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Abstract

Background/Purpose: Community partition is of great importance in sociology,
biology and computer science. Due to the exponentially increasing amount of social
network applications, a fast and accurate method is necessary for community partition
in social networks. In view of this, we investigate the social community partition
problem from the perspective of influence propagation, which is one of the most
important features of social communication.

Methods: We formulate social community partition as a combinatorial optimization
problem that aims at partitioning a social network into K disjoint communities such
that the sum of influence propagation within each community is maximized. When
K = 2 we develop an optimal algorithm that has a provable performance guarantee for
a class of influence propagation models. For general K , we prove that it isNP -hard to
find a maximum partition for social networks in the well-known linear threshold and
independent cascade models. To get near-optimal solutions, we develop a greedy
algorithm based on the optimal algorithm. We also develop a heuristic algorithm with
a low computational complexity for large social networks.

Results: To evaluate the practical efficiency of our algorithms, we do a simulation
study based on real world scenarios. The experiments are conducted on three
real-world social networks, and the experimental results show that more accurate
partitions according to influence propagation can be obtained using our algorithms
rather than using some classic community partition algorithms.

Conclusions: In this study, we investigate the community partition problem in
social networks. It is formulated as an optimization problem and investigated both
theoretically and practically. The results can be applied to find communities in social
networks and are also useful for the influence propagation problem in social networks.

Keywords: Influence propagation; Community partition;NP -hard

Background
Motivation

Social network is an interdisciplinary research area which has attracted a lot of attention
in recent years. One important problem in social networks is community partition that
provides the insight of the relationships and attributes of the users that a social network
comprises. Generally, a social network can be modeled as a graph in which the nodes
represent the users and the edges represent the relationships among the users. The objec-
tive of community partition is to cluster the users into groups according to their graph
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topology [1-8]. Another important problem in social networks is influence propagation.
It is one of the most important features of social communication and plays a significant
role in a variety of affairs such as diffusion of medical innovations and popularization of
new technologies. For example, the influence maximization problem, with the objective
of finding a small set of users in a social network as seeds to trigger a large influence
propagation, has wide applications in viral marketing [9-13].
Due to the nondeterminacy of human behaviors, the influence propagation is mostly

studied in probabilistic models such as the Linear Threshold (LT) model and Independent
Cascade (IC) model [14-16], that is, the behaviors and decisions of users are uncertain
and depend on the behaviors of others. For example, a user’s adoption of a new product
may have impacts on their friends, whose adoptions may further influence others. There-
fore, probabilistic models are more suitable than deterministic models for simulating an
influence propagation in social networks. Unfortunately, one important issue however is
that the expected influence propagation through the entire social network is hard to esti-
mate for most probabilistic models such as LT and IC [15,16]. Therefore, many works
(e.g., [15-17]) construct a local area for each user and use the local influence propagation
instead of the global one. But in some large social networks, there may bemillions of users
so that it is impossible to construct local areas for all the users.
There are also many works studying community-based algorithms for influence maxi-

mization, assuming that influence propagates rarely across different communities. How-
ever, based on our observation, there are few works done on community partition aiming
specially at influence propagation in social networks. The performance of community-
based algorithms cannot be guaranteed unless there exists an accurate influence-based
community partition. In this paper, we investigate the problem inherent in the question
that how to partition a social network into disjoint communities in terms of influence
propagation. We believe this study is useful for the influence maximization problem
and possibly activates further research and potential applications of community in social
networks.

Related work

Community partition is of great importance not only for social networks but also for
areas such as computer networks and biology networks. There are lots of works done
on community partition in general networks (e.g., [6,8,18,19]), and much effort has been
devoted to formalizing the intuition that a community is a set of nodes having more con-
nections with each other while fewer connections with the remainder of the network.
The first investigation for community partition were done by Weiss et al. [20]. For sub-
sequent approaches, there are mainly four categories: hierarchy-based methods [1,2],
spectrum-based methods [3,4], density-based methods [5] and modularity-based meth-
ods [6-8,21-29]. Particularly, Newman’s notion of modularity [6,8], which considers the
internal connectivity with reference to a randomizedmodel, has been a very popular mea-
sure for community partition in general networks. In spite of the excellent performance
on many real-world networks, this family of approaches usually has ‘resolution limit’
problems, i.e., modularity-based methods favor larger communities and fail to discover
communities of small sizes [25,30]. Therefore some works investigate new methods for
detecting communities, such as the self-reference methods and the comparative methods
[18]. In addition, in [19], Hu et al. proposed an algorithm from the node’s point of view to
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incorporate nodes into a community with the largest attractive force. In [31], Zhang et al.
proposed an algorithm from the aspect of combinatorial optimization to partition nodes
into disjoint parts. There are also many works which view communities from different
perspectives. To learn more about the large body of works in community partition, please
refer to [29,32-37].
Besides community partition, influence propagation is also an important issue in social

