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Abstract We consider a five dimensional warped space-
time, in presence of the higher curvature term like F(R) =
R + αR2 in the bulk, in the context of the two-brane model.
Our universe is identified with the TeV scale brane and
emerges as a four dimensional effective theory. From the per-
spective of this effective theory, we examine the possibility
of “inflationary scenario” by considering the on-brane metric
ansatz as an FRW one. Our results reveal that the higher cur-
vature term in the five dimensional bulk spacetime generates
a potential term for the radion field. Due to the presence of
radion potential, the very early universe undergoes a stage of
accelerated expansion and, moreover, the accelerating period
of the universe terminates in a finite time. We also find the
spectral index of curvature perturbation (ns) and the tensor
to scalar ratio (r ) in the present context, which match with
the observational results based on the observations of Planck
(Astron. Astrophys. 594, A20, 2016).

1 Introduction

Over the last two decades, extra spatial dimensions [2–14]
have been increasingly playing a central role in physics
beyond the standard model of particle [15] and cosmology
[16]. Apart from phenomenological approach, higher dimen-
sional scenarios come naturally in string theory. Depending
on geometry, the extra dimensions are compactified under
various compactification schemes. Our usual four dimen-
sional universe is considered to be a 3-brane (3 + 1 dimen-
sional brane) embedded within the higher dimensional space-
time and emerges as a four dimensional effective theory.

Among the various extra dimensional models proposed
over the last several years, the Randall–Sundrum (RS)
warped extra dimensional model [7] earned special atten-
tion since it resolves the gauge hierarchy problem without
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introducing any intermediate scale (between Planck and TeV
scale) in the theory. RS model is a five dimensional AdS
spacetime with S1/Z2 orbifolding along the extra dimen-
sion while the orbifold fixed points are identified with two
3-branes. The separation between the branes is assumed to
be of the order of Planck length so that the hierarchy problem
can be solved. However, due to the intervening gravity, the
aforementioned brane configuration cannot be a stable one.
So, like other higher dimensional braneworld scenarios, one
of the crucial aspects of the RS model is in stabilizing the
interbrane separation (known as the modulus or radion). For
this purpose, one needs to generate a suitable radion potential
with a stable minimum. Goldberger and Wise (GW) proposed
a useful mechanism [17] to construct such a radion potential
by imposing a massive scalar field in the bulk with appropri-
ate boundary conditions. Subsequently the phenomenology
of the radion field has also been studied extensively in [18–
21].

Some variants of the RS model and its modulus stabiliza-
tion have been discussed in [19–25].

The Standard Big Bang model gives a predictive descrip-
tion of our universe from nucleosynthesis to the present.
But back in very early stages of the evolution, the big bang
model is plagued with some problems such as the horizon
and flatness problems. For a comprehensive review, we refer
to [26,27]. In order to resolve these problems, the idea of
inflation was introduced by Guth [28], in which the universe
had to go through a stage of accelerated expansion after the
big bang. It had also been demonstrated that a massive scalar
field with a suitable potential plays a crucial role in produc-
ing an accelerated expansion of the universe. This resulted
in a huge amount of work on inflation based on scalar fields
[26,27,29–37].

It is interesting to note that in the extra dimensional
models, the modulus field can fulfill the requirement of
the scalar field as regards inflation. Thus the cosmology
of higher dimensional models [38–45] can be very differ-
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ent from the usual cosmology of four dimensions where
the inflaton field is normally invoked by hand. In our
current work, we take advantage of the modulus field
of extra dimensions and address the early time cosmol-
ogy of our universe in the backdrop of the RS two-brane
model.

It is well known that the Einstein–Hilbert action can be
generalized by adding higher order curvature terms which
naturally arise from the diffeomorphism property of the
action. Such terms also have their origin in string theory
due to quantum corrections. F(R) [46–51], Gauss–Bonnet
(GB) [52–54] or more generally Lanczos–Lovelock gravity
[55–57] are some of the candidates in higher curvature grav-
itational theory.

Higher curvature terms become extremely relevant at the
regime of large curvature. Thus for RS bulk geometry, where
the curvature is of the order of Planck scale, the higher curva-
ture terms should play a crucial role. Motivated by this idea,
we consider a generalized version of RS model by replac-
ing the Einstein–Hilbert bulk gravity Lagrangian, given by
the Ricci scalar R by F(R) where F(R) is an analytic func-
tion of R[58–60]. Recently it has been shown [23] that, for
an RS braneworld modified by F(R) gravity, a potential
term for the radion field is generated (in the four dimen-
sional effective theory) even without introducing an external
scalar field in the bulk and, moreover, the radion potential
has a stable minimum for a certain range of parametric space.
However, from the cosmological aspect, the important ques-
tions that remain in the said higher curvature RS model [23],
are:

1. Can the usual four dimensional universe undergo an
accelerating expansion at an early epoch, due to the pres-
ence of the radion potential generated by a higher curva-
ture term?

