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We consider the cosmology of a pair of domain walls bounding a five-dimensional bulk space-time with a
negative cosmological constant, in which the distance between the branes is not fixed in time. Although there
are strong arguments to suggest that this distance should be stabilized in the present epoch, no such constraints
exist for the early universe and thus non-static solutions might provide relevant inflationary scenarios. We find
the general solution for the standard ansatz where the bulk is foliated by planar-symmetric hypersurfaces. We
show that in all cases the bulk geometry is that of anti—de Sitter {AgfSace. We then present a geometrical
interpretation for the solutions as embeddings of two de Sittey)(d&faces in Ad§ which provide a simple
interpretation of the physical properties of the solutions. A notable feature explained in the analysis is that
two-way communication between branes expanding away from one another is possible for a finite amount of
time, after which communication can proceed in one direction only. The geometrical picture also shows that
our class of solution&nd related solutions in the literatiiie not completely general, contrary to some claims.

We then derive the most general solution for two walls in AdEhis includes novel cosmologies where the
brane tensions are not constrained to have opposite signs. The construction naturally generalizes to arbitrary
FRW cosmologies on the branes.
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[. INTRODUCTION warp factor as one moved between the branes. A number of
authors subsequently discussed homogeneous brane cosmol-

There has been considerable interest over the last fewgy in these types of model. A natural ansatz is to assume
years in models where gauge and matter degrees of freedatimat the five-dimensional spacetime is a foliation of flat
are confined to four-dimensional submanifolds, while gravitythree-dimensional planes parallel to the branes, while allow-
is allowed to propagate in the whole of the higher-ing the separation of the branes to vary in tifaglQ]. In this
dimensional space-time. The motivation for such geometriesase, as in the case of a single brane, the evolution of the
comes from string theory, where D-branes provide a mecharane is completely determined by the stress energy on the
nism for confining gauge degrees of freedom to lower-brane and the cosmological constant in the bulR—1§.
dimensional hypersurfac¢s]. (The general case, without this ansatz, is discussé¢d@h)

A particular model which is phenomenologically interest- In [10], it was argued that in general one does not realize the
ing is obtained by compactifying Hava-Witten theory, or usual Friedmann equations on the brane, unless the matter
M theory onS,;/Z, [2], on a Calabi-Yau three-folf83]. By  contributions to the stress energy are much smaller than the
matching the gravitational and grand-unified gauge coubrane tensiofil7—19 or by modifying the bulk stress energy
plings[3,4], one is led to an orbifold radius larger than the[20,21 (for other models with modified stress energy see
scale of the Calabi-Yau three-fold. There is consequently §24,25]). Solutions with fixed brane separation in flat space
substantial energy range over which the universe appears fiwgere given in9] and in AdS space if22,23, while models
dimensional, and therefore can be described by a fivegiving dynamically stabilized separation appear in
dimensional effective actior]5,6]. The five-dimensional [20,21,28. While a stabilizing potential might be necessary
vacuum solution was found to consist of two D3-branesto obtain a realistic picture of our universe today, there is no
each coinciding with an orbifold fixed plarj&]. Some cos- reason to believe that the extra dimension was static during
mological scenarios of heterotic M theory were explored ininflation.

Ref.[7]. The existence of a higher-dimensional bulk is likely In this paper we will consider only the case of
to have deep implications for the dynamics of the early uni-Z,-invariant branes with fixed tension and a five-dimensional
verse, in particular for inflation. cosmological constant. In this context, inflationary solutions

A year ago, Randall and Sundrur@] considered a sim- with time-evolving separation between tfue Sittej domain
pler theory without matter, where the only contributions towalls were obtained in Ref9] by setting the bulk cosmo-
the stress energy were a negative cosmological constant afmhical constant to zero, and in RgR27] for the case of
brane tensions of opposite sign. The authors of R&f. non-vanishing (negative cosmological constant. In the
found a solution with Poincasmvariant orbifold planes and former, the bulk geometry was Minkowskian, while anti—de
bulk anti—de Sitter(AdS) geometry with an exponential Sitter in the latter.

0556-2821/2001/630)/10350%13)/$20.00 63 103505-1 ©2001 The American Physical Society



KHOURY, STEINHARDT, AND WALDRAM PHYSICAL REVIEW D 63 103505

The purpose of this work is two-fold. We will first show any Friedmann-Robertson-WalkéFRW) cosmologies on
that the inflationary solutions found previously, including the walls are discussed in Sec. VI.
those with time-evolving separation between braf&27,
are not the most general. More precisely, we will argue that
they correspond to solutions with null-separated domain !l. A CLASS OF SOLUTIONS IN FIVE DIMENSIONS
walls. Second, we will derive the most general solution for

bulk AdS and Minkowski space. _ _ ciTt]>rane$ M and M 2, embedded in a five-dimensional

. In Sec. I, we shall rederive the class of solutions obtained, ,nifold such thaz, symmetry holds across each brane.

in Ref.[27]. The bulk geometry is Ads3the stress energy on The stress energy in the bulk is given by a negative cosmo-

the.walls is given by thelr tensions, and _the walls are Iocatecpogica| constant\ <0, although, at least for part of this sec-

at fixed orbifold coordinates. The coordinate system used tQon, the given solution also holds far>0. We shall also

find the solutions is not the most genel’al, but has the nicgssume that the energy density on each wall is dominated by

property of making homogeneity and isotropy along thea cosmological constarttension denoted byp;, i=1,2.

three spatial directiongi.e., planar symmetjymanifest at  Wwith the metric signature €, +,+,+,+) and in units

each point along the orbifold direction and, in particular, onwhere the five-dimensional Newton constant equals unity,

each brane. While our setup coincides with that of R&7],  the action is given by

the class of solutiongdescribed algebraically in Sec.) lis

obtained by explicitly solving Einstein’s equations for the 5

general planar-symmetric ansatz, rather than guessing a more .