networks. Domingos and Richardson in [13] and [12] first proposed general descriptive
models for influence propagation in social networks. In [14], Kempe et al. formulated the
influence propagation as an optimization problem, namely, influence maximization. They
proved that the greedy algorithm has a provable performance guarantee for the LT and
IC models. However, how to evaluate the expected influence propagation for selecting
the nodes with the maximum marginal gain was left as an open problem, and the greedy
algorithm in [14] was implemented by Monte Carlo (MC) simulation. After that many
researchers started to investigate how to compute the influence propagation efficiently
and a large volume of methods (e.g., [15,16,38]) have been proposed for the LT and IC
models. Meanwhile, there are also many works investigating new influence propagation
models (e.g., [39,40]) to approach the real-world scenarios.
Due to the nature of the communities, applying the research of community partition

into influence propagation is promising. In [17],Wang et al. proposed a community-based
greedy algorithm for mining the most influential nodes. In [41], Li et al. further proposed
an algorithm for influence maximization in online social networks. They assume that
each node’s influence propagation is limited to the community it resides and thus they
evaluate the influence propagation within each community to improve the computational
efficiency. There are also many works for influence propagation or other social network
applications taking the advantage of community structures (please see e.g., [42-45] for
recent works).

Our contribution

Although there are a lot of works done on general community partition, based on our
observation, there are few works done on community partition for influence propaga-
tion. In view of this, we investigate how to partition a social network into communities
according to influence propagation. Our main contributions are as follows:

1. We formally define the influence-based community partition problem as a
combinatorial optimization problem with the objective of partitioning a social
network into K disjoint communities such that the sum of influence propagation
within each community is maximized. We call the problem Maximum
K-Community Partition (MKCP). The motivation is to keep as much influence
propagation as possible after the partition and reduce the estimation errors caused
using local influence propagation increased of the global one.

2. When K = 2, i.e., partition a social network into two disjoint parts, we develop an
optimal algorithm for a class of influence propagation models. For general K , we
prove there exists no polynomial time algorithm unless P = NP for MKCP in the
well-known LT and IC models, and a greedy algorithm based on the two partition
algorithm is exhibited. We also develop a fast heuristic algorithm with a low
computational complexity in case that the social network is very large.
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3. We conduct simulation on real-world social networks to demonstrate the practical
efficiency of the proposed algorithms. The influence propagation is based on the
well-known LT and IC models, and the experimental results show that significantly
better partitions can be obtained using our algorithms rather than using some
community partition methods that are not specialized for influence propagation.

Paper organization

The rest of this paper is organized as follows. In ‘Problem description’ section, we
give the background information, including the notation and problem definition. In
‘Methods’ section, we present our algorithms as well as the theoretical analysis of both
the proposed algorithms and the MKCP problem. In ‘Results and discussion’ section, we
show the simulation results on some real-world social networks. In ‘Conclusions’ section,
we conclude the paper.

Problem description
In this study, we formulate a social network as a simple directed graph without self-
loops, where nodes represent users and edges represent relationships among the users.
We first introduce some notations and then present the MKCP problem based on the
notations.

1. For a social network G, we denote by V = {1, 2, . . . , n} the set of nodes and
E = {(i, j)} the set of directed edges. A directed edge (i, j) denotes that there exists
a chance of influence propagation between nodes i and j where i is the sender and j
is the receiver. For each node i ∈ V , we denote by p(i) (0 ≤ p(i) ≤ 1) the
probability that node i would produce an influence propagation or would share an
idea with others through the social network. For example, in the Twitter social
network, p(i) should be related to the number of tweets i posts periodically. For
each edge (i, j) ∈ E, we denote by w(i, j) the influential degree from node i to node
j, which depends on their closeness and the probability p(i) for node i.

2. Let K denote the number of communities. We denote by ci ∈ {1, 2, . . . ,K} the
community identifier of node i. We denote by Ck = {i|ci = k} the set of nodes with
community identifier k (1 ≤ k ≤ K ). For each pair of nodes i and j in the same set
Ck , we denote by pCk (i, j) (0 ≤ pCk (i, j) ≤ 1) the probability that node j receives the
influence from node i through propagation within community Ck .

3. For a community Ck and a node i ∈ Ck , we denote by σCk (i) the influence
propagation of node i within community Ck , i.e., σCk (i) = ∑

j∈(Ck\i) pCk (i, j). For
any nonempty subset D ⊆ Ck , we denote by σCk (D), the sum of influence
propagation within community Ck for every node in D, i.e., σCk (D) = ∑

i∈D σCk (i).
For simplicity, we let σ(X) denote σX(X) for community X and in the rest of this
paper we call σ(·) the influence propagation function for community ‘·’.

