
scalar mode of the density perturbations and the tensor-to-scalar ratio r in the trace-anomaly driven
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inflation in exponential gravity, namely, inflation is described by the de Sitter solutions in Equation (25).
In the slow-roll inflation, for the exponential form of f(R) in Equation (24), we have

ε ≈ u2

N2
e

e−uΛcα2κ
2 (u+ 2)

(1− 8Λcα2κ2/3)
� 1 , |η| ≈

∣∣∣∣− u

2Ne

∣∣∣∣� 1 (27)

where 1� u ≤
(
1 +
√

1− y
)
/
(
1−
√

1− y
)

with y ≡ 8Λcα2κ
2/3. As a result, we acquire

∆2
R =

1

32π2α2ε

(
1 +

√
1− 8Λcα2κ2

3

)
(28)

ns − 1 = − u

Ne

− 6u2

N2
e

e−uΛcα2κ
2 (u+ 2)

(1− 8Λcα2κ2/3)
(29)

r =
16u2

N2
e

e−uΛcα2κ
2 (u+ 2)

(1− 8Λcα2κ2/3)
(30)

For u = 3, Λcα2κ
2 = 0.125, and Ne = 76, we acquire ns = 0.960 and r = 1.20 × 10−3.

Consequently, the trace-anomaly driven inflation in exponential gravity can explain the Planck results.

4. R2 Gravity in Loop Quantum Cosmology (LQC)

In this section, we review R2 gravity and its cosmological dynamics in LQC with the holonomy
corrections along the investigations in Reference [28]. (For LQC in teleparallelism, finite-time future
singularities [82,83] have been examined in Reference [84], and bouncing behaviors have also been
studied in References [85,86].)

4.1. F (R) Gravity in LQC

We explain F (R) gravity in the framework of LQC [87–89]. We consider the Einstein frame as in
usual LQC only for the FLRW background with its spatially flatness [90]. In this case, the relation
{β̂LQC, V̂volume} = γBI/2 is satisfied [91]. Here, { } denotes the Poisson bracket in terms of classical
variables β̂LQC ≡ γBIĤ with γBI the Barbero-Immirzi parameter and the volume V̂volume ≡ â3, where
â =

√
FRa. Moreover, β̂LQC and V̂volume are canonically conjugated quantities with each other, and

these variables are the unique combination for a loop quantization [92]. We note that the hat shows the
quantities in the Einstein frame.

It is necessary to take the Hilbert space, in which the quantum states are described by
(almost) periodic functions, so that the property of the discrete space can be included. For this
purpose, we use the Hamiltonian with the general holonomy corrections [35,93]. Namely, we

introduce λLQC ≡
√(√

3/2
)
γBI and replace β̂LQC with sin

(
λLQCβ̂LQC

)
/λLQC in the Hamiltonian

Ĥ = −3
(
β̂2

LQC/γ
2
BI

)
V̂volume + V̂volume

[
(1/2) (dϕ̂/dt̂)2 + V (ϕ̂)

]
= 0 with dt̂ =

√
FRdt by retaining

{β̂LQC, V̂volume} = γBI/2 [94–96]. As a result, we acquire the novel Hamiltonian ĤLQC. With the
Hamiltonian equation dV̂volume/dt̂ = {V̂volume, ĤLQC} and the Hamiltonian constraint ĤLQC = 0, the
Friedmann equation with the holonomy corrections reads [91]

Ĥ2 =
1

3
ρ̂

(
1− ρ̂

ρ̂critical

)
(31)
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Here, ρ̂ is the energy density of matter, and ρ̂critical ≡ 3/ (λLQCγBI)
2 is the critical energy density.

4.2. R2 Gravity in LQC

For R2 gravity, whose action is given by S =
∫
d4x
√
−g [F (R)/ (2κ2)] with F (R) = R + αSκ

2R2,
there appears curvature singularities in the early universe. In what follows, when we consider R2

gravity, we analyze this action. On the other hand, for R2 gravity in the context of LQC, it is
possible that no singularity happens. We show this point below. It follows from Equation (31)
that 0 ≤ ρ̂ ≤ ρ̂critical and −

√
ρ̂critical/12 ≤ Ĥ ≤

√
ρ̂critical/12. In addition, for R2

gravity, we have V (ϕ̂) = [1/ (8αSκ
2)]
(

1− exp
(
−
√

2/3κϕ̂
))2

in the Einstein frame. Therefore,

we find 0 ≤
(
dϕ̂/dt̂

)2 ≤ 2ρ̂critical and 0 ≤ V (ρ̂) ≤ ρ̂critical. For LQC, the Raychaudhuri
equation becomes dĤ/dt̂ = − (1/2)

(
dϕ̂/dt̂

)2
(1− 2ρ̂/ρ̂critical). With this equation, we find∣∣∣dĤ/dt̂∣∣∣ ≤ (1/2)

(
dϕ̂/dt̂

)2 ≤ ρ̂critical, and thus, it follows from this relation that
∣∣∣R̂∣∣∣ ≤ 7ρ̂critical.