restrictive form(as in Ref[27]). It is parametrized by a few S= fM v _95[735_12)\]_21 M(i)d4x v —gE{’lZpi '

constants and an arbitrary periodic function of one variable, ° a ¢ (1)

and agrees in the limit of vanishing bulk cosmological con-

stant with that found in Ref9] for the case of Minkowskian ‘

bulk geometry. Wheregg) is the induced metric on the domain walls. With-
Since we are interested in inflationary solutions, we re-out loss of generality, we can define a coordinatgo that

strict to the case where the tensions of the branes are greatéie first domain wall is located at=0. To obtain cosmo-

in magnitude than the bulk cosmological constant. With thidogically relevant solutions, we must impo&patia) homo-

minor assumption, our solutions all describe the same coggeneity and isotropy(i.e., planar symmetjyon this wall.

mology on the boundaries, namely that of a de Sit®  Assuming that planar symmetry is also a symmetry of the

phase. Thus, in order for the branes to generate AdS spacefylk (i.e., we can foliate the space-time with planar-

the bulk, it is necessary that they follow de Sitter trajectoriessymmetric hypersurfacgsa general ansatz for the bulk met-

in AdS space. It is therefore natural to interpret our solutiongIC IS

as embeddings of two dSurfaces in AdSspace, and this is

the focus of the second half of the paper. As a warm-up, in .

Sec. Il we will describe how our solution, in the limit of dsi=e?A(—dr?+dy?) +e?dx? 2

vanishing bulk cosmological constant, describes slices of

Ms (Minkowski space The generalization to AdSis dis-

cussed in Sec. IV. A nice feature of this analysis is that itvherea=a(7y) and 8=pB(7,y). Note that we have used

provides a geometrical interpretation of the various paramthe freedom of coordinate reparametrization in they]

eters describing our class of solutions. It is also a useful todPlane to choose conformal gauge for that part of the metric.

to describe the time evolution of the orbifold as well as theWith the assumption of planar symmetry, we shall see that

causal properties of the solutiofBecs. Ill and I\f. We find ~ the bulk geometry must be AdS or AdS-Schwarzschild. For

that our solution describes scenarios where the orbifold diSuch bulk geometries, the setup is so far general; that is, one

rection is StatiC, Co||apses or expandS, as seen from an 0|§an find coordinates in which the first domain wall is located

server living on one of the branes. In solutions with expand2ty=0. If we want to embed a second domain wall, then, in

ing extra dimension, two-way communication between thegeneral, its location will be described by a function of the

walls is only possible for a finite amount of time. After- coordinatesy,=y,(t,x), such that homogeneity and isot-

wards, communication can proceed in one way only: signalsopy on that brane might not be manifest. However, for sim-

emitted from the negative-tension brane do not reach thelicity, we shall assume that the second wall liesyatR

positive-tension brane in finite affine parameter. (and is thus aligned with the fijstNote that by a simple
Finally, the geometrical picture allows us to realize thatchange of coordinates in the,) plane, one can show that

the embeddings of Sec. Il display an unexpected amount ajur setup also includes cases where the branes move uni-

symmetry, leading us to conclude that they are in fact gormly according toy,=y,;(7). Later, we will discuss more

subclass of all possible embeddings of twg, @8 AdSs. In general configurations.

Sec. V, we derive the most general solution for two domain Let us first focus our attention on the bulk solutions. One

walls in AdS;. In particular, it includes novel scenarios obtains the followingbulk) equations of motiorian overdot

where the brane tensions are not restricted to have oppositepresents time differentiation while a prime denotes differ-

signs. The stability of the solutions and generalizations teentiation with respect tg):

We are interested in two four-dimensional hypersurfaces
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(0,0: 3(a’+aBf—a"+a' B —2a'?)=6\e?! where f’=df/dx* andg’=dg/dx . Although we will be
' interested in the case<0, this solution is, in fact, valid for
(55 3(—a+aB—2a°+a'?+a'B')=—6\e? any non-zero value of.

Finally, to fix the specific coordinate patch on which we
analyze our solutions, let us assume that the rangeaoidy
is such thatr is always time-likey space-like, and further,
thatf + g is positive. Given thak <0 this means that we will

(i,i): (2a"+B"+3a'd)—(2a+B+3a?)=—61e?F

(0,5: a'+aa’'—aB’ —pBa’=0. 3 take
By taking linear combinations of the equations, one can re- 4 _
write them in terms of light-cone coordinates;=r+y, as f(x7)+9(x7)>0 (13)
A f'(x")g'(x7)<0 (14)
d.0_atd,d_B= Eezﬁ’ (4)
for all x* andx™.
—\ 2B Let us now turn to the domain walls. We must supplement
d+d-at3d,ad_a=)e ©) the equations of motion with appropriate boundary condi-
P a—29.ad.B8+(d.a)2=0 6 tions. Sl_nce .the branes are localized objects along thg trans-
va=20,adft(dra) ® verse direction(delta-function sourcésthey result in dis-
2 a—20 ad. B+(d_a)2=0. 7 cont|nU|t.|es |n_th(=T .normal derlva_t|ve of the metric. Formally,
- ad-p+(0-a) @ these discontinuities are described by the Israel matching
As shown in Ref[28], one can derive a first integral of conditions[29,24}, which yield the following boundary con-
motion by rewriting the (0,0) and (5,5) equations as ditions (assumingZ, symmetry across each wall
F'(1y)=—4\a'e™ e Pa’ly_o=—p1, e Pa'l_g=+p,, (19
F(7,y)=—4rae*®, (8) 97'8,8'|y:0:_P1, eiﬂﬁ/ly:R:‘FPz' (16)

where F(7,y)=e*?e 2%(a'2— o?). Equations(8) can then where we note that there is a difference in sign between the

: . : . two walls.
be integrated to yield a single expression . . - . .
9 y 9 P The Israel junction conditions impose restrictions on the
"2 2 —da1.28 functionsf andg. From the boundary conditio(15) evalu-
=[A+Ce e, 9 ) .
a’—a"=] ] © ated aty=0 and given the condition§l3) and (14), we
whereC is an integration constant. obtain

The assumption of planar symmetry has reduced the al-
lowed bulk geometries to a one-parameter family of solu- P — ()= — /ff, ,
tions depending or€. From now on we will focus on the g'(7) (7 PLN'\ (ng'(n)
caseC=0. As we will see in the following sections, the
geometry of the corresponding bulk space-times is then par- ( g’(¢)> 12

ticularly simple, namely AdS. However, it is also possible to
consider the caseC#0, which corresponds to a bulk
Schwarzschild-AdS geometifit 2].