The probability that node j receives the influence from node i not only depends on
the influential degree w(i, j) but also depends on the network topology and the influence
propagation model. For example, in the LT model, the sum of influence node j receives
can be formulated as

∑
i∈Nactive(j) w(i, j) where Nactive(j) denotes the set of active nodes

around j and
∑

i∈Nactive(j) w(i, j) ≤ 1. The influence propagation runs in discrete steps. At
any time t, a node j ∈ V becomes active when

∑
i∈Nactive(j) w(i, j) ≥ λ(j) where λ(j) is a
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threshold selected uniformly at random between 0 and 1. Therefore in the LT model, for
any community Ck , pCk (i, j) is the probability that j is eventually active when i is initially
active. As an example shown in Figure 1, the numbers on the edges and nodes denote
the influential degrees and random thresholds. Assume that all the nodes are in the same
community and node u is a seed, then all the white nodes (including node y) can be acti-
vated by node u, because they can either be activated by u or by paths from u. All the
black nodes (p, q and w) cannot be activated by node u, even though q is a direct outgo-
ing neighbor of u. Therefore in the LT model, pCk (i, j) not only depends on the influential
degree w(i, j). We next present the definitions of K-valid disjoint partition (K-VDP) and
the MKCP problem.

Definition 1. (K-VDP). Given a graph G(V ,E) as a social network, a K-valid disjoint
partition P is a collection of K sets {C1, C2, . . . , CK } satisfying: (1) ⋃K

k=1(Ck) = V and
(2) ∀i �= j, Ci ∩ Cj = ∅.

Let K be an integer no less than 2. According to Definition 1, a K-VDP is a partition
of V into K nonempty subsets such that each node is in exact one subset. We denote the
influence propagation function for a K-VDP {C1, C2, . . . , CK } by f (C1, C2, . . . , CK ) =∑K

k=1 σ(Ck) and we want to maximize f (C1, C2, . . . , CK ). The formal definition of
MKCP is given in Definition 2.

Definition 2. (MKCP). Given a graph G as a social network, an influence propagation
model I (such as IC or LT) and an integer K ≥ 2, Maximum K-Community Partition
(MKCP) is the problem of finding a partitionP = {C1, C2, . . . , CK } ofK subsets of nodes,

maximize f (C1, C2, . . . , CK ) =
K∑

k=1
σ(Ck) (1)

subject to {C1, C2, . . . , CK } is a K-VDP for G.

Consider the node set V as a single community, we have

f ({V }) =
∑

i∈V

∑

j∈V\{i}
pV (i, j).
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Figure 1 An illustration of influence propagation.
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It is clear that when partitioning the social network into two or more communities, some
pairs (i, j) will be separated and thus both pV (i, j) and pV (j, i) have to be removed in the
sum of influence propagation. In addition, even though nodes i and j are partitioned into
the same community X, pX(i, j) may be less than pV (i, j), and pX(j, i) may be less than
pV (j, i) because X is a subset of V . Therefore, the influential propagation between any
pair of nodes i and j is different for different community partitions no matter they are in
the same community or not.

Methods
Optimal algorithm for M2CP

In this subsection, we present an optimal algorithm to M2CP for a class of influence
propagation models. The algorithm is based on the Min Cut algorithm proposed in [46].
Before giving the formal algorithm and its theoretical analysis, we briefly discuss the dif-
ference between the Min Cut problem and the M2CP problem. A min cut of a graph G
is a set of edges with the least number of elements (un-weighted case) or the least sum
of weights (weighted case) that partitions G into two parts. On this basis, for M2CP, one
may want to find a cut to minimize the influence propagation leaking out between the two
parts. However, maximizing the sum of influence propagation within each community
is not equivalent to minimizing the influence propagation crossing different communi-
ties. Figure 2 shows an example. There are eight nodes which are partitioned into two
communities C1 = {1, 2, 3, 4} and C2 = {5, 6, 7, 8}. Assume the gray-directed arcs are
the possible influence propagation. Consider nodes 7, 5, and 1, respectively. It is clear
that the influence received by nodes 7 and 5 will decrease after the partition because
node 3 cannot influence node 7 and it cannot influence node 5 via node 7 indirectly. The
influence received by node 1 also decreases because of the following: (1) node 5 cannot
influence node 1, (2) node 7 cannot influence node 1 indirectly, and (3) node 3 cannot
influence node 1 through the path (3 → 7 → 5 → 1). The first two kinds of influ-
ence propagation are between nodes in different communities, but the last one is between
nodes in the same community. Therefore, maximizing the sum of influence propaga-
tion within each community is not just minimizing the influence propagation crossing
different communities.
Given a social network as well as an influence propagation model, our algorithm itera-

tively finds n−1 partitions and selects the one with themaximum value as the final output.
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7,5
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Figure 2 An example of M2CP.
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In the beginning, we consider each node i as a single set and let V = {S1, S2, . . . , Sn} as
the collection of all the sets where Si = {i}. Select an arbitrary set Si ∈ V and letA = {Si}.
We then add the remainder sets one by one iteratively into A. Each time a set Sj with the
maximum value of ς(A, Sj) is added, where ς(A, Sj) = σ(A ∪ Sj) − σ(Sj). When there
are only one set Sl left, {v(A), v(V\A)} are considered as the first partition where v(X ) is
defined as the set of nodes in X . In addition, the last two sets not in A, say Sr and Sl, are
merged as a single set (Sr∪Sl) for computing the next partition. The algorithm terminates
when there are only one set in V . The pseudo-code is given in Algorithm 1.

