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Inflationary solutions in the brane world and their geometrical interpretation
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We consider the cosmology of a pair of domain walls bounding a five-dimensional bulk space-time with a
negative cosmological constant, in which the distance between the branes is not fixed in time. Although there
are strong arguments to suggest that this distance should be stabilized in the present epoch, no such constraints
exist for the early universe and thus non-static solutions might provide relevant inflationary scenarios. We find
the general solution for the standard ansatz where the bulk is foliated by planar-symmetric hypersurfaces. We
show that in all cases the bulk geometry is that of anti–de Sitter (AdS5) space. We then present a geometrical
interpretation for the solutions as embeddings of two de Sitter (dS4) surfaces in AdS5, which provide a simple
interpretation of the physical properties of the solutions. A notable feature explained in the analysis is that
two-way communication between branes expanding away from one another is possible for a finite amount of
time, after which communication can proceed in one direction only. The geometrical picture also shows that
our class of solutions~and related solutions in the literature! is not completely general, contrary to some claims.
We then derive the most general solution for two walls in AdS5. This includes novel cosmologies where the
brane tensions are not constrained to have opposite signs. The construction naturally generalizes to arbitrary
FRW cosmologies on the branes.
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I. INTRODUCTION

There has been considerable interest over the last
years in models where gauge and matter degrees of free
are confined to four-dimensional submanifolds, while grav
is allowed to propagate in the whole of the highe
dimensional space-time. The motivation for such geomet
comes from string theory, where D-branes provide a mec
nism for confining gauge degrees of freedom to low
dimensional hypersurfaces@1#.

A particular model which is phenomenologically intere
ing is obtained by compactifying Horˇava-Witten theory, or
M theory onS1 /Z2 @2#, on a Calabi-Yau three-fold@3#. By
matching the gravitational and grand-unified gauge c
plings @3,4#, one is led to an orbifold radius larger than th
scale of the Calabi-Yau three-fold. There is consequent
substantial energy range over which the universe appears
dimensional, and therefore can be described by a fi
dimensional effective action@5,6#. The five-dimensional
vacuum solution was found to consist of two D3-bran
each coinciding with an orbifold fixed plane@5#. Some cos-
mological scenarios of heterotic M theory were explored
Ref. @7#. The existence of a higher-dimensional bulk is like
to have deep implications for the dynamics of the early u
verse, in particular for inflation.

A year ago, Randall and Sundrum@8# considered a sim-
pler theory without matter, where the only contributions
the stress energy were a negative cosmological constan
brane tensions of opposite sign. The authors of Ref.@8#
found a solution with Poincare´-invariant orbifold planes and
bulk anti–de Sitter~AdS! geometry with an exponentia
0556-2821/2001/63~10!/103505~13!/$20.00 63 1035
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warp factor as one moved between the branes. A numbe
authors subsequently discussed homogeneous brane co
ogy in these types of model. A natural ansatz is to assu
that the five-dimensional spacetime is a foliation of fl
three-dimensional planes parallel to the branes, while allo
ing the separation of the branes to vary in time@9,10#. In this
case, as in the case of a single brane, the evolution of
brane is completely determined by the stress energy on
brane and the cosmological constant in the bulk@10–16#.
~The general case, without this ansatz, is discussed in@16#.!
In @10#, it was argued that in general one does not realize
usual Friedmann equations on the brane, unless the m
contributions to the stress energy are much smaller than
brane tension@17–19# or by modifying the bulk stress energ
@20,21# ~for other models with modified stress energy s
@24,25#!. Solutions with fixed brane separation in flat spa
were given in@9# and in AdS space in@22,23#, while models
giving dynamically stabilized separation appear
@20,21,26#. While a stabilizing potential might be necessa
to obtain a realistic picture of our universe today, there is
reason to believe that the extra dimension was static du
inflation.

In this paper we will consider only the case
Z2-invariant branes with fixed tension and a five-dimensio
cosmological constant. In this context, inflationary solutio
with time-evolving separation between the~de Sitter! domain
walls were obtained in Ref.@9# by setting the bulk cosmo
logical constant to zero, and in Ref.@27# for the case of
non-vanishing ~negative! cosmological constant. In the
former, the bulk geometry was Minkowskian, while anti–
Sitter in the latter.
©2001 The American Physical Society05-1
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The purpose of this work is two-fold. We will first show
that the inflationary solutions found previously, includin
those with time-evolving separation between branes@9,27#,
are not the most general. More precisely, we will argue t
they correspond to solutions with null-separated dom
walls. Second, we will derive the most general solution
bulk AdS and Minkowski space.

In Sec. II, we shall rederive the class of solutions obtain
in Ref. @27#. The bulk geometry is AdS5, the stress energy o
the walls is given by their tensions, and the walls are loca
at fixed orbifold coordinates. The coordinate system use
find the solutions is not the most general, but has the n
property of making homogeneity and isotropy along t
three spatial directions~i.e., planar symmetry! manifest at
each point along the orbifold direction and, in particular,
each brane. While our setup coincides with that of Ref.@27#,
the class of solutions~described algebraically in Sec. II! is
obtained by explicitly solving Einstein’s equations for th
general planar-symmetric ansatz, rather than guessing a
restrictive form~as in Ref.@27#!. It is parametrized by a few
constants and an arbitrary periodic function of one variab
and agrees in the limit of vanishing bulk cosmological co
stant with that found in Ref.@9# for the case of Minkowskian
bulk geometry.

Since we are interested in inflationary solutions, we
strict to the case where the tensions of the branes are gr
in magnitude than the bulk cosmological constant. With t
minor assumption, our solutions all describe the same c
mology on the boundaries, namely that of a de Sitter~dS!
phase. Thus, in order for the branes to generate AdS spa
the bulk, it is necessary that they follow de Sitter trajector
in AdS space. It is therefore natural to interpret our solutio
as embeddings of two dS4 surfaces in AdS5 space, and this is
the focus of the second half of the paper. As a warm-up
Sec. III we will describe how our solution, in the limit o
vanishing bulk cosmological constant, describes slices
M5 ~Minkowski space!. The generalization to AdS5 is dis-
cussed in Sec. IV. A nice feature of this analysis is tha
provides a geometrical interpretation of the various para
eters describing our class of solutions. It is also a useful
to describe the time evolution of the orbifold as well as t
causal properties of the solutions~Secs. III and IV!. We find
that our solution describes scenarios where the orbifold
rection is static, collapses or expands, as seen from an
server living on one of the branes. In solutions with expa
ing extra dimension, two-way communication between
walls is only possible for a finite amount of time. Afte
wards, communication can proceed in one way only: sign
emitted from the negative-tension brane do not reach
positive-tension brane in finite affine parameter.