2. If such an inflationary scenario is allowed, then what are
the dependence of duration of inflation and the number
of e-foldings on higher curvature parameter? Moreover,
what are the values of ns and r in the present context?

We aim to address these questions in this work and, motivated
by the Starobinsky model [61], the form of F(R) in the five
dimensional bulk is taken as F(R) = R + αR2 where α is a
constant.

The paper is organized as follows: the following two sec-
tions are devoted to brief reviews of the RS scenario and its
extension to F(R) model. Section 4 is reserved for deter-
mining the solutions of effective Friedmann equations on the
brane. In Sects. 5, 6, 7 and 8, we address the consequences
of the solutions that are obtained in Sect. 4. Finally the paper
ends with some concluding remarks in Sect. 9.

2 Brief description of the RS scenario

The RS scenario is defined on a five dimensional AdS
spacetime involving one warped and compact extra space-
like dimension. Two 3-branes known as TeV/visible and
Planck/hidden brane are embedded in a five dimensional
spacetime. If φ is the extra dimensional angular coordinate,
then the branes are located at two fixed points φ = (0, π)

while the latter one is identified with our known four dimen-
sional universe. The opposite brane tensions along with the
finely tuned five dimensional cosmological constant serve as
the energy-momentum tensor of the RS scenario. The result-
ing spacetime metric [7] is non-factorizable and expressed
as

ds2 = e−2krc|φ|ημνdxμdxν − r2
c dφ2. (1)

Here, rc is the compactification radius of the extra dimension.
Due to S1/Z2 compactification along the extra dimension, φ

ranges from −π to +π . The quantity k =
√

−�
12M3 is of the

order of the five dimensional Planck scale M . Thus k relates
the 5D Planck scale M to the 5D cosmological constant �.

In order to solve the hierarchy problem, it is assumed in the
RS scenario that the branes are separated by such a distance
that kπrc ≈ 36. Then the exponential factor present in the
metric, which is often called the warp factor, produces a large
suppression so that a mass scale of the order of Planck scale
is reduced to TeV scale on the visible brane. A scalar mass,
e.g. the mass of Higgs boson, is given by

mH = m0e
−kπrc (2)

where mH and m0 are physical and bare Higgs masses,
respectively.

3 RS like spacetime in F(R) model: four dimensional
effective action

In the present paper, we consider a five dimensional warped
spacetime with two 3-brane scenario in F(R) model. The form
of F(R) is taken as F(R) = R + αR2 where α is a constant
with the square of the inverse mass dimension. Considering
φ as the extra dimensional angular coordinate, two branes are
located at φ = 0 (hidden brane) and at φ = π (visible brane),
respectively, while the latter one is identified with the visible
universe. Moreover, the spacetime is S1/Z2 orbifolded along
the coordinate φ. The action for this model is

S =
∫

d4xdφ
√
G

[
1

2κ2 (R + αR2) + � + Vhδ(φ)

+ Vvδ(φ − π)

]
(3)
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where G is the determinant of the five dimensional metric
(GMN ), �(< 0) is the bulk cosmological constant, 1

2κ2 =
M3 and Vh , Vv are the brane tensions on the hidden and
visible brane, respectively.

It is well known that a F(R) gravity model can be recast
into Einstein gravity with a scalar field by means of a confor-
mal transformation on the metric [23,49]. Thus the solutions
of the five dimensional Einstein equations for the action pre-
sented in Eq. (3) can be extracted from the solutions of the
corresponding conformally related scalar–tensor (ST) theory
and this is discussed in the following two subsections.

3.1 Solutions of field equations for corresponding ST
theory

This higher curvature like F(R) model (in Eq. (3)) can be
transformed into scalar–tensor theory. The demonstration
goes as follows.

Introducing an auxiliary field A(x, φ), the above action
(3) can be equivalently written as

S = (1/2κ2)

∫
d4xdφ

√
G

[
F ′(A)(R − A) + F(A) + �

+Vhδ(φ) + Vvδ(φ − π)

]
. (4)

By the variation of the auxiliary field A(x, φ), one easily
obtains A = R. Plugging back this solution A = R into the
action (4), the initial action (3) can be reproduced. At this
stage, we perform a conformal transformation of the metric:

GMN (x, φ) → G̃MN = exp

(
1√
3
κ
(x, φ)

)
GMN (x, φ),

(5)

M, N run form 0 to 4 and the conformal factor 
 is related
to the auxiliary field (A) as

√
3

2 κ
 = ln [F ′(A)]. If R and R̃

are the Ricci scalar formed by GMN and G̃MN , respectively,
then they are related by

R = e
1√
3
κ

[
R̃ + 4κ√

3
G̃MN ∂M∂N
 + κ2G̃MN ∂M
∂N


]
.