Taking C=0, in light-cone coordinates, E) reads 1
=ﬁ(l)1iH1)571, 17

A
d,ad_a=—eP. (10 )
4 where we have introduced
We are therefore left with the (0,5) equation and Ep)
[since the {,i) equation then follows from the Bianchi iden-
tity]. Combining Egs(4) and (5) with Eq. (10) yields

Hi=+pf+\. (18)

SinceH; should be real, we find that solutions will only exist
if we have the condition, on the tension,

lpil= V=X, (19

Note we are using here the conditici¥), which implies that
g’ (x")/f'(x*)<0 for all x* andx. It turns out that the

A
a+a_a=a+a_ﬁzze2ﬁ. (11)

The solution to Eq(11) and the(0,5 equation can be ex-
pressed in terms of two arbitrary functiofs: f(x*) andg

=9(x") as relation(17) then implies that the second boundary condition
4 (16) is also satisfied ag=0.
=— S (—dP2+dy)) +dx?|, (12 At y=R, the boundary conditions imply a similar rela-
(f+g)2\A tionship betweemy(7) andf(7+2R). One finds that
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1/2

9
f'(7+2R)

(20

\/_—)\(_Pzi Ho) =7,

satisfies both boundary conditions.
Together, Eqs(17) and (20) imply that

9(7)=—yif(7) =Ky,
9(7)=—v5f(7+2R) —ky, (21)

wherek; are constants and

1
=—(p,+H,),
Y1 \/_—)\(pl l)

Vo= \/_—)\(_Pzin)-

Note that by Egs(17) and (20) both y; must be positive.
Since|p;|>H;, this requires

(22
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1
a:
f(x")—3f(x7)+k

4y3F (X (x7)
ef= — e,

(29

We see that the general solution is determined by the
choice of a periodic functiorp(x) and some constants,
which must be chosen so that E¢k3) and(14) are satisfied.
While it is difficult at this point to get a feel for what these
parameters represent, we will find in Secs. Ill and IV a geo-
metrical interpretation for them. Note that our solution re-
duces to the solution presented in ReX7] if we choosep
=const(as we shall see later, such a choice amounts to a
coordinate transformatignNevertheless, we shall find evi-
dence in Sec. IMand show in Sec. Vthat the solution in
this section is not the most general.

Let us now consider the induced geometry on the branes.
A simple approach is to substitute the boundary conditions
(15) and(16) in Eqg. (9) (with C=0) to find the Friedmann
equation on the domain wall following28]. Choosing cos-
mological time on the brane, one finds

that is, for solutions of this type, the brane tensions must
have opposite sign. As we shall see in Sec. V, this condition

on the brane tensions is a consequence of our particulaiven the condition on the tensions, E49), Eq. (30) im-

a?=p2+N\=H?. (30

choice of coordinate systef2). We will later also describe
solutions where this condition does not hold.

Together, the relationship21) imply a periodicity con-
dition onf which can be written as

f(x+2R)=(y1/72)*f(x) +K, (24)
where the constarK is given by
K=(ki—ko)/ 73 (25)

The general solution of this periodicity condition gives

e ¥-1

f(x)=e & N
(X)=€ ¥p(X)+ —m—

K (26)

where

1
£=—=In(n/7,), @7)

andp(x) is a periodic functiorp(x+ 2R) =p(x). One notes
that in the limité—0 the general expressid@6) becomes

KX
fF)=p(x)+ 5. (29

In the following, we will sometimes find it easier to use
=—k; andK as the independent constants in our solution,
and will sometimes stick t&; andk,. For completeness let

us now give the general expressions for the functierand
B in the metric in terms of. We have

plies that the induced geometry on each brane is precisely
that of de Sitter space with cosmological constant

We can also see this more explicitly from our final ex-
pression29). Considering the brane gt=0 for instance, we
can perform the following time redefinition:

e Hil=(1—y2)f(r)+k (32)
so thatt is cosmological time ay=0. In terms of the new
time variablet, the induced metric on our domain wall is
found to be

dsz= —dt?+e1ldx?, (32
which describes de Sitter space, in agreement with(&g).

A similar analysis holds for the brane gt R.

To conclude this section, let us discuss an important sub-
class of solutions, namely those with a static orbifold in the
coordinates of Eq(2). Starting with the casp,= —p, (i.e.,
£=0), we see from Eq929) that a static bulk is obtained
only if y%zl and p=const. We will show in Sec. IV that
this solution corresponds to the Randall-Sundrum scenario
[8].

In the casep,;# —p, (i.e., £#0), Egs.(29) tell us that
static solutions requirgg=const andk=(1— y2)K/(e %R
—1). For such choices, one finds the following constraint
relating the physical distance between the wakgg;ic, the
bulk cosmological constant and the brane tensions:

V=N(p1+p2)

tanr( V _)\Rstatic): _)\+P1P2

: (33
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in agreement with Ref§22] and[23]. Sincepi2+)\20 and 1
p1p»<0, the denominator in Eq33) is negative. In turn, =0
this implies that— p,>p;>0. M(f(x")+k)
1. M x2
Ill. GEOMETRICAL ANALYSIS OF A=0 SOLUTION Y=T=9x)———=
f(x")+k

In this section, we shall discuss the limit-0~ of our .
solution from a geometrical perspective. In the process, we 5 X
will find geometrical interpretations for the various param- X= m
eters describing the general soluti@uch as, K, etc).