Finally, the geometrical picture allows us to realize th
the embeddings of Sec. II display an unexpected amoun
symmetry, leading us to conclude that they are in fac
subclass of all possible embeddings of two dS4 in AdS5. In
Sec. V, we derive the most general solution for two dom
walls in AdS5. In particular, it includes novel scenario
where the brane tensions are not restricted to have opp
signs. The stability of the solutions and generalizations
10350
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any Friedmann-Robertson-Walker~FRW! cosmologies on
the walls are discussed in Sec. VI.

II. A CLASS OF SOLUTIONS IN FIVE DIMENSIONS

We are interested in two four-dimensional hypersurfa
~branes!, M 4

(1) andM 4
(2) , embedded in a five-dimensiona

manifold such thatZ2 symmetry holds across each bran
The stress energy in the bulk is given by a negative cos
logical constant,l,0, although, at least for part of this se
tion, the given solution also holds forl.0. We shall also
assume that the energy density on each wall is dominate
a cosmological constant~tension! denoted byr i , i 51,2.
With the metric signature (2,1,1,1,1) and in units
where the five-dimensional Newton constant equals un
the action is given by

S5E
M5

A2g5@R5212l#2(
i 51

2

E
M 4

( i )
d4xA2g4

( i )12r i ,

~1!

whereg4
( i ) is the induced metric on the domain walls. With

out loss of generality, we can define a coordinatey so that
the first domain wall is located aty50. To obtain cosmo-
logically relevant solutions, we must impose~spatial! homo-
geneity and isotropy~i.e., planar symmetry! on this wall.
Assuming that planar symmetry is also a symmetry of
bulk ~i.e., we can foliate the space-time with plana
symmetric hypersurfaces!, a general ansatz for the bulk me
ric is

ds5
25e2b~2dt21dy2!1e2adxW2 ~2!

wherea5a(t,y) and b5b(t,y). Note that we have used
the freedom of coordinate reparametrization in the (t,y)
plane to choose conformal gauge for that part of the met
With the assumption of planar symmetry, we shall see t
the bulk geometry must be AdS or AdS-Schwarzschild. F
such bulk geometries, the setup is so far general; that is,
can find coordinates in which the first domain wall is locat
at y50. If we want to embed a second domain wall, then,
general, its location will be described by a function of t
coordinates,y25y2(t,xW ), such that homogeneity and iso
ropy on that brane might not be manifest. However, for si
plicity, we shall assume that the second wall lies aty5R
~and is thus aligned with the first!. Note that by a simple
change of coordinates in the (t,y) plane, one can show tha
our setup also includes cases where the branes move
formly according toyi5yi(t). Later, we will discuss more
general configurations.

Let us first focus our attention on the bulk solutions. O
obtains the following~bulk! equations of motion~an overdot
represents time differentiation while a prime denotes diff
entiation with respect toy):
5-2
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~0,0!: 3~ ȧ21ȧḃ2a91a8b822a82!56le2b

~5,5!: 3~2ä1ȧḃ22ȧ21a821a8b8!526le2b

~ i ,i !: ~2a91b913a82!2~2ä1b̈13ȧ2!526le2b

~0,5!: ȧ81ȧa82ȧb82ḃa850. ~3!

By taking linear combinations of the equations, one can
write them in terms of light-cone coordinates,x65t6y, as

]1]2a1]1]2b5
l

2
e2b ~4!

]1]2a13]1a]2a5le2b ~5!

]1
2 a22]1a]1b1~]1a!250 ~6!

]2
2 a22]2a]2b1~]2a!250. ~7!

As shown in Ref.@28#, one can derive a first integral o
motion by rewriting the (0,0) and (5,5) equations as

F8~t,y!524la8e4a

Ḟ~t,y!524lȧe4a, ~8!

whereF(t,y)[e4ae22b(a822ȧ2). Equations~8! can then
be integrated to yield a single expression

ȧ22a825@l1Ce24a#e2b, ~9!

whereC is an integration constant.
The assumption of planar symmetry has reduced the

lowed bulk geometries to a one-parameter family of so
tions depending onC. From now on we will focus on the
caseC50. As we will see in the following sections, th
geometry of the corresponding bulk space-times is then
ticularly simple, namely AdS. However, it is also possible
consider the caseCÞ0, which corresponds to a bul
Schwarzschild-AdS geometry@12#.

Taking C50, in light-cone coordinates, Eq.~9! reads

]1a]2a5
l

4
e2b. ~10!

We are therefore left with the (0,5) equation and Eq.~10!
@since the (i ,i ) equation then follows from the Bianchi iden
tity#. Combining Eqs.~4! and ~5! with Eq. ~10! yields

]1]2a5]1]2b5
l

4
e2b. ~11!

The solution to Eq.~11! and the~0,5! equation can be ex
pressed in terms of two arbitrary functionsf 5 f (x1) andg
5g(x2) as

ds25
1

~ f 1g!2 S 4

l
f 8g8~2dt21dy2!1dxW2D , ~12!
10350
-

l-
-

r-

where f 8[d f /dx1 and g8[dg/dx2. Although we will be
interested in the casel,0, this solution is, in fact, valid for
any non-zero value ofl.

Finally, to fix the specific coordinate patch on which w
analyze our solutions, let us assume that the range oft andy
is such thatt is always time-like,y space-like, and further
that f 1g is positive. Given thatl,0 this means that we will
take

f ~x1!1g~x2!.0 ~13!

f 8~x1!g8~x2!,0 ~14!

for all x1 andx2.
Let us now turn to the domain walls. We must supplem

the equations of motion with appropriate boundary con
tions. Since the branes are localized objects along the tr
verse direction~delta-function sources!, they result in dis-
continuities in the normal derivative of the metric. Formal
these discontinuities are described by the Israel match
conditions@29,24#, which yield the following boundary con
ditions ~assumingZ2 symmetry across each wall!:

e2ba8uy5052r1 , e2ba8uy5R51r2 , ~15!

e2bb8uy5052r1 , e2bb8uy5R51r2 , ~16!

where we note that there is a difference in sign between
two walls.

The Israel junction conditions impose restrictions on t
functions f and g. From the boundary condition~15! evalu-
ated aty50 and given the conditions~13! and ~14!, we
obtain

g8~t!2 f 8~t!52r1A4

l
f 8~t!g8~t!