With this above expression and the aforementioned relation
between 
 and A, the action (in Eq. (4)) turns out to be [23]

S =
∫

d4xdφ

√
G̃

[
R̃

2κ2 + 1

2
G̃MN ∂M
∂N
 − V (
) + �

+ exp

(
− 5

2
√

3
κ


)
Vhδ(φ)

+ exp

(
− 5

2
√

3
κ


)
Vvδ(φ − π)

]
, (6)

where the quantities in tilde are reserved for the ST theory.

(x, φ) is the scalar field which corresponds to higher cur-
vature degrees of freedom and

V (
) = 1

2κ2

[
A

F ′(A)2/3 − F(A)

F ′(A)5/3

]

−�

[
exp

(
− 5

2
√

3
κ


)
− 1

]
(7)

is the scalar potential, which for the specific choice of
F(R) = R + αR2 has the following form:

V (
) = 1

8κ2α
exp

(
− 5

2
√

3
κ


)[
exp

(
3

2
√

3
κ


)
− 1

]2

−�

[
exp

(
− 5

2
√

3
κ


)
− 1

]
. (8)

This form of V (
) immediately leads to V ′(
) as follows:

V ′(
) = 1

16
√

3κα
e
− 5

2
√

3
κ

[
e

6
2
√

3
κ


+ 4e
3

2
√

3
κ
 −

(
5 − 40κ2α�

)]
. (9)

Using Eq. (9), one can check that the potential [in Eq. (8)]
is stable for the parametric regime α > 0. The stable value
(< 
 >) and the mass squared (m2


) of the scalar field (
)
are given by the following two equations:

exp

(
3

2
√

3
κ < 
 >

)
=
[√

9 − 40κ2α� − 2

]
(10)

and

m2

 = 1

8α

[√
9 − 40κ2α�

][√
9 − 40κ2α� − 2

]− 2
3

. (11)

Furthermore, the minimum value of the potential, i.e. V (<


 >), is nonzero and serves as a cosmological constant. Thus
the effective cosmological constant in scalar–tensor theory is
�eff = � − V (< 
 >) where V (< 
 >) is

V (< 
 >) = � + [
√

9 − 40κ2α� − 2]− 5
3

×
[
−�+(1/8κ2α)

[√
9−40κ2α�−3

]2
]

.

This form of V (< 
 >) with � < 0 clearly indicates that
�eff is also negative. Expanding V (
) (in a Taylor series)
around 
 =< 
 > and retaining up to quadratic order in

− < 
 >= ξ , one finally is left with the following form
of the action for the scalar–tensor theory:

S =
∫

d4xdφ
√
G̃

[
R̃

2κ2 + 1

2
G̃MN ∂Mξ∂N ξ − (1/2)m2


ξ2

+ �eff + e
− 5

2
√

3
κ(<
>+ξ)

Vhδ(φ)

+ e
− 5

2
√

3
κ(<
>+ξ)

Vvδ(φ − π)

]
. (12)
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For the case of ST theory presented in Eq. (12), ξ can act
as a bulk scalar field with the mass given by Eq. (11). Con-
sidering a negligible backreaction of the scalar field (ξ ) on
the background spacetime, the solution of the metric G̃MN

is exactly the same as in the well-known RS model, i.e.,

ds̃2 = e−2krc|φ|ημνdxμdxν − r2
c dφ2, (13)

where k =
√

−�eff
24M3 and rc is the compactification radius of

the extra dimension in ST theory. The brane tensions Vh , Vv

are given by the following expressions:

Vh = 24M3k ∗ exp

[
5

2
√

3
κ(< 
 > +vh)

]
,

Vv = −24M3k ∗ exp

[
5

2
√

3
κ(< 
 > +vv)

]
,

where vh and vv are the boundary values of ξ on hidden and
visible brane, respectively.

With the metric presented in Eq. (13), the scalar field equa-
tion of motion in the bulk is the following:

− 1

r2
c
∂φ[exp (−4krc|φ|)∂φξ ] + m2


 exp (−4krc|φ|)ξ(φ) = 0,

(14)

where the scalar field ξ is taken as a function of the extra
dimensional coordinate only [17]. Considering the nonzero
value of ξ on branes, Eq. (14) has the general solution

ξ(φ) = e2krc|φ|[Aeνkrc|φ| + Be−νkrc|φ|] (15)

with ν =
√

4 + m2

/k2. Moreover, A and B are obtained

from the boundary conditions, ξ(0) = vh and ξ(π) = vv as
follows:

A = vve
−(2+ν)krcπ − vhe

−2νkrcπ

and

B = vh(1 + e−2νkrcπ ) − vve
−(2+ν)krcπ .