Let us first determine the bulk geometry in this limit. We which gives
note that general solutions with a metric in the fof@h with
A=0 were first discussedalbeit in four dimensions by ds?=—dT24+dY2+d X2 (37)
Taub[30] (see alsd31]). In that paper it was shown that all
solutions withC=0 were simply different parametrizations
of flat space, while all solutions witlc#0 were simply
different parametrizations of the Kasner “rolling radii” so-
lutions [32]. Here we will rederive the€=0 case as a limit
of our general solution. From E@12), we note that taking
A—0 requires letting eithef’ or g’ go to zero at the same
rate. Suppose we lgt' —0. Defining

(36)

Thus we have shown that the case=0 case indeed
corresponds to five-dimensional Minkowski spacé14)

in the limit A\—0. If we now consider the branes at the
orbifold fixed points, this imposes boundary conditions
onf andg[see Eqs(21)]. For these to be consistent with Eq.
(34), we need to choose the signsjn[see Eq.22)] such
that v;—0 as A—0 (note also that this yieldsy; /v,

—|pa/py|). Furthermore, we must identifk with the
constank introduced in Sec. I[IM with the tensiorp, of the
y=0 brane, andy(x")=f(x") [from Eq. (21)]. Similarly,
the above derivation can be repeated for the chéiceO.
Note that our solution in the limih—0 agrees with the
. results presented in Ref9]. Finally, combining Eq.(13)
wherek is a constant an®/ some energy scale, EGL2)  jth the first equation of Eq$36), we note that our original
becomes coordinates are mapped to the range T>0.
We saw in the previous section that the induced geometry
1 5 . on each domain wall is that of de Sitter space. We can there-
- —zdf(x*)dg(x*)erx2 . fore interpret the solutions obtained in Sec(fir \—0) as
M possible embeddings of two gSurfaces inMs. As is well-
(39 known (e.g., see Ref[34]), a de Sitter surface can be de-
] o . scribed as a hyperboloid embedded/ifis. Indeed, evaluat-
To express this metric in a more familiar form, we can Per-ing Eqs.(36) aty=0 andy=R, one finds that the branes are

N o~
g(x )ng(x )+ K, (34

o L
(f(x*)+k)?

form the coordinate transformation t@ (Y, X): given by
|
(T K 2+ Y+ K 2+>?2 ! f 0
—|T— 5 — =— for y=0,
2py 2py pf Y
(k+K)\? (k+K)\? 1
—( _h 5 ( P1 5 ) Qz——z for y=R. (38)
2p5 2p3 P2
|
From Egs.(38), we note the following: fore describes the invariance of the solution upon transla-
_ S tions in the embedding space and corresponds to a change of
(i) The curvature of the hyperboloids is given ky]|. coordinates in Eq(37).
(ii) The origins of the light cones asymptotic to the hy-
perboloids are separated by thell vector While the intrinsic curvature of each hyperboloid is given by

|pi|, the sign ofp; determines on which side of the hyperbo-
D=[(p1/2p3)(K+k)—k/2p,]-(— 1,1,0. (390 loid the bulk extends. The bulk lies outsidi@side the hy-
perboloid if p;<0 (>0). As an example, Fig. 1 shows the
(iii) For fixed null separatiorD, the quantityk simply  solution with p;=—p, and parameterk=0 and K>0
translates the two hyperboloids by the same vector. It theregwhere we have suppressed two spatial dimengidnsac-
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y=
y=0

FIG. 2. Two-dimensionaI)ZZO) projection of the previous fig-
ure (with k=0, andK>0). The bulk(as determined by the curva-
ture of the domain wallsis indicated by the shaded region. Note
that the bulk region satisfies the requirement that it is above the
dotted lineY+T=0, as required for it to be within the physically
accessible coordinate patéthefined byY +T>0).

Y 1. 1 k

. 40
Bp% P 49

FIG. 1. lllustration of thep;= —p, solution with parameterk B
=0, andK>0 (note that two spatial dimensions have been sup-
pressedlin the case where the bulk is flat space. The location of the
bulk (indicated by the shaded regjois determined by the curva- Note that, as above, the intersection lies in a null plane.
tures of the boundaries. While the hyperboloids are seen to intefFurthermore, since our coordinates are restricted toT
sect, they do so on the planet+ T=0, a surface which can never >0, the intersection lies within our coordinate patch only if
be reached by an observer in the shaded region. B>0. The solutions for-p,>p;>0 with K<0 andK>0

are illustrated in Figs. 4 and 5, respectively. These two fig-

cordance with the above discussion, the portion of spacaires are related by reflections about thend Y axes, but
time consistent withp;>0 and p,<0 is indicated by the they should be viewed as distinct solutions in our analysis
shaded region. From E¢38) we see that the two hyperbo- due to the constraint+T>0. In particular, the intersection
loids intersect in the cylindeY+T=0, )Zzzllpi. SinceY lies in the physically accessible region in Fig. 4, wh&e
+T=0 is a null plane and given our initial coordinate patch,>0, but not in Fig. 5, wher@&<0. Finally, if p;>— p,, the
it is easy to show that no observer in the shaded region ca@nly choice consistent with there being a bulk between the
ever reach this intersection. As a result of to the symmetry iitwo branes in the regiolY + T>0 is K>0, in which case

the X directions, it is sufficient for our purposes to focus onthere is also an intersection in our coordinate patch, as illus-

the two-dimensional projection onto the=0 plane(shown
in Fig. 2 for the above exampleAn important point to no- ¥
tice is that the hyperbolas are separated by a null veeor
mentioned in the second point abgyvand therefore share a
common asymptote. NN

We can also consider examples where the curvatures of  Y+T=07~
the hyperboloids are not equal, once again focusing on the S

subspacé?=0. For simplicity, let us sek=0. The cas& S
=0 with —p,>p,>0 is shown in Fig. 3, with the bulk -1 -0.5
indicated by the shaded region. Note that the branes nevel
intersect folK =0. Furthermore, it is crucial that p,>p; in
order to obtain a bulk region that is simultaneously inside
one brane and outside the other, which is equivalent to the
condition stated below Ed33).

For the cas&k # 0, we see from Eq(38) that the hyper-
boloids now do intersect in the paraboloid:

FIG. 3. lllustration of the solution with—-p,>p;>0 and K
=0 projected onto th&=0 plane(corresponding t@=0). Once

-2 -2
P2 —P1

Y+T=B= >
(p1/p3)(K+Kk)—k/py

again, the bulk corresponds to the shaded region. While the lower
half of the figure could also yield a consistent bulk region, it lies
outside the range of our original coordinates.

103505-6



INFLATIONARY SOLUTIONS IN THE BRANE WORLD . .. PHYSICAL REVIEW D 63 103505

Y Y
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FIG. 4. lllustration of the solution with-p,>p,;>0 andK

FIG. 6. lllustration of the solution with € —p,<p; and K
<0 (and thusB>0).