⇒S 2
g8~t!

f 8~t!
D 1/2

5
1

A2l
~r16H1![g1 , ~17!

where we have introduced

Hi5Ar i
21l. ~18!

SinceHi should be real, we find that solutions will only exi
if we have the condition, on the tension,

ur i u>A2l. ~19!

Note we are using here the condition~14!, which implies that
g8(x2)/ f 8(x1),0 for all x1 and x2. It turns out that the
relation~17! then implies that the second boundary conditi
~16! is also satisfied aty50.

At y5R, the boundary conditions imply a similar rela
tionship betweeng(t) and f (t12R). One finds that
5-3
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S 2
g8~t!

f 8~t12R!
D 1/2

5
1

A2l
~2r26H2![g2 ~20!

satisfies both boundary conditions.
Together, Eqs.~17! and ~20! imply that

g~t!52g1
2f ~t!2k1 ,

g~t!52g2
2f ~t12R!2k2 , ~21!

whereki are constants and

g1[
1

A2l
~r16H1!,

g2[
1

A2l
~2r26H2!. ~22!

Note that by Eqs.~17! and ~20! both g i must be positive.
Sinceur i u.Hi , this requires

r1.0, r2,0; ~23!

that is, for solutions of this type, the brane tensions m
have opposite sign. As we shall see in Sec. V, this condi
on the brane tensions is a consequence of our partic
choice of coordinate system~2!. We will later also describe
solutions where this condition does not hold.

Together, the relationships~21! imply a periodicity con-
dition on f which can be written as

f ~x12R!5~g1 /g2!2f ~x!1K, ~24!

where the constantK is given by

K5~k12k2!/g2
2 ~25!

The general solution of this periodicity condition gives

f ~x!5e2jxp~x!1
e2jx21

e22jR21
K, ~26!

where

j[2
1

R
ln~g1 /g2!, ~27!

andp(x) is a periodic functionp(x12R)5p(x). One notes
that in the limitj→0 the general expression~26! becomes

f ~x!5p~x!1
Kx

2R
. ~28!

In the following, we will sometimes find it easier to us
k[2k1 andK as the independent constants in our soluti
and will sometimes stick tok1 andk2. For completeness le
us now give the general expressions for the functionsa and
b in the metric in terms off. We have
10350
t
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1

f ~x1!2g1
2f ~x2!1k

,

eb5A4g1
2f 8~x1! f 8~x2!

2l
ea. ~29!

We see that the general solution is determined by
choice of a periodic functionp(x) and some constants
which must be chosen so that Eqs.~13! and~14! are satisfied.
While it is difficult at this point to get a feel for what thes
parameters represent, we will find in Secs. III and IV a ge
metrical interpretation for them. Note that our solution r
duces to the solution presented in Ref.@27# if we choosep
5const ~as we shall see later, such a choice amounts t
coordinate transformation!. Nevertheless, we shall find ev
dence in Sec. IV~and show in Sec. V! that the solution in
this section is not the most general.

Let us now consider the induced geometry on the bran
A simple approach is to substitute the boundary conditio
~15! and ~16! in Eq. ~9! ~with C50) to find the Friedmann
equation on the domain wall following@28#. Choosing cos-
mological time on the brane, one finds

ȧ25r i
21l5Hi

2 . ~30!

Given the condition on the tensions, Eq.~19!, Eq. ~30! im-
plies that the induced geometry on each brane is preci
that of de Sitter space with cosmological constantHi .

We can also see this more explicitly from our final e
pression~29!. Considering the brane aty50 for instance, we
can perform the following time redefinition:

e2H1t5~12g1
2! f ~t!1k ~31!

so thatt is cosmological time aty50. In terms of the new
time variablet, the induced metric on our domain wall i
found to be

ds4
252dt21e2H1tdxW2, ~32!

which describes de Sitter space, in agreement with Eq.~30!.
A similar analysis holds for the brane aty5R.

To conclude this section, let us discuss an important s
class of solutions, namely those with a static orbifold in t
coordinates of Eq.~2!. Starting with the caser152r2 ~i.e.,
j50), we see from Eqs.~29! that a static bulk is obtained
only if g1

251 andp5const. We will show in Sec. IV tha
this solution corresponds to the Randall-Sundrum scen
@8#.

In the caser1Þ2r2 ~i.e., jÞ0), Eqs.~29! tell us that
static solutions requirep5const andk5(12g1

2)K/(e22jR

21). For such choices, one finds the following constra
relating the physical distance between the walls,Rstatic , the
bulk cosmological constant and the brane tensions:

tanh~A2lRstatic!5
A2l~r11r2!

2l1r1r2
, ~33!
5-4
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in agreement with Refs.@22# and @23#. Sincer i
21l>0 and

r1r2,0, the denominator in Eq.~33! is negative. In turn,
this implies that2r2.r1.0.

III. GEOMETRICAL ANALYSIS OF lÄ0 SOLUTION

In this section, we shall discuss the limitl→02 of our
solution from a geometrical perspective. In the process,
will find geometrical interpretations for the various para
eters describing the general solution~such ask, K, etc.!.

Let us first determine the bulk geometry in this limit. W
note that general solutions with a metric in the form~2! with
l50 were first discussed~albeit in four dimensions! by
Taub@30# ~see also@31#!. In that paper it was shown that a
solutions withC50 were simply different parametrization
of flat space, while all solutions withCÞ0 were simply
different parametrizations of the Kasner ‘‘rolling radii’’ so
lutions @32#. Here we will rederive theC50 case as a limit
of our general solution. From Eq.~12!, we note that taking
l→0 requires letting eitherf 8 or g8 go to zero at the sam
rate. Suppose we letg8→0. Defining

g~x2!5
l

4M2
g̃~x2!1 k̃, ~34!

where k̃ is a constant andM some energy scale, Eq.~12!
becomes

ds25
1

~ f ~x1!1 k̃!2 S 2
1

M2
d f~x1!dg̃~x2!1dxW2D .

~35!

To express this metric in a more familiar form, we can p
form the coordinate transformation to (T,Y,XW ):
y-

er

10350
e
-

-

Y1T5
1

M ~ f ~x1!1 k̃!

Y2T5
1

M
g̃~x2!2

MxW2

f ~x1!1 k̃

XW 5
xW

f ~x1!1 k̃
, ~36!

which gives

ds252dT21dY21dXW 2. ~37!