Algorithm 1 Algorithm for M2CP (AM2CP)
Input: Given a graph G as a social network and an influence propagation model I .
Output: a 2-VDP for G.
1: construct a collection V of n sets: S1, S2, . . . , Sn, each of which contains a single node

in graph G;
2: while |V| > 1 do
3: letA = {{i}} where {i} is an arbitrary set in V ;
4: while |V| − |A| > 1 do
5: let Sj ← argmaxSz∈V\A(ς(A, Sz));
6: add Sj into A;
7: end while
8: let P ← (v(A), v(V\A)).
9: let Pmax store the partition with the maximum objective value f (v(A), v(V\A));

10: let Sr,l to be the union of last two sets Sr and Sl in (V\A);
11: delete Sr and Sl from V and add Sr,l into V ;
12: end while
13: return Pmax;

The computational complexity of AM2CP (Algorithm 1) depends on the time complex-
ity of computing σ(·), which further depends on the time complexity of computing the
influence propagation pCk (i, j) for community Ck and all the pairs (i, j) of nodes in it. In
[15], Chen et al. prove that it is #P-hard to compute the exact influence propagation in LT
and IC models. Therefore, in this work, pCk (i, j) is estimated by MC simulation. Assume
we have a simulator to estimate σ(·) in τ time. Following Algorithm 1, we run steps (3 to
11) n−1 times for the n−1 partitions. For each partition, we add all the sets greedily into
A that calls the function σ(·)O(n2) times. Therefore, the overall running time of AM2CP
isO(n3τ).
We next show that AM2CP is an optimal solution for M2CP when the community

influence propagation function σ(·) is super-modular. Let S be a finite set. A function
f : 2S → R is super-modular if for any B ⊂ A ⊂ S and u �∈ A,

σ(A ∪ {u}) − σ(A) ≥ σ(B ∪ {u}) − σ(B), (2)

or equivalently for any B,A ⊂ S,

σ(A ∪ B) + σ(A ∩ B) ≥ σ(A) + σ(B). (3)
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Theorem 1. If the influence propagation function σ(·) is super-modular, AM2CP is an
optimal solution for M2CP.

Proof. Based on AM2CP, each time we find a partition P = (v(A), v(V\A)) that sepa-
rates the last two sets Sr and Sl, and we merge the two sets for the next round. To show
Theorem 1, it is sufficient to show that P has the maximum objective function value
σ(v(A)) + σ(v(V\A)) among all the partitions separating Sr and Sl, where v(X ) is the set
of nodes in X . We prove it by induction.
Without loss of generality, we assume the sets added into A are in the order:

Si1 , Si2 , . . . , Si|V | for round i and let Aij denote the collection of the first j sets added into
A in round i. Then for any S ⊆ Ai1 and Sij with j > 2, we have σ(v(Ai2)) + σ(Sij) ≥
σ(v(Ai2\S)) + σ(Sij ∪ v(S)) because v(S) is either Si1 or ∅. Assume σ(v(Aik′ )) + σ(Sij) ≥
σ(v(Aik′ \S)) + σ(Sij ∪ v(S)) for any 2 ≤ k′ < k, S ⊆ Aik′−1 and Sij with j > k′. We next
show that σ(v(Aik )) + σ(Sij) ≥ σ(v(Aik\S)) + σ(Sij ∪ v(S)) for any S ⊆ Aik−1 and Sij
with j > k.
Consider the following two cases: (1) Sik−1 ∈ S and (2) Sik−1 �∈ S . When Sik−1 �∈ S ,

we have σ(v(Aik−2)) + σ(Sij) ≥ σ(v(Aik−2\S)) + σ(Sij ∪ v(S)) due to the assumption.
Therefore, σ(v(Aik )) + σ(Sij) ≥ σ(v(Aik\S)) + σ(Sij ∪ v(S)) because (1) v(Aik ) =
v(Aik\S) ∪ v(Aik−2), (2) v(Aik−2\S) = v(Aik\S) ∩ v(Aik−2) and (3) σ(·) is super-modular.
When Sik−1 ∈ S , we have σ(v(Aik−1)) + σ(Sik ) ≥ σ(v(S)) + σ(Sik ∪ v(Aik−1\S)) due to

the assumption in which σ(v(S)) = σ(v(Aik−1)\v(Aik−1\S)). Since σ(·) is super-modular,
we have σ(v(Aik−1) ∪ Sij) − σ(v(Aik−1)) ≥ σ(v(S) ∪ Sij) − σ(v(S)). In sum, we have
σ(v(Aik\S))+σ(Sij ∪v(S)) ≤ σ(v(Aik−1)∪Sij)+σ(Sik ). In addition we have σ(v(Aik−1)∪
Sij) + σ(Sik ) ≤ σ(v(Aik )) + σ(Sij) because in AM2CP, Sik = argmaxSz∈V\Aik−1