>0 (B>0).

trated in Fig. 6.(For the cas&(<0, the signs of the brane chyose a coordinate such that the metric has the i@m
tensions do not allow for a bulk region between them in therhen recall that we have seen that that neither the function

regionY+T>0.) _ _ p(x) norkin the solution encode physical information. Thus

We have shown that a broad class of configurations cag} is natural to take the case=const andk=0. One then
be embedded in flat space, namely those consisting of nullenotes the separation as the distance irythigection with
separated de Sitter surfaces. The fact that we have only e edt andx in this metric

countered cases with null separation is surprising, and leads As seen in Figs. 2-6, we have five physically distinct

us to question the generality of the solutions obtained in Sec, , . ; ; . )
., L -~ ~'Solutions to consider, which we classify into three cases:
[I. Intuitively, one would also expect cases with time-like

and space-like separated hyperboloids. We shall confirm thig) —p,>p,.

intuition in Sec. V. (@ K=0. This solution is shown in Fig. 3. As mentioned
at the end of Sec. I, it has a static orbifold due to the choice
A. Dynamics of the orbifold p=const. The physical length of the orbifold is given by the

NA—0 limit of Eq. (33), namel
We next want to investigate the evolution of the orbifold a- (33 y

as seen by an observer on the branga0. First, let the 1 1
cosmological time for this observer be denotedt¥ [i.e., Rstatic— — + —, (41)
t™® puts the induced metric gt=0 in the form given in Eq. 1 P2

(32)]. The range—» <t <% is mapped to the range »
<T<, with the rule that® increase withT in the region ~and agrees with the expression found in Ref. Finally, the
Y+T>0. Note that requiring the time coordinate to be cos-Curves of constart{®) are straight lines trough the origin.
mological time aty=0 does not uniquely fix the surfaces of ~ (0) K<0. This solution corresponds to the shaded region
constant time away from the brane. In this sense, the distand@ Fig. 4. If we denote the physical distance between the
between the branes is not a coordinate-independent notioRfanes byR,yysin this case, one finds th&nys— Rgyatic aS
However, a natural prescription is the following. First, tY)——. As t®) increases, the distance between the do-
main walls decreases until it reaches zero $amrespond-
v ing to the point where the hyperboloids intergettence, if
we define the onset of inflation to occur at sotfe, where
—w<tf)<t{}) ,pse: this solution describes an initial condi-
tion where the branes are withiRg,ic apart, and subse-
quently move toward each other.
(c) K>0. In this casdshown in Fig. 5, Ronys— Retatic @S
t)— —co. SubsequentlyR,p,s increases forever.
Hence, for the case p,>p,, the orbifold remains static
if the initial distance isRg;,iic, CcOllapses if it is less than
Rstatic, and greater if it is larger thaRg;,tic. This conclu-
sion agrees with the analysis of RE27].

(i) —ps<p1. This solution was not discussed in RE27].
From Fig. 6, we see that it describes an orbifold starting from

FIG. 5. lllustration of the solution with-p,>p;>0 andK  zero size and expanding to infinity. Hence, in this case, any
>0 (B<0). initial distance leads to expansion.
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(iii) —po=p;. By comparing Figs. 2 and 6, we see that the y=0
evolution is the same as in the casg@,<p;. = 4

As mentioned earlier, different choicestorrespond to
different observers in the sense that they are associated with
diffeomorphisms which leave the bulk metric in the fo(&
and the induced metric gt=0 in the form(32). The notion
of the separation of the branes is coordinate dependent. To
see this explicitly suppose, for instance, we allow for a ge-
neric choice ofp. It turns out that an observer g=0 will
then see, on top of the average behavior of the extra dimen-
sion, an oscillatory component. For instance, in the case
—p2<p,, the orbifold would oscillate as it expands. Note
that, given the restrictions imposed by E(E3) and(14), the
function p must be chosen such that its oscillations will not
lead toRypy s reaching zero size where it would not in the
casep=const.

Nonetheless, there is also an observer-independent state-
ment one can make about the various solutions described
above. We noted that, in general, the branes intersect in a
paraboloid(40). This intersection lies in the coordinate patch  FIG. 7. Same case as that of Fig. 2, which is an example of a
Y+T>0 if B>0. Furthermore, it lies a finite distance in the solution with expanding extra dimension. Once again, the bulk is
future of any observer in the bullcorresponding to an orbi- indicated by the shaded region. The solid liigsand i) represent
fold collapsing to a final singularijyif —p,>p;>0 orinthe geodesics of gravitons sent from an observey-aR towards the
past(corresponding to an orbifold expanding from an initial brane aty=0. Initially, gravitons do reach thg=0 brane in finite
singularity) if p;>—p,>0. Finally, let us note that the sur- affine parametefras illustrated by geodesi@)]. After a while, how-
face of intersection is formally a singular surface and, thus€Vver. signals sent from=R never reacty=0 [as shown by geo-
our solution breaks down in its neighborhood. A full treat- desic (i)]. Thus, the negative-tension brane can influence the
ment of brane collisions would require including effects duePOsitive-tension brane for a finite amount of time only.
to the finite thickness of the branéssually of string sizg

server 2. The point is that the braneyat O lies outside the
light cone centered a=Y=0 (shown in dashed lines on
Fig. 7). Once the brane at=R passes inside this light cone,

Let us now consider the causal properties of the solutionobserver 2 is spatially separated from the brang=a0 and
More precisely, we want to see if the walls are causallyso no signals can travel froy=R to y=0.
connected during the inflationary period, and whether two- Now, consider signals sent froyn=0 towardsy=R. It is
way or one-way communication between the walls is posclear from Fig. 7 that such signals always reachR in
sible. finite affine parameterHowever if t™) is proper time for

In the cases where the orbifold collapses or remains statiobserver 1, then after a while observer 1 sees his signals
(i.e. K=<0), two-way communication is possible for all taking infinite proper time(*) to reachy=R. From the point
times, as expected. of view of observer 1, we shall say that there ifi@izon