Thus we have shown that the caseC50 case indeed
corresponds to five-dimensional Minkowski space (M5)
in the limit l→0. If we now consider the branes at th
orbifold fixed points, this imposes boundary conditio
on f andg @see Eqs.~21!#. For these to be consistent with E
~34!, we need to choose the signs ing i @see Eq.~22!# such
that g i→0 as l→0 ~note also that this yieldsg1 /g2

→ur2 /r1u). Furthermore, we must identifyk̃ with the
constantk introduced in Sec. II,M with the tensionr1 of the
y50 brane, andg̃(x2)5 f (x2) @from Eq. ~21!#. Similarly,
the above derivation can be repeated for the choicef 8→0.
Note that our solution in the limitl→0 agrees with the
results presented in Ref.@9#. Finally, combining Eq.~13!
with the first equation of Eqs.~36!, we note that our original
coordinates are mapped to the rangeY1T.0.

We saw in the previous section that the induced geom
on each domain wall is that of de Sitter space. We can th
fore interpret the solutions obtained in Sec. II~for l→0) as
possible embeddings of two dS4 surfaces inM5. As is well-
known ~e.g., see Ref.@34#!, a de Sitter surface can be de
scribed as a hyperboloid embedded inM5. Indeed, evaluat-
ing Eqs.~36! at y50 andy5R, one finds that the branes ar
given by
2S T2
k

2r1
D 2

1S Y1
k

2r1
D 2

1XW 25
1

r1
2

for y50,

2S T2
r1~k1K !

2r2
2 D 2

1S Y1
r1~k1K !

2r2
2 D 2

1XW 25
1

r2
2

for y5R. ~38!
sla-
ge of

by
o-

e

From Eqs.~38!, we note the following:

~i! The curvature of the hyperboloids is given byur i u.
~ii ! The origins of the light cones asymptotic to the h

perboloids are separated by thenull vector

D5@~r1/2r2
2!~K1k!2k/2r1#•~21,1,0W !. ~39!

~iii ! For fixed null separationD, the quantityk simply
translates the two hyperboloids by the same vector. It th
 e-

fore describes the invariance of the solution upon tran
tions in the embedding space and corresponds to a chan
coordinates in Eq.~37!.

While the intrinsic curvature of each hyperboloid is given
ur i u, the sign ofr i determines on which side of the hyperb
loid the bulk extends. The bulk lies outside~inside! the hy-
perboloid if r i,0 (.0). As an example, Fig. 1 shows th
solution with r152r2 and parametersk50 and K.0
~where we have suppressed two spatial dimensions!. In ac-
5-5
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cordance with the above discussion, the portion of spa
time consistent withr1.0 and r2,0 is indicated by the
shaded region. From Eq.~38! we see that the two hyperbo
loids intersect in the cylinderY1T50, XW 251/r1

2. SinceY
1T50 is a null plane and given our initial coordinate patc
it is easy to show that no observer in the shaded region
ever reach this intersection. As a result of to the symmetr
the XW directions, it is sufficient for our purposes to focus
the two-dimensional projection onto theXW 50 plane~shown
in Fig. 2 for the above example!. An important point to no-
tice is that the hyperbolas are separated by a null vector~as
mentioned in the second point above!, and therefore share
common asymptote.

We can also consider examples where the curvature
the hyperboloids are not equal, once again focusing on
subspaceXW 50. For simplicity, let us setk50. The caseK
50 with 2r2.r1.0 is shown in Fig. 3, with the bulk
indicated by the shaded region. Note that the branes n
intersect forK50. Furthermore, it is crucial that2r2.r1 in
order to obtain a bulk region that is simultaneously ins
one brane and outside the other, which is equivalent to
condition stated below Eq.~33!.

For the caseKÞ0, we see from Eq.~38! that the hyper-
boloids now do intersect in the paraboloid:

Y1T5B[
r2

222r1
22

~r1 /r2
2!~K1k!2k/r1

FIG. 1. Illustration of ther152r2 solution with parametersk
50, andK.0 ~note that two spatial dimensions have been s
pressed! in the case where the bulk is flat space. The location of
bulk ~indicated by the shaded region! is determined by the curva
tures of the boundaries. While the hyperboloids are seen to in
sect, they do so on the planeY1T50, a surface which can neve
be reached by an observer in the shaded region.
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Y2T52
1

B
XW 21

1

Br1
2

2
k

r1
. ~40!

Note that, as above, the intersection lies in a null pla
Furthermore, since our coordinates are restricted toY1T
.0, the intersection lies within our coordinate patch only
B.0. The solutions for2r2.r1.0 with K,0 andK.0
are illustrated in Figs. 4 and 5, respectively. These two
ures are related by reflections about theT and Y axes, but
they should be viewed as distinct solutions in our analy
due to the constraintY1T.0. In particular, the intersection
lies in the physically accessible region in Fig. 4, whereB
.0, but not in Fig. 5, whereB,0. Finally, if r1.2r2, the
only choice consistent with there being a bulk between
two branes in the regionY1T.0 is K.0, in which case
there is also an intersection in our coordinate patch, as il

-
e

r-

FIG. 2. Two-dimensional (XW 50) projection of the previous fig-
ure ~with k50, andK.0). The bulk~as determined by the curva
ture of the domain walls! is indicated by the shaded region. No
that the bulk region satisfies the requirement that it is above
dotted lineY1T50, as required for it to be within the physicall
accessible coordinate patch~defined byY1T.0).

FIG. 3. Illustration of the solution with2r2.r1.0 and K

50 projected onto theXW 50 plane~corresponding toB50). Once
again, the bulk corresponds to the shaded region. While the lo
half of the figure could also yield a consistent bulk region, it li
outside the range of our original coordinates.
5-6
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INFLATIONARY SOLUTIONS IN THE BRANE WORLD . . . PHYSICAL REVIEW D 63 103505
trated in Fig. 6.~For the caseK,0, the signs of the brane
tensions do not allow for a bulk region between them in
regionY1T.0.!

We have shown that a broad class of configurations
be embedded in flat space, namely those consisting of n
separated de Sitter surfaces. The fact that we have only
countered cases with null separation is surprising, and le
us to question the generality of the solutions obtained in S
II. Intuitively, one would also expect cases with time-lik
and space-like separated hyperboloids. We shall confirm
intuition in Sec. V.