(σ (Aik−1 ∪
Sz)−σ(Sz)). Therefore in both cases, we have σ(v(Aik ))+σ(Sij) ≥ σ(v(Aik\S))+σ(Sij ∪
v(S)). By induction, we have σ(v(Ai|V |−1))+σ(Si|V |) > σ(v(Ai|V |−1\S))+σ(Si|V |∪v(S)) for
any S ⊆ Ai|V |−2 . Therefore, the partition P of each round i in AM2CP has the maximum
objective function value among all the partitions separating the last two sets. Each timewe
compare P with Pmax and merge the last two sets. Therefore Pmax is an optimal partition
for the M2CP problem when the influence propagation function σ(·) is super-modular.

Since AM2CP is an optimal solution if σ(·) is super-modular, we are interested in the
influence propagation models in which the influence propagation function σ(·) is super-
modular. Note that σ(·), in this paper, is different from the influence function defined in
[14]. In this paper σ(X) is the sum of influence propagation within X for every node in
X, i.e., σ(X) = ∑

i∈X σX(i). In [14] σ(X) is the influence propagation of seed set X in the
entire social network. We show the following lemma.

Lemma 1. When the influence propagation model is LT, for any two communities: B ⊂
A, and a node u �∈ A, we have σ(A ∪ {u}) − σ(A) ≥ σ(B ∪ {u}) − σ(B).

Proof. The influence propagation in the LTmodel, as shown in [14], can be simulated as
a random process by flipping coins. Assume we have flipped all the coins in advance, then
an edge is declared to be ‘live’ if the coin flip indicated an influence will be propagated
successfully and it is declared blocked otherwise. A node j is influenced by a seed i if and
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only if there is a path of live edges from i to j. According to this principle, any simple path
from i to j has a certain probability to be a live path. In [15], Chen et al. prove that for
any node i, the influence propagation of i is equal to

∑
sp∈SP(i) w(sp) where SP(i) is the

set of all the simple paths starting from i and w(sp) is the probability that sp is a live path.
Therefore, for a community X and a node i ∈ X, σX(i) = ∑

sp∈SPX(i) w(sp) where SPX(i) is
the set of simple paths starting from i in community X, and σ(X) = ∑

i∈X σX(i) is the sum
of probabilities for all the simple paths in X. Since for any two communities, B ⊂ A, the
set of simple paths in B is a subset of the set of simple paths in A, we have σ(A) ≥ σ(B).
Similarly, we have σ(A ∪ {u}) − σ(A) ≥ σ(B ∪ {u}) − σ(B) because σ(A ∪ {u}) − σ(A)

is the sum of probabilities of simple paths visit u exactly once in community (A ∪ {u}),
and σ(B ∪ {u}) − σ(B) is the sum of probabilities of simple paths visit u exactly once in
community (B∪{u})which is a subset of the former. Therefore, the influence propagation
function σ(·) in the LT model is super-modular.

Theorem 2. AM2CP is an optimal solution for M2CP in the LT model.

Proof. The theorem follows directly from Theorem 1 and Lemma 1.

By Lemma 1, we show that σ(·) is super-modular in the LT model. We next show that
σ(·) in the IC model, however, is not super-modular. The description of IC model can
be found in detail in [14]. Here we just give a counterexample. As an example shown
in Figure 3, the weights are as follows: w(1, 2) = w(1, 3) = w(1, 4) = 1 and w(2, 5) =
w(3, 5) = w(4, 5) = 0.5. According to the edges in Figure 3, nodes 2, 3, and 4 cannot
influence each other and nodes 2, 3, 4, and 5 cannot influence node 1. Let community
A = {1, 2, 3, 5} and community B = {1, 2, 5}. So B is a subset ofA. By direct computing, we
have σ(A∪{4})−σ(A) = 5.375− 3.75 = 1.625 and σ(B∪{4})−σ(B) = 3.75− 2 = 1.75.
Therefore, σ(A∪{4})−σ(A) < σ(B∪{4})−σ(B)which implies σ(·) is not super-modular
in the IC model.

5

432

1

1
.5

.5.5

11

Figure 3 An example of the IC model.
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Hardness

In this subsection, we study the hardness of MKCP. We show that the MKCP problem,
with arbitrary K , isNP-hard in the LT or IC model.

Theorem 3. The MKCP problem isNP-hard in the LT model for general K.