Upon substitution of the forms of A and B into Eq. (15), one
finds that

ξ(0) = vh,

ξ(π) = vv

[
1 − e−2νkrcπ + vh

vv

e−(3ν−2)krcπ
]

.

The above values of ξ(0) and ξ(π) match with the boundary
condition (i.e. ξ(0) = vh and ξ(π) = vv) by neglecting the
subleading powers of e−krcπ , as has been done earlier by the
authors in [17].

3.2 Solutions of field equations for original F(R) theory

Recall that the original higher curvature F(R) model is rep-
resented by the action given in Eq. (3). Solutions of the metric
(GMN ) for this F(R) model can be extracted from the solu-
tions of corresponding scalar–tensor theory (Eqs. (13) and
(15)) with the help of Eq. (5). Thus, the line element in F(R)

model turns out to be

ds2 = e
− κ√

3

(φ)

[
e−2krc|φ|ημνdxμdxν − r2

c dφ2
]

(16)

where 
(φ) =< 
 > +ξ(φ) and ξ(φ) is given by Eq. (15).
In order to introduce radion (or modulus) field, rc is

replaced by a field T (x) [18] and this new field is assumed to
be a function of the brane coordinates only. Then the metric
takes the following form:

ds2 = e
− κ√

3

(x,φ)

[
e−2kT (x)|φ|gμν(x)dx

μdxν − T (x)2dφ2
]

(17)

where gμν(x) is the induced on-brane metric and T (x) is
known as the radion field. Moreover, 
(x, φ) is obtained
from Eq. (15) by replacing rc by T (x).

Plugging back the solutions presented in Eq. (17) into
the original five dimensional F(R) action (in Eq. (3)) and
integrating over φ yield the four dimensional effective action
as follows [23]:

Seff =
∫

d4x
√−g

[
M2

(4)R(4) + 1

2
gμν∂μ∂ν −Urad()

]

(18)

where M2
(4) = M3

k

[√
9 − 40κ2α�−2

]1/2

is the four dimen-

sional Planck scale, R(4) is the Ricci scalar formed by gμν(x).

Moreover, (x) =
√

24M3

k

[
1 + 20√

3
αk2κvh

]
e−kπT (x) =

f e−kπT (x)
(

with f =
√

24M3

k

[
1 + 20√

3
αk2κvh

])
is the canon-

ical radion field and Urad() is the radion potential; it has
the following form [23]:

Urad() = 20√
3

αk5

M6 4

[(
vh − κv2

h

2
√

3
+ κvhvv

2
√

3

)

× (/ f )σ − vv

]2

(19)

where the terms proportional to σ

(
= m2




k2

)
are neglected

[17,18]. It may be observed that Urad() goes to zero as
α tends to zero. This is expected because, for α → 0, the
action contains only the Einstein part which does not produce
any potential term for the radion field [18]. Thus, for five
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Fig. 1 Urad() vs.  for M = k = 1 (in Planck units), σ = 0.04,
κvv = 10−7, vh

vv
= 1.2 and α = 1

M2

dimensional warped geometric model, the radion potential is
generated from the higher order curvature term αR2.

The potential in Eq. (19) has a minimum at
min = <  >

=
⎡
⎢⎣ vv f σ

(
vh − κv2

h

2
√

3
+ κvvvh

2
√

3

)

⎤
⎥⎦

1/σ

(20)

and a maximum at

max =
⎡
⎢⎣

⎛
⎜⎝ 2

2 + σ

)(
vv f σ

vh − κv2
h

2
√

3
+ κvvvh

2
√

3

⎞
⎟⎠

⎤
⎥⎦

1/σ

,

respectively, as long as α > 0. Moreover, Eq. (19) clearly
indicates that Urad() goes to zero at  = 0. In Fig. 1, we
give a plot of Urad() against .

Due to the presence of Urad(), the radion field has a
certain dynamics governed by effective field equations. In
this scenario, our motivation is to investigate whether the
dynamics of the radion field () can trigger an inflationary
scenario on the brane scale factor. Motivated by this idea, we
try to solve the cosmological equations (Friedmann equa-
tions) obtained from the four dimensional effective action
Seff , which is discussed in the next section.

4 Solutions of effective Friedmann equations

We consider for the on-brane metric ansatz the flat FRW one,
i.e.

ds2
(4) = gμν(x)dx

μdxν

= dt2 − a2(t)
[
dx2 + dy2 + dz2

]

where a(t) is the scale factor of the visible universe. The
effective field equations [obtained from the effective action
presented in Eq. (18)] take the following form:

H2 = 1

3

[
Urad() + 1

2
(̇)2

]
(21)

and

̈ + 3Ḣ +U ′
rad() = 0 (22)

where an overdot denotes the derivative d
dt , H = ȧ

a is known
as the Hubble parameter and the form of Urad() is given in
Eq. (19). To derive the above equations, we assume that the
radion field ((t)) is homogeneous in space.