A. Dynamics of the orbifold

We next want to investigate the evolution of the orbifo
as seen by an observer on the brane aty50. First, let the
cosmological time for this observer be denoted byt (1) @i.e.,
t (1) puts the induced metric aty50 in the form given in Eq.
~32!#. The range2`,t (1),` is mapped to the range2`
,T,`, with the rule thatt (1) increase withT in the region
Y1T.0. Note that requiring the time coordinate to be co
mological time aty50 does not uniquely fix the surfaces
constant time away from the brane. In this sense, the dista
between the branes is not a coordinate-independent no
However, a natural prescription is the following. Firs

FIG. 5. Illustration of the solution with2r2.r1.0 and K
.0 (B,0).

FIG. 4. Illustration of the solution with2r2.r1.0 and K
,0 ~and thus,B.0).
10350
e

n
ll-
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choose a coordinate such that the metric has the form~2!.
Then recall that we have seen that that neither the func
p(x) nor k in the solution encode physical information. Thu
it is natural to take the casep5const andk50. One then
denotes the separation as the distance in they direction with
fixed t andxW in this metric.

As seen in Figs. 2–6, we have five physically distin
solutions to consider, which we classify into three cases:

~i! 2r2.r1.
~a! K50. This solution is shown in Fig. 3. As mentione

at the end of Sec. II, it has a static orbifold due to the cho
p5const. The physical length of the orbifold is given by th
l→0 limit of Eq. ~33!, namely

Rstatic→
1

r1
1

1

r2
, ~41!

and agrees with the expression found in Ref.@9#. Finally, the
curves of constantt (1) are straight lines trough the origin.

~b! K,0. This solution corresponds to the shaded reg
in Fig. 4. If we denote the physical distance between
branes byRphys in this case, one finds thatRphys→Rstatic

2 as
t (1)→2`. As t (1) increases, the distance between the d
main walls decreases until it reaches zero size~correspond-
ing to the point where the hyperboloids intersect!. Hence, if
we define the onset of inflation to occur at somet0

(1) , where
2`,t0

(1),tcollapse
(1) , this solution describes an initial cond

tion where the branes are withinRstatic apart, and subse
quently move toward each other.

~c! K.0. In this case~shown in Fig. 5!, Rphys→Rstatic
1 as

t (1)→2`. Subsequently,Rphys increases forever.
Hence, for the case2r2.r1, the orbifold remains static

if the initial distance isRstatic , collapses if it is less than
Rstatic , and greater if it is larger thanRstatic . This conclu-
sion agrees with the analysis of Ref.@27#.

~ii ! 2r2,r1. This solution was not discussed in Ref.@27#.
From Fig. 6, we see that it describes an orbifold starting fr
zero size and expanding to infinity. Hence, in this case,
initial distance leads to expansion.

FIG. 6. Illustration of the solution with 0,2r2,r1 and K
.0 (B.0).
5-7
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KHOURY, STEINHARDT, AND WALDRAM PHYSICAL REVIEW D 63 103505
~iii ! 2r25r1. By comparing Figs. 2 and 6, we see that t
evolution is the same as in the case2r2,r1.

As mentioned earlier, different choices ofp correspond to
different observers in the sense that they are associated
diffeomorphisms which leave the bulk metric in the form~2!
and the induced metric aty50 in the form~32!. The notion
of the separation of the branes is coordinate dependent
see this explicitly suppose, for instance, we allow for a
neric choice ofp. It turns out that an observer aty50 will
then see, on top of the average behavior of the extra dim
sion, an oscillatory component. For instance, in the ca
2r2,r1, the orbifold would oscillate as it expands. No
that, given the restrictions imposed by Eqs.~13! and~14!, the
function p must be chosen such that its oscillations will n
lead toRphys reaching zero size where it would not in th
casep5const.

Nonetheless, there is also an observer-independent s
ment one can make about the various solutions descr
above. We noted that, in general, the branes intersect
paraboloid~40!. This intersection lies in the coordinate pat
Y1T.0 if B.0. Furthermore, it lies a finite distance in th
future of any observer in the bulk~corresponding to an orbi
fold collapsing to a final singularity! if 2r2.r1.0 or in the
past~corresponding to an orbifold expanding from an init
singularity! if r1.2r2.0. Finally, let us note that the sur
face of intersection is formally a singular surface and, th
our solution breaks down in its neighborhood. A full trea
ment of brane collisions would require including effects d
to the finite thickness of the branes~usually of string size!.

B. Causal properties

Let us now consider the causal properties of the solut
More precisely, we want to see if the walls are causa
connected during the inflationary period, and whether tw
way or one-way communication between the walls is p
sible.

In the cases where the orbifold collapses or remains s
~i.e. K<0), two-way communication is possible for a
times, as expected.

The remaining solutions involve expanding orbifold
Since the extra dimension is in fact inflating, one would e
pect that a signal sent from one brane could never reach
other. However, we must keep in mind that the length of
orbifold is computed along a space-like path, while gravito
propagate along null geodesics. Consequently, the ca
properties are not as trivial as one might have guessed.
analysis yields qualitatively the same result for all solutio
which describe expanding orbifolds, so without loss of ge
erality, we can focus on the caser152r2 for concreteness
~and takek50 without loss of generality!. This configuration
is shown in Fig. 7. Suppose observer 2 aty5R sends signals
towards observer 1 aty50. The solid lines labeled~i! and
~ii ! in Fig. 7 correspond to two such signals. We see t
signal~i! reachesy50 in finite affine parameter while signa
~ii !, emitted at some later time, never reachesy50. Hence,
from the point of view of observer 2, there exists some ti
on his clock where his signals stop reaching they50 brane.
We shall say that acausal boundaryhas appeared for ob
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server 2. The point is that the brane aty50 lies outside the
light cone centered atT5Y50 ~shown in dashed lines on
Fig. 7!. Once the brane aty5R passes inside this light cone
observer 2 is spatially separated from the brane aty50 and
so no signals can travel fromy5R to y50.