Proof. To prove Theorem 3, we do a polynomial time reduction from the Minimum
K-Cut problem. The input of Minimum K-Cut is a simple graph G(V ,E) without direc-
tions and an integer M. The objective is to find a set of at most M edges which when
deleted, separate the graph into exactly K nonempty components. It is well known that
the Minimum K-Cut problem isNP-hard for general K .
Given a graphG(V ,E) for the Minimum K-Cut problem, we construct a social network

G′(V ′,E′) as follows: (1) For each node i ∈ V , create a node i′ in V ′. (2) For each edge
(i, j) ∈ E, create two edges (i′, j′) and (j′, i′) in E′. (3) Let � denote the maximum degree in
G and n denote the number of nodes in G. Assign weight w(i′, j′) = 1

(n�)2
for all the edges

(i′, j′) ∈ E′.
It is clear that the reduction can be done in polynomial time. We next show that there

is a K-Cut withM edges if and only if there is a K-VDP P with f (P) ≥ 2(|E|−M)

(n�)2
. Assume

there is a K-Cut withM edges, then graph G can be partitioned into K communities with
|E|−M edges within the K communities. Consider the same partition inG′. The one-hop
influence propagation is 2(|E|−M)

(n�)2
. Therefore, we have a K-VDP P with f (P) >

2(|E|−M)

(n�)2

for G′. Conversely, assume there is a K-VDP P for G′ with f (P) ≥ 2(|E|−M)

(n�)2
. It has been

shown in [16] that for any nodes ∀i, j, l ∈ V , the probability of influence propagation
from i to j via node l is equal to w(i, l)w(l, j) in the LT model. Therefore, a single two-hop
influence propagation is 1

(n�)4
. The number of two-hop simple paths for any node i′ ∈ V ′

is no more than �2. Therefore, the sum of two-hop influence propagation for every node
in V ′ is no more than n�2

(n�)4
= 1

n3�2 . By direct computing, we have the sum of (r + 1)-hop
influence propagation is less than the sum of r-hop influence propagation for any node i.
Since the length of simple paths is nomore than n, we have the sum ofmulti-hop influence
propagation for every node in V ′ is less than 1

(n�)2
. This implies that f (P) ≥ 2(|E|−M)

(n�)2

if and only if the one-hop influence propagation is no less than 2(|E|−M)

(n�)2
. Therefore, the

same partition in G is a K-Cut with at mostM edges. In sum, we prove Theorem 3.

Theorem 4. The MKCP problem isNP-hard in the IC model for general K.

Proof. To prove Theorem 4, we can do the same reduction as the one in the proof of
Theorem 3, i.e., assign uniformweight 1

(n�)2
on all the edges. It can be shown by induction

that the sum of (r + 1)-hop influence propagation a node i received is less than the sum
of r-hop influence propagation it received for any node i ∈ V ′ in the IC model. Therefore,
by a similar argument, we have the sum of multi-hop influence propagation received for
every node i ∈ V ′ is less than the edge weight. Therefore, there exists a K-Cut with M
edges if and only if there is a K-VDP P with f (P) ≥ 2(|E|−M)

(n�)2
.

The proofs of Theorems 3 and 4 are nothing but assign specific weights to make the
multi-hop influence propagation negligible. It is intuitive that the general MKCP problem
is even harder when multi-hop influence propagation is not negligible.
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Heuristic algorithm for MKCP

In this subsection, we present two heuristic algorithms for MKCP. As mentioned in
‘Related work’ section in the literature, there are mainly four categories of methods for
community partition: hierarchy-basedmethods, spectrum-basedmethods, density-based
methods, and modularity-based methods. In our point of view, spectrum-based meth-
ods, density-based methods, and modularity-based methods are not suitable for MKCP.
In spectrum-based methods, communities are partitioned by studying the adjacency
matrix which cannot reflect the information of influence propagation. In density-based
methods, communities are defined as areas of higher density than the remainder of the
data set. Therefore, this category of methods requires the location knowledge of nodes
which cannot be formulated in our MKCP problem. In modularity-based methods, the
objective of community partition is only to maximize the global modularity score. There-
fore, all the three categories of methods cannot be applied for MKCP and we focus on
hierarchy-based methods.
Generally speaking, hierarchical community partition is a method to build a hierarchy

of communities. There are two strategies for hierarchical partition. One is split and the
other is merge. Split is a top down approach, i.e., all the nodes start within one commu-
nity, and splits are performed on one of the communities recursively. Conversely, merge
is a bottom up approach, i.e., each node starts in a distinct community, and pairs of com-
munities are merged recursively as a new community. For typical hierarchical community
partition problems, n− 1 splits (or respectively merges) have to be done to build a hierar-
chy where n is the number of nodes. But for theMKCP problem, we need only K−1 splits
or n−K merges respectively to obtain a K-VDP. We will determine the splits and merges
in a greedy manner. The Split algorithm runs by calling AM2CP recursively, and each
time it partitions a community X into two communities X1 and X2 with the minimum
value of σ(X) − (σ (X1) + σ(X2)). The pseudo-code is given in Algorithm 2. The Merge
algorithm runs by randomly selecting a communityX each time and finding another com-
munity Y to maximize the value of σ(X ∪ Y ) − (σ (X) + σ(Y )). The pseudo-code is given
in Algorithm 3.