The remaining solutions involve expanding orbifolds. somewhere in the bulk. This horizon is a surface with the
Since the extra dimension is in fact inflating, one would ex-following property: once a signal sent by observer 1 has
pect that a signal sent from one brane could never reach thgassed through the horizon, it cannot return to observer 1.
other. However, we must keep in mind that the length of theNote that causality implies that the appearance of a horizon
orbifold is computed along a space-like path, while gravitongequires the appearance of a causal boundary, and vice versa.
propagate along null geodesics. Consequently, the caus@ib see this, suppose the contrary is true; that is, suppose that
properties are not as trivial as one might have guessed. Thhere is a horizon for observer 1 but no causal boundary for
analysis yields qualitatively the same result for all solutionsobserver 2. If observer 1 sends a graviton towaydsR,
which describe expanding orbifolds, so without loss of gen-because of the horizon, he will see his graviton frozen some-
erality, we can focus on the capg= — p, for concreteness where in the bulk. On the other hand, observer 2 will receive
(and takek= 0 without loss of generalily This configuration  this signal within finite time on his clock. If observer 2 re-
is shown in Fig. 7. Suppose observer /&R sends signals plies to the signal, his reply will be receivedyat 0 in finite
towards observer 1 at=0. The solid lines labele¢i) and time on observer 1's clockbecause we have assumed that
(if) in Fig. 7 correspond to two such signals. We see thathere is no causal boundaryrom the point of view of ob-
signal(i) reachesy=0 in finite affine parameter while signal server 1, he received a reply from observer 2 before his
(i), emitted at some later time, never reacles0. Hence, initial signal made it toy=R, an obvious violation of cau-
from the point of view of observer 2, there exists some timesality. It is easily seen that the horizon and causal boundary
on his clock where his signals stop reaching yle0 brane. describe the same surface in the bulk, namely the future light
We shall say that @ausal boundaryhas appeared for ob- cone asymptotic to thg=0 hyperboloid(dashed lines on

B. Causal properties
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Fig. 7 which cross at the originThat is, once observer 2 is
within this cone, his signals will not reach=0 in finite
affine parameter.

To summarize our conclusions for expanding extra di-
mensions, our solution predicts that two-way communication
is only possible for a finite amount of time. Afterwards, only
the brane with positive tension can send signalgand,
hence, have influence pthe negative-tension brane.

IV. GEOMETRICAL ANALYSIS OF A<0 SOLUTION

In this section, we generalize the analysis of the previous
section to the case of negative bulk cosmological constant.
As there, we will find that all the solutions presented in Sec.
Il correspond to the same bulk space-time. In this case it is
AdSs. We can therefore think of our solution as a class of
possible ways to embed two dSurfaces in AdS. As in the
case of flat space discussed in the previous section, we shall
find evidence that our solution does not describe the full
spectrum of such embeddings.

Recall that the general bulk solution has the fq8):

- 4
(f+g)? A

f'g'(—dr2+dy?)+dx?|. (42
FIG. 8. Sketch of the solution with <0, —p,>p,>0, and

With the line element in this form, it is not clear that, in fact, K=0. The resulting space-timéndicated by the shaded regiois
for <0, in all cases the bulk geometry is that of AdS obtained by intersecting the Ad®iyperboloid with two planes of

However, upon the coordinate transformation constantr,.
i 2 d?=dX-dX=—dT2—dT2+dY?+dX2. (46
V—A . .
We should note here that the space described contains closed
5 time-like curves. The full AdS space is really the universal
z—t=——g, (43)  covering space. This will not enter our analysis here, since in
Vv—A all our solutions the domain walls will lie in the same sheet
of the universal cover. In terms of the coordinates in @¢)
we have the embedding is given by
> 1
= (—dt*+dx*+d2?), (44) -
(—N)22 Tt Y=10z
which is a more familiar form for the line element of AglS 2124 72
We see that the general functiohandg simply represented T,-Y="—""—
different choices of conformal coordinatesandy in the z
AdS; spacet
As is well known, this coordinate system does not cover t
the whole of AdS space. More generally one can describe T2=\/—_)\z
AdS as a hyperboloifi34]
2 2 2 2_y2 1 v )_()
~XE=THTE- Y2 K= — (45) X= : (47
—A\z

embedded in a flat six-dimensional spaCe (T1,T2,Y,X)  Note that since= (f +g)/\— x>0, our original coordinates
with line element are mapped to the rangg +Y>0. (The boundary of this
region,z=0, is shown in Fig. §.
Let us now turn to the description of the domain walls.
The coordinate description of AdSising the line elemeni4?2) Recall that in our original coordinates the walls were fixed at
was used recently in Ref33] to investigate cosmological pertur- y=0 andy=R or, equivalentlyx™=x" andx*=x"+2R.
bations in the brane world. After the conformal transformatio3) the walls will now
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be movingin the z direction. Explicitly, from the relations in general, there is a second class of solutions where we
(21), the equations of the walls in terms pfandt are the make the opposite choice of signs for the two walls in Egs.

linear relations (49). (Actually this choice is not possible for the specific
casek, =k,=0.) Now the planes are on “opposite sides” of
) 2k, the AdS hyperboloid. This has no natukal>0 limit. It cor-
t—z=yi(t+2)+ NESY fory=0, responds to the result of Sec. Ill that we were forced to
choose a correlated signs 4n to get the flat-space solution.
2k, . As_a se::lond ehxargple(ij lellesca(rj] briefly m;ntli(c?n thr?t the
t—z=2(t+2)+ forv=R. 48 omain walls in the Randall-Sundrum scendtiaking the
ve(t+z) NESY Y 48 |pil— V=N limit in Egs. (49)] are described by the null
lanes
It is easy to see that in these coordinates, the domain Wallg
move in thez direction with constant velocityd; /| p;| (see 1
also[11,25)). Ti+Y= fory=0,
Finally we can transform these equations into the flat six- kl\/__)‘
dimensional embedding space. One finds that the walls cor- L
respond to planes v _
T,+Y —kz\/__)\ fory=R. (52
Tk P E1 (T )= —22— fory=0 : : -
H, J=\H; ' Again these branes will never intersect.
To cast the above discussion in a more general set up,
recall that in the previous section, the relative position of
+T,+k, @11 (T,+Y)= 2 for y=R. domain walls was characterized in flat space by their
H, \/—_?\Hz Minkowskian distancgmore formally, by the distance be-

(49 tween their asymptotic light cones-urthermore, in general
_ . . ~_ this separation was null for the solutions of Sec. Il. Similarly
The choice of signs corresponds to the choice of sign in th@ere, the asymptote of each dS in the six-dimensional em-

expressions22) for y; and y,. bedding space is a light cone, whose origin lies at
Note that both these equations have the form,i fot.,2,
aj=c;n; fori=1,2. (53
ni - X= Ci (50)