Now, consider signals sent fromy50 towardsy5R. It is
clear from Fig. 7 that such signals always reachy5R in
finite affine parameter.However, if t (1) is proper time for
observer 1, then after a while observer 1 sees his sig
taking infinite proper timet (1) to reachy5R. From the point
of view of observer 1, we shall say that there is ahorizon
somewhere in the bulk. This horizon is a surface with t
following property: once a signal sent by observer 1 h
passed through the horizon, it cannot return to observe
Note that causality implies that the appearance of a hori
requires the appearance of a causal boundary, and vice v
To see this, suppose the contrary is true; that is, suppose
there is a horizon for observer 1 but no causal boundary
observer 2. If observer 1 sends a graviton towardsy5R,
because of the horizon, he will see his graviton frozen som
where in the bulk. On the other hand, observer 2 will rece
this signal within finite time on his clock. If observer 2 re
plies to the signal, his reply will be received aty50 in finite
time on observer 1’s clock~because we have assumed th
there is no causal boundary!. From the point of view of ob-
server 1, he received a reply from observer 2 before
initial signal made it toy5R, an obvious violation of cau-
sality. It is easily seen that the horizon and causal bound
describe the same surface in the bulk, namely the future l
cone asymptotic to they50 hyperboloid~dashed lines on

FIG. 7. Same case as that of Fig. 2, which is an example o
solution with expanding extra dimension. Once again, the bulk
indicated by the shaded region. The solid lines~i! and~ii ! represent
geodesics of gravitons sent from an observer aty5R towards the
brane aty50. Initially, gravitons do reach they50 brane in finite
affine parameter@as illustrated by geodesic~i!#. After a while, how-
ever, signals sent fromy5R never reachy50 @as shown by geo-
desic ~ii !#. Thus, the negative-tension brane can influence
positive-tension brane for a finite amount of time only.
5-8
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INFLATIONARY SOLUTIONS IN THE BRANE WORLD . . . PHYSICAL REVIEW D 63 103505
Fig. 7 which cross at the origin!. That is, once observer 2 i
within this cone, his signals will not reachy50 in finite
affine parameter.

To summarize our conclusions for expanding extra
mensions, our solution predicts that two-way communicat
is only possible for a finite amount of time. Afterwards, on
the brane with positive tension can send signals to~and,
hence, have influence on! the negative-tension brane.

IV. GEOMETRICAL ANALYSIS OF lË0 SOLUTION

In this section, we generalize the analysis of the previ
section to the case of negative bulk cosmological const
As there, we will find that all the solutions presented in S
II correspond to the same bulk space-time. In this case
AdS5. We can therefore think of our solution as a class
possible ways to embed two dS4 surfaces in AdS5. As in the
case of flat space discussed in the previous section, we
find evidence that our solution does not describe the
spectrum of such embeddings.

Recall that the general bulk solution has the form~12!:

ds25
1

~ f 1g!2 S 4

l
f 8g8~2dt21dy2!1dxW2D . ~42!

With the line element in this form, it is not clear that, in fac
for l,0, in all cases the bulk geometry is that of AdS5.
However, upon the coordinate transformation

z1t5
2

A2l
f

z2t5
2

A2l
g, ~43!

we have

ds25
1

~2l!z2
~2dt21dxW21dz2!, ~44!

which is a more familiar form for the line element of AdS5.
We see that the general functionsf andg simply represented
different choices of conformal coordinatest and y in the
AdS5 space.1

As is well known, this coordinate system does not co
the whole of AdS space. More generally one can desc
AdS as a hyperboloid@34#

2X2[T1
21T2

22Y22XW 25
1

2l
~45!

embedded in a flat six-dimensional spaceX5(T1 ,T2 ,Y,XW )
with line element

1The coordinate description of AdS5 using the line element~42!
was used recently in Ref.@33# to investigate cosmological pertur
bations in the brane world.
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ds25dX•dX[2dT1
22dT2

21dY21dXW 2. ~46!

We should note here that the space described contains cl
time-like curves. The full AdS space is really the univers
covering space. This will not enter our analysis here, sinc
all our solutions the domain walls will lie in the same she
of the universal cover. In terms of the coordinates in Eq.~44!
the embedding is given by

T11Y5
1

~2l!z

T12Y5
xW22t21z2

z

T25
t

A2lz

XW 5
xW

A2lz
. ~47!

Note that sincez5( f 1g)/A2l.0, our original coordinates
are mapped to the rangeT11Y.0. ~The boundary of this
region,z50, is shown in Fig. 8.!

Let us now turn to the description of the domain wal
Recall that in our original coordinates the walls were fixed
y50 andy5R or, equivalently,x15x2 andx15x212R.
After the conformal transformation~43! the walls will now

FIG. 8. Sketch of the solution withl,0, 2r2.r1.0, and
K50. The resulting space-time~indicated by the shaded region! is
obtained by intersecting the AdS5 hyperboloid with two planes of
constantT2.
5-9
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KHOURY, STEINHARDT, AND WALDRAM PHYSICAL REVIEW D 63 103505
be moving in the z direction. Explicitly, from the relations
~21!, the equations of the walls in terms ofz and t are the
linear relations

t2z5g1
2~ t1z!1

2k1

A2l
for y50,

t2z5g2
2~ t1z!1

2k2

A2l
for y5R. ~48!

It is easy to see that in these coordinates, the domain w
move in thez direction with constant velocityHi /ur i u ~see
also @11,25#!.

Finally we can transform these equations into the flat s
dimensional embedding space. One finds that the walls
respond to planes

6T21k1S r1

H1
71D ~T11Y!5

r1

A2lH1

for y50,

6T21k2S ur2u
H2

71D ~T11Y!5
ur2u

A2lH2

for y5R.

~49!

The choice of signs corresponds to the choice of sign in
expressions~22! for g1 andg2.

Note that both these equations have the form, fori 51,2,

ni•X5ci ~50!

whereni is a time-like unit vector andci.1/A2l. Intersect-
ing with the AdS5 hyperboloid~45!, one finds that the do
main walls are dS4 submanifolds of the embedding space
curvature

S ci
21

1

l2D 21/2

5Hi , ~51!

where we have substituted the particular form ofci from Eq.
~49!. @This can be seen explicitly by using theSO(4,2) sym-
metry of the embedding flat space to putnW 5(1,0, . . . ,0) and
substituting in Eq.~45!.# Thus we see again how the doma
walls are indeed dS4 surfaces in the AdS5 space with curva-
turesHi .

To get a sense of the global structure of the solution c
sider the case wherek15k250 and choose the upper sign
in the solution~49!. The planes are then simply given b
T25ur i u/(HiA2l). The intersection is sketched in Fig.
Note that in this case, the branes never intersect. The fi
allows us to understand how the curves describing the
main walls would turn into the hyperbolas shown in Fig. 3
we let l→0. Intuitively, we can generate the solutions d
scribed above by taking the hyperbolas of the previous s
tion and ‘‘pasting’’ them on the hyperboloid as shown in F
8. We can use this intuition to realize that the various para
eters~e.g., k, p, etc.! describing the solution play a simila
role as in the casel50. However, we should also note tha
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in general, there is a second class of solutions where
make the opposite choice of signs for the two walls in E
~49!. ~Actually this choice is not possible for the specifi
casek15k250.! Now the planes are on ‘‘opposite sides’’ o
the AdS hyperboloid. This has no naturall→0 limit. It cor-
responds to the result of Sec. III that we were forced
choose a correlated signs ing i to get the flat-space solution

As a second example, we can briefly mention that
domain walls in the Randall-Sundrum scenario@taking the
ur i u→A2l limit in Eqs. ~49!# are described by the nul
planes

T11Y5
1

k1A2l
for y50,

T11Y5
1

k2A2l
for y5R. ~52!