Furthermore, the potential V (ϕ̂) in the Einstein frame described above obeys
dV (ϕ̂)/dϕ̂ = (1/FR)

√
V (ϕ̂)/ (3αSκ2). Substituting this equation into the relation

between R and R̂ as R = FR

[
R̂ +

(
dϕ̂/dt̂

)2
+
√

6 (dV (ϕ̂)/dϕ̂)
]

and using the relation

1− 2αSκ
2
[
R̂ +

(
dϕ̂/dt̂

)2
]
≥ 1− 18αSκ

2ρ̂critical, we acquire

|R| ≤ 1

1− 18αSκ2ρ̂critical

(
18ρ̂critical +

√
2ρ̂critical

αSκ2

)
(32)

For αSκ
2 < 1/ (18ρ̂critical), the absolute value of R is bounded as in Equation (32). In addition,

the relation between H and Ĥ is represented as H =
√
FR

[
Ĥ −

(
1/
√

6
) (
dϕ̂/dt̂

)]
. Accordingly, |H|

is bounded. As a result,
∣∣∣Ḣ∣∣∣ = (1/6) |R− 12H2| does not diverge. Thus, there does not appear any

singularity in R2 gravity for LQC.

4.3. Loop Quantum R2 Gravity in the Einstein Frame

We further analyze the dynamics of R2 gravity (i.e., F (R) = R + αSκ
2R2) in the Einstein

frame, where equations become simpler than those in the Jordan frame. The equation of
motion for ϕ̂ is expressed by d2ϕ̂/dt̂2 + 3Ĥ

(
dϕ̂/dt̂

)
+ dV (ϕ̂)/dϕ̂ = 0 with V (ϕ̂) =

[1/ (8αSκ
2)]
(

1− exp
(
−
√

2/3κϕ̂
))2

. We introduce a variable Ψ̂ ≡ exp
(√

2/3κϕ̂
)

. From the
equation of motion for ϕ̂, we obtain

d2Ψ̂

dt̂2
Ψ̂−

(
dΨ̂

dt̂

)2

+ 3Ĥ
dΨ̂

dt̂
Ψ̂ +

1

6αSκ2

(
Ψ̂− 1

)
= 0 (33)

Since this equation is invariant under the transformation (Ĥ, t̂)→ (−Ĥ,−t̂), the solution orbit draws
the symmetric trajectories of the expansion and contraction phases on the (Ψ̂, dΨ̂/dt̂) plane in terms of
the dΨ̂/dt̂ = 0 axis. That is, if there is a trajectory (Ψ̂(t̂), dΨ̂(t̂)/dt̂) for the contraction phase (Ĥ < 0),
we have a trajectory (Ψ̂(−t̂),−dΨ̂(−t̂)/dt̂) for the expansion phase (Ĥ > 0).
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In addition, the energy density is expressed as

ρ̂ =
3

4Ψ̂2

(dΨ̂

dt̂

)2

+
1

6αSκ2

(
Ψ̂− 1

)2

 (34)

This implies that Ĥ = 0 at (Ψ̂(t̂), dΨ̂(t̂)/dt̂) = (1, 0). For ρ̂ = ρ̂critical, we find(
dΨ̂/dt̂

)2

4ρ̂critical/ (3A)
+

(
Ψ̂− 1/A

)2

8αSκ2ρ̂critical/A2
= 1 (35)

with A ≡ 1 − 8αSκ
2ρ̂critical. This depicts an ellipse for A > 0, a parabola for A = 0, and a hyperbola

for A < 0. There exists only the critical point at (Ψ̂(t̂), dΨ̂(t̂)/dt̂) = (1, 0), where ρ̂ = 0. All of the
trajectories start from this point and come back to it. Therefore, it corresponds to both the beginning and
end points of the universe.

As a consequence, thanks to the holonomy corrections, in the Einstein frame, the bounces can occur
when ρ̂ = ρ̂critical. The universe evolves from the contraction phase (Ĥ < 0). Its trajectory oscillates near
the critical point (Ψ̂(t̂), dΨ̂(t̂)/dt̂) = (1, 0) and the oscillatory amplitude becomes large. Eventually, the
trajectory approaches the line ρ̂ = ρ̂critical and the bounce happens. After that, the expansion phase
(Ĥ > 0) begins and the trajectory goes back to the critical point (Ψ̂(t̂), dΨ̂(t̂)/dt̂) = (1, 0) with its
oscillating behavior.