In order to solve the effective Friedmann equations, the
potential energy of radion field is taken as very much greater
than the kinetic energy (known as slow roll approximation)
i.e.

Urad() � 1

2
(̇)2.

With this approximation, Eqs. (21) and (22) are simplified to

H2 = 1

3
Urad() (23)

and

3Ḣ +U ′
rad() = 0, (24)

respectively. Substituting H(t) from Eqs. (23)–(24) and
using the explicit form of Urad(), we get the equation of
motion for the radion field:

d

dt
= −8vv

√
5

3
√

3

αk5

M6 
(
Bσ − 1

)
(25)

where B = 1
vv f σ

(
vh − κv2

h

2
√

3
+ κvvvh

2
√

3

)
. Equation (25) imme-

diately leads to the dynamics of the radion field,

(t) = 0[
Bσ

0 − (Bσ
0 − 1) exp

(− 8σvv

√
5

3
√

3
αk5

M6 (t − t0)
)]1/σ

,

(26)

where 0 is the value of radion field ((t)) at t = t0. Equa-
tion (26) clearly indicates that (t) decreases with time.
Comparison of Eqs. (20) and (26) clearly reveals that the
radion field reaches its vacuum expectation value (VEV)
asymptotically (within the slow roll approximation) at large
time (t � t0) i.e.

(t � t0) =

⎡
⎢⎢⎣

vv f σ

(
vh − κv2

h

2
√

3
+ κvvvh

2
√

3

)

⎤
⎥⎥⎦

1/σ

= <  > . (27)
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This VEV of the radion field leads to the stabilized interbrane
separation (between Planck and TeV branes),

kπ < T (x) >= 4k2

m2



[
ln

(
vh

vv

)
− κvv

2
√

3

(
vh

vv

− 1

)]
(28)

where m2

 is given in Eq. (11).

Putting the solution of (t) into Eq. (23) one gets, on
integration, the evolution of the scale factor,

a(t) = C exp

⎡
⎣2vv

√
5

3
√

3

αk5

M6 (g1(t) − g2(t))

⎤
⎦, (29)

whereC is an integration constant and g1(t) has the following
form:

g1(t) = − Bσ
0

(Bσ
0 − 1)

1

16σvv

√
5

3
√

3
αk5

M6

2
0 ∗ 2F1

×
⎛
⎝1, 1, 2 + 2

σ
,

Bσ
0

Bσ
0 − 1

exp

×
⎛
⎝8σvv

√
5

3
√

3

αk5

M6 (t − t0)

⎞
⎠
⎞
⎠

exp

⎛
⎝8σvv

√
5

3
√

3

αk5

M6 (t − t0)

⎞
⎠(Bσ

0 − (Bσ
0 − 1)

exp

⎛
⎝−8σvv

√
5

3
√

3

αk5

M6 (t − t0)

⎞
⎠
⎞
⎠

−2/σ

(30)

where 2F1 denotes the hypergeometric function. Similarly
the form of g2(t) is given by

g2(t) = − σ
0

(Bσ
0 − 1)

1

16σvv

√
5

3
√

3
αk5

M6

2
0 ∗ 2F1

×
⎛
⎝1, 1, 1 + 2

σ
,

Bσ
0

Bσ
0 − 1

× exp

⎛
⎝8σvv

√
5

3
√

3

αk5

M6 (t − t0)

⎞
⎠
⎞
⎠

× exp

⎛
⎝8σvv

√
5

3
√

3

αk5

M6 (t − t0)

⎞
⎠

×
⎛
⎝Bσ

0 − (Bσ
0 − 1)

× exp

⎛
⎝−8σvv

√
5

3
√

3

αk5

M6 (t − t0)

⎞
⎠
⎞
⎠

1−2/σ

.

(31)

It may be noticed from Eqs. (26) and (29) that, for α → 0,
the solution of the radion field and Hubble parameter become
(t) = 0 and H(t) = 0, respectively. It is expected
because in the absence of the higher curvature term,Urad()

goes to zero and thus the radion field has no dynamics, by
which in turn the evolution of the scale factor of the universe
vanishes.

5 Beginning of inflation

After obtaining the solution of a(t) (in Eq. (29)), we can now
examine whether this form of the scale factor corresponds to
an accelerating era of the early universe (i.e. t � t0) or not.
In order to check this, we expand a(t) in the form of Taylor
series (about t = t0) and retain the terms only up to first order
in t − t0:

a(t � t0) = a0 exp

⎡
⎣2
(
Bσ

0 − 1
)
2

0vv

√
5

3
√

3

αk5

M6 (t − t0)

⎤
⎦

(32)

where a0 is the value of the scale factor at t = t0; it is related
to the integration constant C by

a0 = C exp

[
−2

0

8

]
.