Again these branes will never intersect.
To cast the above discussion in a more general set

recall that in the previous section, the relative position
domain walls was characterized in flat space by th
Minkowskian distance~more formally, by the distance be
tween their asymptotic light cones!. Furthermore, in genera
this separation was null for the solutions of Sec. II. Simila
here, the asymptote of each dS in the six-dimensional
bedding space is a light cone, whose origin lies at

ai5cini for i 51,2. ~53!

Note that, in general, the vectorai will not lie on the bulk
AdS hyperboloid. We can now use the distance between
light cones, given by

D[a12a2 , ~54!

to characterize the relative location of the dS surfaces i
coordinate-independent way. Furthermore, it is easily s
that the quantityD does reduce to the distance between h
perboloids in the limitl→0, as defined in Sec. III. Just as i
the casel50 where our solutions all described null sep
rated hyperboloids, similarly, it can be easily verified fro
Eqs. ~49! that all ourl,0 solutions with a flat limit yield
D250, corresponding to null separation. The size of t
separation is controlled by the parametersk1 andk2.

Once again, we expect that solutions with time-like a
space-like separated dS surfaces are also allowed. We
discuss these more general configurations in Sec. V.

Finally, we note that the dynamics of the orbifold as w
as the causal properties of the solution are qualitatively
same as for the casel50. The nature of the intersectio
between the walls is controlled byni andr i . For generalni ,
the intersection is a null paraboloid. As before there are t
cases, one where the space-time has either expands fro
initial singularity and one which contracts to a final singula
ity. For the special case where theni are parallel or anti-
parallel, there is no intersection and the distance between
walls is fixed. For example, in the case2r2.r1.0, we find
that the orbifold remains static if the initial distance betwe
5-10
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INFLATIONARY SOLUTIONS IN THE BRANE WORLD . . . PHYSICAL REVIEW D 63 103505
the branes equalsRstatic @see Eq.~33!# and expands~col-
lapses! if it is larger ~smaller! than Rstatic . Furthermore,
two-way communication is only possible for a finite amou
of time if the extra dimension is expanding.

V. GENERAL EMBEDDED SOLUTIONS

In this section we will step back a little and reconsider t
solutions given thus far. In doing so we will see that they
in fact special cases of a more general configuration of a
of branes in bulk AdS space. Note that in this section
solutions will also no longer be confined to a particular c
ordinate patch of AdS space.

From the discussion of previous section, the solutions
found correspond to a pair of dS surfaces embedded in
space. The dS surfaces are not in general position but are
separated in the sense discussed below Eq.~54!. Recall that
the solutions were found by solving the bulk Einstein eq
tion with negative cosmological constant together with
Israel matching conditions describing the discontinuity in
normal derivative of the metric at the brane.

The important point to note is that once we fix the bu
solution, in this case to be AdS, the solution of the Isr
conditions for the two walls are completely independe
Each set of conditions is composed of local equations re
ing the shape of the brane embedded in the bulk space to
stress energy on that brane, independent of the second b
From the analysis of the previous two sections, it appe
that for a pure cosmological constantr on the brane, the
solution to the Israel conditions is that the brane describ
dS surface embedded in AdS space. If this is correct,
then clear that the general solution corresponds to a pa
dS brane embedded in AdS space with arbitrary separat

To see that this is indeed the case, we can consider
Israel conditions in a coordinate independent form and sh
that, when the bulk space is AdS5, they imply that the brane
is a dS4 surface. If we lettm be the normal vector to the
brane, the induced metricgmn

4 is then given by

gmn5gmn
4 1tmtn , ~55!

wheregmn is the bulk metric. As has been noted in vario
papers~see, e.g.,@24#!, assumingZ2 reflection invariance a
the brane, the Israel conditions relate the extrinsic curva
Kmn of the brane to the stress energyTmn

B 526rgmn
4 on the

brane. One has

Kmn52
1

2 S Tmn
B 2

1

3
TBgmn

4 D52rgmn
4 , ~56!

where the extrinsic curvature is given by

Kmn5g 4
m

rg4
n

k ¹rtk . ~57!

Sincegmn
4 andtm are functions of the embedding, Eq.~56! is

a local differential equation for the functions describing t
embedding of the brane in AdS5, completely independent o
the presence of a second brane.

To show that a dS4 surface satisfies the Israel condition
we could evaluate Eq.~56! in a particular set of coordinates
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This is essentially what was done in Sec. II. Alternative
we can argue simply by symmetry that if the brane is dS
extrinsic curvature must be proportionalgmn

4 , since this is the
only symmetric tensor on the brane with the correct symm
tries. The only question is then what curvature of the
space must we choose to make the constant of proportio
ity exactly that in Eq.~56!. To answer this we recall tha
there is an expression for the intrinsic curvatureR4 of gmn

4 in
terms of the bulk curvatureR and Kmn . In particular, we
have the general expression

Rklmn
4 5g 4

k
k8g4

l
l8g4

n
n8Rk8l8m8n8

1KkmKln2KknKlm . ~58!

Substituting the form ofKmn and the bulk AdS space curva
ture Rklmn5l(gkmgln2gknglm) gives the intrinsic scalar
curvature

R4512~r21l!. ~59!

We have reproduced the result we derived in Sec. II. T
curvature of the brane dS space is such that the square o
Hubble constant@see Eq.~30!# is r21l.