Note that, in general, the vecter will not lie on the bulk
wheren,; is a time-like unit vector and;>1/\/—\. Intersect-  AdS hyperboloid. We can now use the distance between the
ing with the AdS; hyperboloid(45), one finds that the do- light cones, given by
main walls are dgsubmanifolds of the embedding space of

curvature D=a;—ay, (54)
1\ "12 to characterize the relative location of the dS surfaces in a
cZ+ — =H. 51 coordinate-independent way. Furthermore, it is easily seen
2+ = y (51) _ (
N that the quantityD does reduce to the distance between hy-

perboloids in the limii — 0, as defined in Sec. Ill. Just as in

where we have substituted the particular forntofrom EQ.  the case\=0 where our solutions all described null sepa-
(49). [This can be seen explicitly by using t8€X(4,2) sym-  rated hyperboloids, similarly, it can be easily verified from
metry of the embedding flat space to put (1,0,...,0) and Egs. (49 that all ourA <0 solutions with a flat limit yield
substituting in Eq(45).] Thus we see again how the domain D2=0, corresponding to null separation. The size of the
walls are indeed dgsurfaces in the AdsSspace with curva-  separation is controlled by the parameteysandk,.
turesH; . Once again, we expect that solutions with time-like and

To get a sense of the global structure of the solution conspace-like separated dS surfaces are also allowed. We shall
sider the case wheille,=k,=0 and choose the upper signs discuss these more general configurations in Sec. V.
in the solution(49). The planes are then simply given by  Finally, we note that the dynamics of the orbifold as well
T,=|pil/(H;\V—\). The intersection is sketched in Fig. 8. as the causal properties of the solution are qualitatively the
Note that in this case, the branes never intersect. The figusame as for the case=0. The nature of the intersection
allows us to understand how the curves describing the ddsetween the walls is controlled loy andp; . For generah;,
main walls would turn into the hyperbolas shown in Fig. 3 if the intersection is a null paraboloid. As before there are two
we let A —0. Intuitively, we can generate the solutions de-cases, one where the space-time has either expands from an
scribed above by taking the hyperbolas of the previous sednitial singularity and one which contracts to a final singular-
tion and “pasting” them on the hyperboloid as shown in Fig. ity. For the special case where tine are parallel or anti-
8. We can use this intuition to realize that the various paramparallel, there is no intersection and the distance between the
eters(e.g.,k, p, etc) describing the solution play a similar walls is fixed. For example, in the casep,>p,>0, we find
role as in the cask=0. However, we should also note that, that the orbifold remains static if the initial distance between
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the branes equalBg;.:ic [see EQ.(33)] and expandgcol-
lapses if it is larger (smalley than Rg.iic. Furthermore,
two-way communication is only possible for a finite amount
of time if the extra dimension is expanding.

V. GENERAL EMBEDDED SOLUTIONS

In this section we will step back a little and reconsider the
solutions given thus far. In doing so we will see that they are
in fact special cases of a more general configuration of a pair
of branes in bulk AdS space. Note that in this section our
solutions will also no longer be confined to a particular co-
ordinate patch of AdS space.

From the discussion of previous section, the solutions we
found correspond to a pair of dS surfaces embedded in AdS
space. The dS surfaces are not in general position but are null
separated in the sense discussed below(®4). Recall that
the solutions were found by solving the bulk Einstein equa-
tion with negative cosmological constant together with the
Israel matching conditions describing the discontinuity in the
normal derivative of the metric at the brane.

The important point to note is that once we fix the bulk
solut!qn, in this case to be AdS, the solutlon_of the Israe ormed by the left-hand plane. The sign of its tensjendetermines
conditions for the two walls are completely Independemwhere the bulk lies. Ip<0, the bulk includes the throat region, so

Each set of conditions is composed of local equations relalga the solid circle lies in the bulk. >0, the bulk excludes the
ing the shape of the brane embedded in the bulk space to thg o4t and, for example, the open circle lies in the bulk.

stress energy on that brane, independent of the second brane.

From the analysis of the previous two sections, it appearshjs is essentially what was done in Sec. II. Alternatively,

that for a pure cosmological constapton the brane, the \ye can argue simply by symmetry that if the brane is dS the

solution to the Israel conditions is that the brane describe @yirinsic curvature must be proportio since this is the

dS surface embedded in AdS space. If this is correct, it igny symmetric tensor on the brane with the correct symme-

then clear that the general solution corresponds to a pair Qfies. The only question is then what curvature of the dS

dS brane embedded in AdS space with arbitrary separationsace must we choose to make the constant of proportional-
To see that this is indeed the case, we can consider thg, exactly that in Eq.(56). To answer this we recall that

Israel conditions in a coordinate independent form and showj ¢ e | ; ot 4
that. when the bulk space is AdShey imply that the brane ere is an expression for the intrinsic curvatB?r@of g,y in
Co P AglShey imply terms of the bulk curvatur® andK ,,. In particular, we
is a d§ surface. If we lett* be the normal vector to the have the general expression r

brane, the induced metrg:iv is then given by

FIG. 9. General dgbranes in AdS space formed by the inter-
ection of planes with the AdS hyperboloid. Consider the brane

4 N4 K1 NA N1 NA v
ngzgiV—i—tMtw (55) RK)\MV g% 9\ 9, RK’)\’M'W
KoKy =Ko Ky - (58
whereg,,, is the bulk metric. As has been noted in various
papers(see, e.g.[24]), assumingZ, reflection invariance at Substituting the form oK ,, and the bulk AdS space curva-
the brane, the Israel conditions relate the extrinsic curvaturture R, ,,,=N(9,,9\,—9«,9),) gives the intrinsic scalar
K, of the brane to the stress ener§§,= —6pgj,, on the ~ curvature

brane. One has

R,=12(p%+\). (59)
1 1
K,,=— §<T5v_ §TBgfw> =—pg),, (56)  We have reproduced the result we derived in Sec. Il. The
curvature of the brane dS space is such that the square of the
i 2
where the extrinsic curvature is given by Hubble constanfsee Eq(30)] is p“+\. L
One notes that the curvatu¢®9) of the brane is indepen-