It is evident from Eq. (32) that a(t) corresponds to an expo-
nential expansion at an early age of the universe, where t0
specifies the onset of inflation. Moreover, the Hubble param-
eter (H = ȧ

a ) depends on the higher curvature parameter α

and for α → 0, a(t) = a0. Thus the accelerating period of
the early universe is triggered entirely due to the presence of a
higher curvature term in the five dimensional bulk spacetime.

6 End of inflation

In the previous section, we show that the very early uni-
verse expands with an acceleration and this accelerating stage
is termed the inflationary epoch. In this section, we check
whether the acceleration of the scale factor has an end in a
finite time or not.

In the case of inflation, ä > 0. By relating the definition
of inflation to the Hubble parameter, one readily obtains

ä

a
= Ḣ + H2 > 0. (33)

We now estimate the time interval which is consistent with
this condition. Recall the slow roll equation (Eq. (23)),

H2 = 1

3
Urad()

= 20

3
√

3

αk5

M6 v2
v

4(Bσ − 1
)2

.
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Differentiating both sides of this equation with respect to t,
we get the time derivative of the Hubble parameter as follows:

Ḣ = − 160

3
√

3

αk5

M6 v2
v

2(Bσ − 1
)2 (34)

where we use the expression of ̇ from Eq. (25). Plugging
back the expressions of H2 and Ḣ into Eq. (33) one gets the
following condition on the radion field:

 > 2
√

2 =  f = (t f ) (35)

where t f is the time when the radion field acquires the value
2
√

2 (in Planck units). Equation (35) clearly indicates that the
inflationary era of the universe continues as long as the radion
field remains greater than  f (= 2

√
2). Correspondingly the

duration of inflation (i.e. t f − t0) can be calculated from the
solution of (t) as follows:

ε
f = σ

0[
Bσ

0 − (Bσ
0 − 1) exp

(− 8σvv

√
5

3
√

3
αk5

M6 (t f − t0)
)] .

Simplifying the above expression, we obtain

t f − t0 = 1

8σvv

√
5

3
√

3
αk5

M6

ln

[
σ

f (Bσ
0 − 1)

σ
0 (Bσ

f − 1)

]
. (36)

So inflation comes to an end in a finite time. In order to esti-
mate the duration of inflation explicitly, one needs the initial
value of the radion field (i.e. 0) which can be determined
from the expression of the number of e-foldings, discussed
in the next section.

7 Number of e-foldings and slow roll parameters

The total number of e-foldings (N0) of the inflationary era is
defined by

N0 =
∫ t f

t0
H(t)dt. (37)

Using the slow roll equation, the above expression is simpli-
fied to the form

N0 =
∫  f

0

√
Urad()

3

1

̇
d. (38)

Putting the explicit form of Urad() (Eq. (19)) and the time
derivative of (t) (Eq. (25)) into the right hand side of Eq.
(38) and integrating over , one obtains the final result of
number of e-foldings to be given by

N0 = 1

16

(
2

0 − 2
f

)
. (39)

We may define

N () = N0 −
∫ 

0

√
Urad()

3

1

̇
d,

the number of e-foldings remaining until the end of inflation
when the inflaton field crosses the value (t). Simplifying
the above expression, one obtains

N () = 1

16

(
2 − 2

f

)
.

In order to test the broad inflationary paradigm as well
as particular models against precision observations [1], it is
crucial to calculate the slow roll parameters (εV and ηV ),
which are defined as follows:

εV = 1

2

(
U ′

rad()

Urad()

)2

and

ηV =
(
U ′′

rad()

Urad()

)

The slow roll condition requires that the parameters εV and
ηV should be less than unity as long as the inflationary era
continues. By using the form of inflaton potential [Urad(),
in Eq. (19)], the above expressions can be simplified and turn
out to be

εV = 8

16N () + 2
f

(40)

and

ηV = 6

16N () + 2
f

. (41)

Using these expressions of the slow roll parameters, one
determines the spectral index of the curvature perturba-
tion (ns) and the tensor to scalar ratio (r ) in terms of N∗
(= 1

16

(
2∗ − 2

f

)
, the number of e-foldings remaining until

the end of inflation when the cosmological scales exit the
horizon and ∗ is the corresponding value of the inflaton
field) [31–33]:

ns = 16N∗ − 28

16N∗ + 8
(42)

and

r = 128

16N∗ + 8
. (43)

To derive Eq. (42) and Eq. (43), we use the value of  f

(= 2
√

2), which has been obtained earlier (see Eq. (35).
From observational results (PlanckT T + lowP + lensing,
2015) [1] ns and r are constrained to be ns = 0.968 ± 0.006
and r < 0.14, respectively. Using Eqs. (42) and (43), it can
easily be shown that in order to have agreement between the
theoretical and observational results, N∗ should be equal to
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Table 1 Theoretical and observational results of ns and r

Parameters (ns and r ) Theoretical results from the present model (for N∗ = 60) Observational results from PlanckTT + lowP + lensing 2015

ns 0.963 0.968 ±0.006

r 0.132 <0.14

60. Putting this value of N∗ into Eqs. (42) and (43), we obtain
the following results for ns and r :

ns = 0.963,

r = 0.132.