One notes that the curvature~59! of the brane is indepen
dent of the sign of the brane tensionr. What then distin-
guishes ther.0 case fromr,0? Since the brane is
codimension-1 boundary in AdS space, we can either t
the bulk space-time to be the space ‘‘inside’’ the dS bou
ary or ‘‘outside’’ the dS boundary. Consider Fig. 9, whic
shows the intersection of two planes with the AdS hyper
loid. Let us focus on the left-hand plane, corresponding t
single dS submanifold. By ‘‘inside’’ we mean that the bu

FIG. 9. General dS4 branes in AdS5 space formed by the inter
section of planes with the AdS hyperboloid. Consider the bra
formed by the left-hand plane. The sign of its tension,r, determines
where the bulk lies. Ifr,0, the bulk includes the throat region, s
that the solid circle lies in the bulk. Ifr.0, the bulk excludes the
throat and, for example, the open circle lies in the bulk.
5-11
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space-time includes the throat of the AdS hyperboloid.
‘‘outside’’ we mean that the bulk space-time is one of t
two disconnected regions which do not include the thro
For example, the solid circle in Fig. 9 lies ‘‘inside’’ the d
boundary, while the open circle lies ‘‘outside’’ it. These tw
regions are distinguished by the direction of the normal v
tor tm . Furthermore, they have opposite extrinsic curvat
Kmn . It is then easy to show that one has the followi
conditions:

if r.0, then the spacetime is ‘‘inside’’ the dS boundary;

if r,0, then the spacetime is ‘‘outside’’ the dS boundary
~60!

We can now give a geometrical description of the gene
embedding solution. As we argued above, since the Is
conditions are local, we can choose the branes to lie onany
pair of dS surfaces. As noted in the previous section, in g
eral, these are described by the intersection of an arbit
pair of planes with the AdS hyperboloid. This is shown
Fig. 9. For generic choices ofn1 andn2 the dS spaces wil
always intersect transversally. This means there are con
rations forall valuesof the signs ofr1 andr2. However, if
n1 andn2 are either parallel or anti-parallel, this is no long
true. In these cases the branes never intersect. As a res
the vectors are parallel, one only has a solution with a b
space-time bounded by a pair of branes if2r1.r2.0 or
2r2.r1.0. In the case where they are anti-parallel o
requiresr1.0 andr2.0.

The analysis of Secs. III and IV allowed us to realize th
the solutions obtained in Sec. II all described de Sitter s
faces separated by a null vector. The above discussion
shown that time-like as well as space-like separation vec
are also allowed. Furthermore, given that two time-like v
tors of equal magnitude are related by a boost, the degre
freedom describing the general solution are the brane
sions, the magnitude of the separation vector, and wheth
is null, space-like, or time-like. In addition, we note tha
except for the special case where the planes describing
dS branes are parallel or anti-parallel, there are in genera
conditions on the signs ofr1 andr2 for a solution to exist.
The condition we found in Sec. II is an artifact of using
particular coordinate system.

The use of a specific coordinate system to analyze
null-separated solutions was useful to describe the dynam
of the extra dimension as viewed by an observer living
either brane~Sec. III A! as well as the appearance of ho
zons in the bulk~Sec. III B!. However, we noted that thes
questions could also be addressed purely geometrically.
same is true for the general embeddings described here
course, if one wished, it is possible to describe the gen
solutions using some global coordinate system adapte
one of the branes. As mentioned in Sec. II, one way to p
ceed would be to start with the same ansatz for the metri
Eq. ~2! but allow for a more general location of the seco
brane.

We end this section by noting that although discussed
the context of negative bulk cosmological constantl and dS
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branes (r i satisfyingr i
21l.0), the derivation of the em-

bedding conditions is completely general. The construct
naturally goes over to cases of positive or zerol and arbi-
trary r i . For instance, in bulk dS or flat space the intrins
brane curvature~59! is always positive and we are conside
ing embedded dS branes. In AdS space, the intrinsic cu
ture can also be zero~the Randall–Sundrum case! or nega-
tive. In the latter case we are embedding AdS branes in
AdS bulk. Geometrically these arise from intersecting w
planes wheren is null ~for flat branes! or space-like~for AdS
branes!.

VI. DISCUSSION

All the solutions presented in this work were obtained
assuming~albeit implicitly! that the bulk was AdS. It was
then found that a domain wall of uniform energy density c
be embedded in this background provided it follows a
Sitter trajectory, and we described the most general confi
ration with two such trajectories in AdS space. Rather th
fixing the bulk geometry for all times, a more general a
proach is to treat the problem as an initial-value problem.
us assume that the only stress energy in the problem
negative cosmological constantl in the bulk and brane ten
sions r i such thatur i u.A2l. Suppose we choose som
space-like hypersurface on which we specify the initial s
tial bulk metric and the boundary branes. In general, o
could imagine complicated initial conditions, but a natu
configuration to consider is one with a space-like slice
anti–de Sitter spatial bulk metric and two~spatially! flat sur-
faces with arbitrary separation, velocity, and orientation.
one were to solve for the time evolution of this system, o
would generically find that the bulk does not remain AdS b
that a non-vanishing Weyl tensor is generated. This wo
mean that our solutions correspond to initial conditio
which are tuned so that the bulk remains AdS. Coming b
to the general problem, it is not clear whether all bulk ev
lutions would yield homogeneous and isotropic cosmolog
on the branes. It would be essential to know what subclas
initial conditions would be consistent with the usual assum
tions of cosmology.

A related issue has to do with the stability of the so
tions. Suppose our tuned initial conditions are perturb
then one should investigate whether the path is only sligh
or greatly disturbed by the variation. The brane motion co
be perturbed either by moving the brane as a whole aw
from its initial trajectory without altering its energy densit
by moving a region of the brane off the trajectory whi
keeping the energy density constant or by perturbing the
ergy density in a spatially homogeneous or inhomogene
way. In the first case, we know of at least one example
instability, namely solutions with static orbifolds in the ca
r1Þ2r2. Indeed, we saw in Sec. III that the branes w
eventually collide if brought infinitesimally closer than th
static distance or end up infinitely far apart if pulled aw
from each other. Note that, even though the path is unsta
the cosmological evolution remains de Sitter and the bulk
still AdS. Nevertheless, more general homogeneous pe
bations may drive the bulk away from AdS and, thus, dr
5-12
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the cosmological evolution on each brane away from dS.
for inhomogeneous energy density perturbations, it was
gued in Ref.@16# that any spatial inhomogeneities on th
brane stress energy will modify the AdS bulk through gra
tational radiation. Cosmological energy density perturbati
in brane worlds have recently been investigated in R
@33,35–41#.

To conclude, let us briefly point out that our solutions c
be straightforwardly generalized to any type of energy d
sity on the brane~e.g., radiation, matter!. Fixing the bulk
metric to be AdS for simplicity, one can use the Israel jun
tion condition at the location of the brane to solve for
motion in the bulk@24,11#, which in turn determines its cos
mological evolution. If we want to embed two domain wal
,

s.

l.

t.

s.

10350
s
r-

-
s

s.

-

-

each one should be allowed to travel along any traject
consistent with its energy density.
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