Algorithm 2 Split algorithm for MKCP (SAMKCP)
Input: Given a graph G as a social network, an influence propagation model I and an

integer K .
Output: a K-VDP for G.
1: let P ← {V } (P holds the current communities);
2: while |P| < K do
3: let Cz1 and Cz2 ← argminCz∈P(σ (Cz)−(σ (Cz1)+σ(Cz2))) subject to Cz1 ∩Cz2 = ∅

and Cz1 ∪ Cz2 = Cz;
4: put Cz1 and Cz2 into P and delete Cz from P ;
5: end while
6: return P ;

In the general case, the running time of a split with an exhaustive search requires expo-
nential time. However, when σ(·) is super-modular, we can apply AM2CP to determine
Cz1 and Cz2 for each Cz which requires only O(|Cz|3τ) time. Now let us consider the
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computational complexity of SAMKCP (Algorithm 2). To avoid duplicate computations,
we can keep the optimal partition for each community in P and apply AM2CP on both
Cz1 and Cz2 at step 4 to obtain their optimal partitions. Then the overall running time of
SAMKCP isO(Kn3τ) when σ(·) is super-modular.

Algorithm 3Merge algorithm for MKCP (MAMKCP)
Input: Given a graph G as a social network, an influence propagation model I and an

integer K .
Output: a K-VDP for G.
1: let P ← {C1,C2, . . . ,Cn} where each Ci = {i} contains a single node in G;
2: while |P| > K do
3: select a community Ci ∈ P randomly;
4: let Cj ← argmaxCj∈P\Ci(σ (Ci ∪ Cj) − σ(Ci) − σ(Cj));
5: let Ci,j ← Ci ∪ Cj;
6: put Ci,j into P and delete Ci and Cj from P ;
7: end while
8: return P ;

In step 4 of MAMKCP (Algorithm 3), in order to maximize the marginal gain, we have
to compute σ(Ci ∪ Cj) for all the communities Cj ∈ P , thus, MAMKCP requiresO(n2τ)

time to obtain a K-VDP when n is large and K is small. The computational complexity of
SAMKCP is even higher. Therefore, they may be not suitable for large social networks.
To improve the running time performance, here we provide an alternative merge strategy
for implementing MAMKCP. Instead of merging the communities with the maximum
marginal gain, in step 4 we estimate the influence propagation of Ci through the entire
graph, i.e., σV (Ci), and then compute the average influence received by Cj from Ci, which

is defined as
∑

l∈Ci
∑

r∈Cj pV (l,r)
|Cj| , for all the communities Cj �= Ci. This can be done by

simply accumulating pV (l, r) for each community Cj when we computing σV (Ci). Finally,
we merge Ci with a community with the highest average received influence. In such a way,
a merge can be done in O(τ ) time. The overall running time of MAMKCP is onlyO(nτ).
According to the complexity analysis, MAMKCP is better than SAMKCP in terms

of the running time performance. For some large social networks, we can apply the
simplified version of MAMKCP which requires only linear time. In terms of the par-
tition quality, intuitively, SAMKCP is better than MAMKCP because it considers the
global optimization (top-down approach) each time and MAMKCP considers the local
optimization (bottom-up approach). We will demonstrate their performance through
simulation in the next section.

Results and discussion
In this section, we carry out experiments over real-world social networks. The influence
propagation is based on the well-known LT and IC models, and we run MC simulation to
estimate the influential propagation function σ(·). We begin by describing the algorithms,
data sets, and experimental settings in ‘Algorithm,’ ‘Data set,’ and ‘Experiment setting’
sections, respectively, and then discuss the experimental results in ‘Experiment result’
section.
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Algorithm

In addition to the proposed algorithms, (SAMKCP, Algorithm 2) and (MAMKCP,
Algorithm 3), we also implement two classic community partition algorithms for com-
parison purposes. One is a Modularity-based Algorithm (MODUA) proposed in [47] and
the other is a Spectrum-based Algorithm (SPECA) proposed in [48]. Given a graph G,
MODUA finds communities by optimizing the modularity score locally and it terminates
until a maximal modularity score is obtained. Therefore,MODUA cannot partitionG into
a given number K of communities. While SPECA is flexible for the number K of com-
munities, it partitions a graph iteratively into K communities by minimizing the general
cut each time according to the adjacent matrix. To the best of our knowledge, we do not
find any algorithm which is designed for disjoint community partition with the objective
of maximizing the influence propagation within each community. In addition, we do not
find any density-based algorithm that can be applied to our MKCP problem.