Next, we explore the slow-roll inflation. With the slow-roll approximations(
dϕ̂/dt̂

)2 � V (ϕ̂) and
∣∣d2ϕ̂/dt̂2

∣∣� ∣∣∣3Ĥ (dϕ̂/dt̂)∣∣∣, the Friedmann equation with the holonomy

corrections and equation of motion for ϕ̂ are written as Ĥ2 = (1/3)V (ϕ̂) (1− V (ϕ̂)/ρ̂critical) and
3Ĥ
(
dϕ̂/dt̂

)
+ dV (ϕ̂)/dϕ = 0, respectively. The number of e-folds during inflation is derived

by N̂e ≡
∫ t̂f
t̂i
Ĥdt̂ =

∫ ϕ̂f

ϕ̂i
Ĥ/
(
dϕ̂/dt̂

)
dϕ̂ ≈

∫ ϕ̂i

ϕ̂e
[V (ϕ̂)/ (dV (ϕ̂)/dϕ̂)] (1− V (ϕ̂)/ρ̂critical) dϕ̂. For

V (ϕ̂) = [1/ (8αSκ
2)]
(

1− exp
(
−
√

2/3κϕ̂
))2

, we find N̂e ≈ (3/4) exp
(√

2/3κϕ̂i

)
. Moreover, for

N̂e � 1, the slow-roll parameters are described as

ε̂ ≈ 3

4N̂2
e

[1− 1/ (4αSκ
2ρ̂critical)]

[1− 1/ (8αSκ2ρ̂critical)]
2 , η̂ ≈ − 1

N̂e

1

[1− 1/ (8αSκ2ρ̂critical)]
(36)

By using these expressions, the spectral index of scalar mode of the density perturbations
n̂s − 1 = −6η̂ + 2η̂ and the tensor-to-scalar ratio r̂ = 16ε̂ become

n̂s − 1 ≈ − 2

N̂e

1

[1− 1/ (8αSκ2ρ̂critical)]
(37)

r̂ ≈ 12

N̂2
e

[1− 1/ (4αSκ
2ρ̂critical)]

[1− 1/ (8αSκ2ρ̂critical)]
2 (38)

In the limit ρ̂critical → ∞, these expressions of n̂s and r̂ become equivalent to those for pure R2

gravity without the holonomy corrections, i.e., the original Starobinsky inflation model. For instance,
if N̂e = 68.0 and 8αSκ

2ρ̂critical = 8.50, we acquire n̂s = 0.967 and r̂ = 2.55 × 10−3. Thus, in an
R2 gravity model with the holonomy corrections in the context of LQC, the spectral index of scalar
mode of the density perturbations and the tensor-to-scalar ratio can be compatible with the Planck data.
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We mention that in the Starobinsky inflation model, for N̂e = 60.0 (68.0), we have n̂s = 0.967 (0.971)
and r̂ = 3.33× 10−3 (2.60× 10−3).

4.4. Loop Quantum R2 Gravity in the Jordan Frame

Furthermore, in the Jordan frame, we analyze the cosmological behaviors in R2 gravity for LQC.
For the comparison with the consequences in the Einstein frame, at the point on the (Ψ̂, dΨ̂/dt̂) plane,
the bounce occurs, i.e., H becomes zero. From H =

√
FR

[
Ĥ −

(
1/
√

6
) (
dϕ̂/dt̂

)]
, if H = 0, we get

Ĥ2 = (1/4)
(
dΨ̂/dt̂

)2

/Ψ̂2. This equation leads to

(
dΨ̂/dt̂

)2

ρ̂critical/ (12B±)
+

(
Ψ̂− C±/B±

)2

2αSκ2ρ̂critical/B2
±

= 1 (39)

with B± ≡ 1±
√

8αSκ2ρ̂critical and C± ≡ 1±
√

2αSκ2ρ̂critical, where the subscription ± in B± and C±
corresponds to the sign ±. The case of + sign is for 0 < Ψ̂ < 1. In this case, this curve draws an ellipse
for B+ > 0, a parabola for B+ = 0, and an hyperbola for B+ < 0. On the other hand, the case of − sign
is for Ψ̂ > 1. In this case, it shows an ellipse. If the trajectory intersects this curve in the Einstein frame,
the bounce happens in the Jordan frame. At the bouncing point, the relation Ĥ = (1/2)

(
dΨ̂/dt̂

)
/Ψ̂

has to be met.
In the Einstein frame, the universe first contracts and finally expands at the critical point

(Ψ̂(t̂), dΨ̂(t̂)/dt̂) = (1, 0). With the relation between H and Ĥ and its time derivative

H =
√

Ψ̂

(
Ĥ − 1

2

dΨ̂/dt̂

Ψ̂

)
(40)

Ḣ =
1

2

dΨ̂

dt̂

(
Ĥ − 1

2

dΨ̂/dt̂

Ψ̂

)
+ Ψ̂

[
dĤ

dt̂
− 1

2

d

dt̂

(
dΨ̂/dt̂

Ψ̂

)]
(41)

it is seen that in the Jordan frame, the universe begins and ends at the point (H, Ḣ) = (0, 0). It should
be emphasized that the holonomy corrections yield the bounce in the Jordan frame, and hence, if they
are absent, a singularity appears at the early stage of the universe.