At this stage it deserves mention that any non-minimally
coupled theory and its conformally transformed version (the
so-called Einstein frame) may be physically quite different.
However, we want to emphasize that in the present context
the inflationary solutions as well as the values of ns and
r are obtained not in the conformally related scalar–tensor
version of the theory, but rather in the original F(R) gravity
model by using the inverse conformal transformation to get
back the F(R) model (see Eq. (16)). Furthermore the purpose
of introducing the scalar–tensor version in Sect. 3.1 is to
just extract an analytic solution of the original F(R) gravity
model (obtained in Eq. (16)). For a detailed discussion of this
problem and its remedy we refer to the work of Capozziello,
Nojiri, Odintsov and Troisi [63] (see also [64]).

At the pivot scale (N () = N∗), εV and ηV acquire the
values as 0.009 and 0.007, respectively.

In Table 1, we now summarize our results.
It is evident from Table 1 that the present model of five

dimensional higher curvature gravity is not ruled out in terms
of the values of ns and r as per the observations of Planck
[1].

The required value of N∗ (= 60) can be achieved if ∗
is adjusted to the value ∗ � 31 (in Planck units). Also
requiring the total number of e-foldings of the inflationary
era to be equal to 70 (i.e. N0 = 70), we obtain the initial value
of the inflaton field, 0 = 33.5 (in Planck units). With this
value of 0, duration of inflation (t f − t0) comes as ∼ 10−33

sec [or 10−10 (GeV)−1; see Eq. (36)] if the higher curvature
parameter α and κvv are taken as

α ∼ 1

M2 (44)

where M is the five dimensional Planck scale and

κvv ∼ 10−7,

respectively. Furthermore, the effective gravitational con-
stant (M(4)) is ∼ 1019 GeV for the estimated value of α

presented in Eq. (44).
Once we find the initial (0) and final ( f ) values of the

inflaton field, we can show the plots (Figs. 2 and 3) between
the slow roll parameters and  [by using Eqs. (40) and (41)].

Near beginning of inflation

Near end of inflation

0.2

0.4

0.6

0.8

1.0

Fig. 2 εV vs. 

Near beginning of inflation

Near end of inflation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 3 ηV vs. 

Figures 2 and 3 clearly demonstrate that as long as inflation
continues, the two slow roll parameters (εV and ηV ) remain
less than unity. This behavior of εV and ηV is expected from
the slow roll approximation. Furthermore, the values of εV
and ηV increase with the evolution of universe during the
inflationary epoch and at the end of inflation, and εV becomes
1, i.e. εV ( f ) = 1.

8 Comparison of solutions with and without slow roll
approximation

In this section, we solve the radion field and Hubble param-
eter numerically from the complete form of the effective
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t

Dashed Curve : with slow roll

Solid Curve : without slow roll

Inflation era

20 40 60 80 100 120 140

5

10

15

20

25

Fig. 4 (t) vs. t with/without slow roll approximation for mrad =
10−4 (in Planck units)

Friedmann equations (Eqs. (21) and (22), without slow roll
approximations). These numerical solutions are then com-
pared with the solutions [in Eqs. (26) and (29)] obtained by
solving the slow roll equations.

Equations (21) and (22) lead to the following equation of
(t):

̈ +
√

3
[
Urad() + 1

2
(̇)2

]
̇ +U ′

rad() = 0.

Using the form of Urad(), the above differential equation is
solved numerically for (t). The comparison between this
numerical solution and the solution obtained in Eq. (26) is
presented in Fig. 4.

Figure 4 demonstrates that the plotted result of (t) based
on solving the slow roll equations and the plotted result of
(t) based on solving the full Friedmann equations (in the
presence of ̇2 and ̈) are almost the same during the infla-
tion. But after the inflation the acceleration term of the infla-
ton (the term containing ̈) starts to contribute and as a result
the two solutions (with and without slow roll conditions) dif-
fer from each other. Moreover, in the slow roll approximation,
(t) does not exhibit an oscillatory phase at the end of infla-
tion, but it tends to its minimum value asymptotically. Such
an oscillatory character of (t) occurs when the term ̈ is
taken into account in the equation of motion. Another point to
mention is that even without the slow roll approximation, the
oscillatory character of (t) is allowed as long as the mass of
inflaton field mrad > 3

2 Hend ∼ 10−7 (in Planck units, where
Hend is the Hubble parameter after the inflation) [62], other-
wise (t) decays continually (without any oscillation) and
finally reaches zero asymptotically. This statement can be
verified from the solution of inflaton field near the minimum
of Urad() (i.e., near at <  >), which takes the following
form:

t

q

Dashed curve : with slow roll

Solid curve : without slow roll

20 40 60 80

50

40

30

20

10

Fig. 5 q(t) vs. t with/without slow roll approximation

(t) =<  > + exp

[
1

2

(
−3Hend ±

√
9H2

end − 4m2
rad

)
t

]
.