Data set

We conduct simulation on three real-world social networks as follow: (1) NetHEPT: taken
from the co-authorship network in ‘High Energy Physics (Theory)’ section (from 1991
to 2003) of arXiv (http://arXiv.org). The nodes in NetHEPT denote the authors, and the
edges represent the co-authorship. HetHEPT has 15,229 nodes and 31,376 edges. (2)
NetEmail: taken from the email interchange network in University of Rovira i Virgili (Tar-
ragona). The nodes in NetEmail denote the members in the university, and the edges
represent email interchanges among the members (the data set is available at http://deim.
urv.cat/~alephsys/data.php). NetEmail has 1,133 nodes and 10,902 edges. (3) NetCLUB:
taken from the relationship network in Zachary’s Karate club network, which is described
by Wayne Zachary in [49]. NetCLUB has 34 nodes and 78 edges.

Experiment setting

In this study, we assume that the influential degree from nodes i to j depends on the
closeness of their relationship and the probability p(i) for node i where p(i), as defined in
Problem description’ section, is the probability that node i would produce an influence
propagation or would share knowledge with others. We apply the method proposed in
[14] to estimate the closeness c(i, j) between i and j. Let degin(j) denote the in-degree of
node j, then c(i, j) = e(i, j)/ degin(j), where e(i, j) denotes the number of edges from i to j.
Due to the lack of ground truth, we independently assign uniform random 0.1%, 1%, and
10% to sharing probabilities p(i) for all the nodes i. Then we assume ∀(i, j) ∈ E, i has a
chance of w(i, j) = p(i)e(i,j)

degin(j)
to influence j.

Experiment result

We first evaluate the performance of our algorithms onNetCLUB. In algorithm SAMKCP
or MAMKCP, σ(·) is computed by running MC simulation 1,000 times and get the aver-
age. Although AM2CP is not an optimal solution in the IC model, we still apply it in
the splits in the simulation of IC model to improve the computational efficiency. Since
MODUA is not flexible for the number of communities, we first apply MODUA to get a
partition of NetCLUB and then apply our algorithms and SPECA to partition NetCLUB
into the same number of communities. Figures 4 and 5 show the experimental results for
the LT and IC models respectively. NetCLUB is partitioned into four communities. In

http://arXiv.org
http://deim.urv.cat/~alephsys/data.php
http://deim.urv.cat/~alephsys/data.php
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Figure 4 Experimental results on NetCLUB in LT model.

terms of influence propagation, both SAMKCP and MAMKCP are better than MODUA
and SPECA. SAMKCP outperforms MODUA and SPECA by about 40% and 70% respec-
tively. In addition, from Figures 4 and 5, we can see the influence propagation of each
partition is increasing gradually and linearly when the times of simulation increase, which
reflects the reliability of experimental results.
In the second experiment, we compare MAMKCP with MODUA and SPECA on

NetEmail. SAMKCP is removed due to its high computational complexity. Figures 6
and 7 show the experimental results. The network is partitioned into 88 communities.
MAMKCP has the maximum sum of influence propagation. The performance of SPECA
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Figure 5 Experimental results on NetCLUB in IC model.
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Figure 6 Experimental results on NetEmail in LT model.

is poor compared with MAMKCP and MODUA. The influence propagation within the
partition of SPECA is about two times less than that of MAMKCP and about one time
less than that of MODUA.
In the last experiment, we compareMAMKCPwithMODUA and SPECA onNetHEPT.

Since this network has 15,229 nodes and 31,376 edges, we use the simplified version
of MAMKCP. Figures 8 and 9 show the experimental results. The network is parti-
tioned into 1,820 communities. MAMKCP is still better than MODUA and SPECA, but
the gap between MAMKCP and MODUA in this experiment is less than that in the
second experiment. This agrees with our intuition in that simplified MAMKCP has a
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Figure 7 Experimental results on NetEmail in IC model.



Lu et al. Computational Social Networks 2014, 1:1 Page 16 of 18
http://www.computationalsocialnetworks.com/content/1/1/1

0 200 400 600 800 1000
0

200000

400000

600000

800000

1000000

1200000

In
flu

en
ce

 P
ro

pa
ga

tio
n

Times of MC Simulation

 SPECA
 MODUA
 MAMKCP

Figure 8 Experimental results on NetHEPT in LT model.

lower computational complexity but also has some loss in performance. According to
the three experimental results, we can conclude that the proposed algorithms are better
than modularity-based and spectrum-based methods for finding communities in terms
of influence propagation.

Conclusions
Community partition and influence propagation are important problems in social net-
works. In this paper, we investigate the Maximum K-Community Partition (MKCP)
problem to maximize the sum of influence propagation within each community. We ana-
lyze the problem both theoretically and practically. Especially we show that the M2CP
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Figure 9 Experimental results on NetHEPT in IC model.
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problem can be solved efficiently for a class of influence propagation models. In addi-
tion, we prove that the MKCP problem isNP-hard in the well-known LT and IC models
for general K . We also develop two heuristic algorithms and demonstrate their efficiency
through simulation on real-world social networks.
We believe this study is useful for the influence propagation problems. In future

research, we plan to extend our work to the influence maximization problem to select
the most influential nodes based on influence-based communities. Furthermore, we will
study potential applications of influence-based communities in social networks.
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