K=0%9% %V t,. (57)  dent of the sign of the brane tensign What then distin-

guishes thep>0 case fromp<0? Since the brane is a
Sincegfw andt,, are functions of the embedding, E&§6) is  codimension-1 boundary in AdS space, we can either take
a local differential equation for the functions describing thethe bulk space-time to be the space “inside” the dS bound-
embedding of the brane in AdScompletely independent of ary or “outside” the dS boundary. Consider Fig. 9, which
the presence of a second brane. shows the intersection of two planes with the AdS hyperbo-
To show that a dSsurface satisfies the Israel conditions, loid. Let us focus on the left-hand plane, corresponding to a
we could evaluate Ed56) in a particular set of coordinates. single dS submanifold. By “inside” we mean that the bulk
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space-time includes the throat of the AdS hyperboloid. Bybranes p; satisfying p?+\>0), the derivation of the em-
“outside” we mean that the bulk space-time is one of thebedding conditions is completely general. The construction
two disconnected regions which do not include the throatnaturally goes over to cases of positive or zerand arbi-

For example, the solid circle in Fig. 9 lies “inside” the dS trary p;. For instance, in bulk dS or flat space the intrinsic
boundary, while the open circle lies “outside” it. These two prane curvaturg59) is always positive and we are consider-
regions are distinguished by the direction of the normal vecing embedded dS branes. In AdS space, the intrinsic curva-
tor t,. Furthermore, they have opposite extrinsic curvatureure can also be zerghe Randall-Sundrum caser nega-
K, It is then easy to show that one has the followingtive. In the latter case we are embedding AdS branes in the
conditions: AdS bulk. Geometrically these arise from intersecting with

planes whera is null (for flat braneg or space-likgfor AdS
if p>0, then the spacetime is “inside” the dS boundary; pranes.

if p<O, then the spacetime is “outside” the dS boundary.
(60)

VI. DISCUSSION

All the solutions presented in this work were obtained by

We can now give a geometrical description of the generahssuming(albeit implicitly) that the bulk was AdS. It was
embedding solution. As we argued above, since the Israghen found that a domain wall of uniform energy density can
conditions are local, we can choose the branes to liargn  be embedded in this background provided it follows a de
pair of dS surfaces. As noted in the previous section, in genSitter trajectory, and we described the most general configu-
eral, these are described by the intersection of an arbitramation with two such trajectories in AdS space. Rather than
pair of planes with the AdS hyperboloid. This is shown infixing the bulk geometry for all times, a more general ap-
Fig. 9. For generic choices aof; andn, the dS spaces will proach is to treat the problem as an initial-value problem. Let
always intersect transversally. This means there are configuts assume that the only stress energy in the problem is a
rations forall valuesof the signs ofp; andp,. However, if  negative cosmological constartin the bulk and brane ten-

n, andn, are either parallel or anti-parallel, this is no longer sions p; such that|p;|>—\. Suppose we choose some

true. In these cases the branes never intersect. As a resultsipace-like hypersurface on which we specify the initial spa-
the vectors are parallel, one only has a solution with a bulkial bulk metric and the boundary branes. In general, one
space-time bounded by a pair of branes-ip;>p,>0 or  could imagine complicated initial conditions, but a natural
—po,>p1>0. In the case where they are anti-parallel oneconfiguration to consider is one with a space-like slice of
requiresp;>0 andp,>0. anti—de Sitter spatial bulk metric and twepatially) flat sur-

The analysis of Secs. Ill and 1V allowed us to realize thatfaces with arbitrary separation, velocity, and orientation. If
the solutions obtained in Sec. Il all described de Sitter surone were to solve for the time evolution of this system, one
faces separated by a null vector. The above discussion hagould generically find that the bulk does not remain AdS but
shown that time-like as well as space-like separation vectorthat a non-vanishing Weyl tensor is generated. This would
are also allowed. Furthermore, given that two time-like vec-mean that our solutions correspond to initial conditions
tors of equal magnitude are related by a boost, the degrees which are tuned so that the bulk remains AdS. Coming back
freedom describing the general solution are the brane terte the general problem, it is not clear whether all bulk evo-
sions, the magnitude of the separation vector, and whether lititions would yield homogeneous and isotropic cosmologies
is null, space-like, or time-like. In addition, we note that, on the branes. It would be essential to know what subclass of
except for the special case where the planes describing theitial conditions would be consistent with the usual assump-
dS branes are parallel or anti-parallel, there are in general niions of cosmology.

conditions on the signs gf; andp, for a solution to exist. A related issue has to do with the stability of the solu-
The condition we found in Sec. Il is an artifact of using ations. Suppose our tuned initial conditions are perturbed;
particular coordinate system. then one should investigate whether the path is only slightly

The use of a specific coordinate system to analyze ther greatly disturbed by the variation. The brane motion could
null-separated solutions was useful to describe the dynamidse perturbed either by moving the brane as a whole away
of the extra dimension as viewed by an observer living orfrom its initial trajectory without altering its energy density,
either brane(Sec. Il A) as well as the appearance of hori- by moving a region of the brane off the trajectory while
zons in the bulk(Sec. Il B). However, we noted that these keeping the energy density constant or by perturbing the en-
guestions could also be addressed purely geometrically. Thergy density in a spatially homogeneous or inhomogeneous
same is true for the general embeddings described here. @fay. In the first case, we know of at least one example of
course, if one wished, it is possible to describe the generahstability, namely solutions with static orbifolds in the case
solutions using some global coordinate system adapted to,# —p,. Indeed, we saw in Sec. lll that the branes will
one of the branes. As mentioned in Sec. Il, one way to proeventually collide if brought infinitesimally closer than the
ceed would be to start with the same ansatz for the metric astatic distance or end up infinitely far apart if pulled away
Eq. (2) but allow for a more general location of the secondfrom each other. Note that, even though the path is unstable,
brane. the cosmological evolution remains de Sitter and the bulk is

We end this section by noting that although discussed irstill AdS. Nevertheless, more general homogeneous pertur-
the context of negative bulk cosmological constargnd dS  bations may drive the bulk away from AdS and, thus, drive
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the cosmological evolution on each brane away from dS. Agach one should be allowed to travel along any trajectory
for inhomogeneous energy density perturbations, it was areonsistent with its energy density.

gued in Ref.[16] that any spatial inhomogeneities on the

brane stress energy will modify the AdS bulk through gravi-
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