(45)

The above expression clearly indicates that the oscillation
of (t) around its VEV is possible if the term inside the
square root becomes negative, which immediately leads to
the condition mrad > 3

2 Hend. Furthermore, it may be noted
that the oscillatory behavior of (t) occurs in Fig. 4 (see the
solid curve), because in that case, mrad is taken as 10−4 (in
Planck units), which satisfies the said criteria for oscillation.

Finally the numerical solution of Hubble parameter and
correspondingly the deceleration parameter (q(t) = −(Ḣ +
H2)) are also obtained from Eq. (21). The variation of q(t)
versus t (with/without slow roll approximation) is shown in
Fig. 5.

Figure 5 clearly depicts that the duration of inflation pre-
dicted from the numerical solution of complete Friedmann
equations is longer than that predicted from the solutions of
the slow roll equations.

9 Summary and concluding remarks

In this work, we consider a five dimensional compactified
warped geometry model with two 3-branes embedded within
the spacetime. Due to the large curvature (∼ Planck scale)
in the bulk, the spacetime is considered to be governed by
a higher curvature expression like F(R) = R + αR2. Our
visible universe is identified with the TeV scale brane, which
emerges out of the four dimensional effective theory. On pro-
jecting the bulk gravity on the brane, the extra degrees of
freedom of R(5) appear as a scalar field on the brane and this
is known as the radion field. The potential term (Urad()) of
the radion field is proportional to the higher curvature param-
eter α and goes to zero as α → 0. Thus it is clear that the
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radion potential is generated entirely due to the presence of
the higher curvature term in the five dimensional bulk space-
time. The form of Urad() [in Eq. (19)] indicates that the
radion potential is stable as long as α is considered to be
positive and the minimum of Urad() is zero.

From the perspective of four dimensional effective theory,
we examine the possibility of an “inflationary scenario” by
taking the on-brane metric ansatz as a spatially flat FRW
one. In the presence of the radion potential, Urad(), we
determine the solutions [in Eqs. (26) and (29)] of the effective
Friedmann equations by considering the potential energy of
the radion field as very much greater than the kinetic energy
(also known as the slow roll approximation). The solution of
the scale factor corresponds to an accelerating expansion of
the early universe and the rate of expansion depends on the
parameter α. It may be mentioned that the radion field as well
as the scale factor becomes constant as α goes to zero. Thus, it
can be argued that due to the presence of the higher curvature
term, the radion field has a certain dynamics which in turn
triggers an exponential expansion of the universe at an early
epoch. The expression of duration of inflation (t f − t0) is
also obtained in Eq. (36), which reveals that the accelerating
phase of the universe terminates within a finite time.

We determine the slow roll parameters (εV and ηV ) and it
is found that both εV and ηV remain less than unity as long
as the inflation continues. The expressions of the slow roll
parameters yield the spectral index of the curvature perturba-
tion (ns) and tensor to scalar ratio (r ) in terms of N∗ (number
of e-foldings remaining until the end of inflation when the
cosmological scales exit the horizon). For N∗ = 60, ns and
r take the values of ns = 0.963 and r = 0.132, which match
the observational results based on the observations of Planck
2015 (see Table 1). Thus our considered model of five dimen-
sional higher curvature gravity predicts the correct values of
ns and r as per the observations of Planck 2015. More-
over the duration of inflation turns out to be ∼ 10−33 s (or
10−10 (GeV)−1) if the higher curvature parameter α and κvv

are taken as ∼ 1
M2 (M is the five dimensional Planck scale)

and ∼ 10−7, respectively.
Finally, we find the solution for the radion field and Hub-

ble parameter numerically from the complete form of the
Friedmann equations (without the slow roll approximations).
During the inflation, these numerical solutions are almost the
same as the solutions of the slow roll equations, as demon-
strated in Figs. 4 and 5. Another important point to note is
that in the slow roll approximation, (t) does not exhibit
an oscillatory phase at the end of inflation, but it tends to
its minimum value asymptotically, while such an oscillatory
behavior of the inflaton is indeed there if the slow roll approx-
imation is relaxed [with mrad > 3

2 Hend; see Eq. (45)], i.e.,
the acceleration term of (t) in the equation of motion is not
dropped, as depicted in Fig. 4.
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