5. Bouncing Cosmology in F (R) Gravity

In this section, we review the cosmological bounce from F (R) gravity. Especially, we present the
consequences found in References [41,42]. The bouncing behaviors in various modified gravity theories
have also been investigated in References [97–102]. We show that it is possible to reconstruct an F (R)

gravity theory in which the matter bounce can happen in the framework of LQC.
For the Friedmann equation with the holonomy corrections Equation (31), the energy density of matter

can be represented as ρ = ρ̄m/ [(3/4) t2 + 1] with ρ̄m a constant. In this case, the scale factor and the
Hubble parameter read [86,99]

a(t) =

(
3

4
ρ̄mt

2 + 1

)1/3

, H(t) =
(1/2) ρ̄mt

(3/4) ρ̄mt2 + 1
(42)
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For these expressions, the solution of Equation (10) yields the form of F (R) to realize
the matter bounce described by a and H in Equation (42) for LQC. We solve Equation (42), and
consequently acquire

F (R) = I1R + I2R
1/2 (43)

where I1 and I2 are constants. We can set I1 = 1, so that the Einstein-Hilbert term should be included.
In Reference [42], the reconstruction of various modified gravity theories including F (R), F (G), and

F (T ) gravity theories has been performed, where F (G) is an arbitrary function of the Gauss-Bonnet
invariant G, to describe the two-times bouncing phenomena, called super-bounce [103,104], and the
ekpyrotic scenario [105] in the context of LQC.

6. Conclusions

In the present paper, we have reviewed inflationary models in modified gravity theories such as F (R)

gravity including R2 gravity with extended terms so that we can generalize the Starobinsky inflation in
R2 gravity and derive its important properties to be useful clues to obtain the information on physics in
the early universe.

First, we have studied inflationary cosmology by modification terms of gravity, especially, inflation
in F (R) gravity, by following Reference [26]. The Starobinsky inflation in R2 gravity is considered
to be the seminal and significant idea of inflationary models in modified gravity theories. We have
made the coformal transformation from the Jordan frame (namely, F (R) gravity) to the Einstein frame
(i.e., general gravity plus the scalar field theory), and given slow-roll dynamics of inflation in the Einstein
frame. In addition, we have reconstructed F (R) gravity models, which are an extended version of the
Starobinsky inflation model in R2 gravity and general relativity with power-law correction terms.

Second, we have explored the trace-anomaly driven inflation in F (R) gravity along the discussions
in Reference [27]. We have first explained the quantum anomaly appearing through the process of
the renormalization in four-dimensional space-time. We have further discussed F (R) gravity with the
quantum anomaly and the de Sitter solutions for inflation due to the trace anomaly.

Third, based on Reference [28], we have examined inflation in R2 gravity and the cosmological
evolutions for LQC with the holonomy corrections. We have analyzed R2 gravity for LQC in both
the Einstein and Jordan frames. We have found that in the Jordan frame, owing to the holonomy
corrections, the bounce can happen, and accordingly the cosmic singularities can be removed, although
such singularities appear in ordinary R2 gravity.

In these three inflationary models, we have shown that the spectral index of scalar modes of the
density perturbations and the tensor-to-scalar ratio can be compatible with the Planck analysis.

Furthermore, we have presented the recent developments of the bounce cosmology in F (R) gravity
obtained in References [41,42]. It has been performed that an F (R) gravity theory can be reconstructed,
where the matter bounce occurs in the context of LQC, thanks to the reconstruction method of F (R)

gravity. Recently, the reconstruction of F (R), F (G), and F (T ) gravity theories have also been executed,
in which the super-bounce (i.e., two-times bounce behaviors) and the ekpyrotic scenario for LQC can
be realized.
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In this work, we have concentrated on the accelerating universe from F (R) gravity. Note, however,
that it is possible to extend this study for more complicated versions of effective gravity, which comes
from quantum gravity. Particularly, it has recently been demonstrated that successful inflation consistent
with the Planck data may emerge from multiplicatively-renormalizable higher derivative quantum gravity
in Reference [106].
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