
Influence Blocking Maximization in Social Networks

under the Competitive Linear Threshold Model

Xinran He† Guojie Song†∗ Wei Chen‡ Qingye Jiang§

† Ministry of Education Key Laboratory of Machine Perception, Peking University, China

{xinranhe,gjsong}@pku.edu.cn
‡ Microsoft Research Asia, China, weic@microsoft.com
§ Columbia University, U.S.A., qj2116@columbia.edu

Abstract

In many real-world situations, different and often opposite opin-
ions, innovations, or products are competing with one another for
their social influence in a networked society. In this paper, we
study competitive influence propagation in social networks under
the competitive linear threshold (CLT) model, an extension to the
classic linear threshold model. Under the CLT model, we focus on
the problem that one entity tries to block the influence propagation
of its competing entity as much as possible by strategically select-
ing a number of seed nodes that could initiate its own influence
propagation. We call this problem the influence blocking maxi-
mization (IBM) problem. We prove that the objective function of
IBM in the CLT model is submodular, and thus a greedy algorithm
could achieve 1−1/e approximation ratio. However, the greedy al-
gorithm requires Monte-Carlo simulations of competitive influence
propagation, which makes the algorithm not efficient. We design
an efficient algorithm CLDAG, which utilizes the properties of the
CLT model, to address this issue. We conduct extensive simulations
of CLDAG, the greedy algorithm, and other baseline algorithms on
real-world and synthetic datasets. Our results show that CLDAG is
able to provide best accuracy in par with the greedy algorithm and
often better than other algorithms, while it is two orders of magni-
tude faster than the greedy algorithm.

Keywords: influence blocking maximization, competitive linear
threshold model, social networks

1 Introduction

With the increasing popularity of online social and infor-

mation networks such as Facebook, Twitter, LinkedIn, etc.,

many researchers have studied diffusion phenomenon in so-

cial networks, which includes the diffusion of news, ideas,

innovations, adoption of new products, etc. We generally re-

fer to such diffusions as influence diffusion or propagation.

One topic in influence diffusion that has been extensively

studied is influence maximization [14, 15, 16, 19, 6, 5, 25, 7].

Influence maximization is the problem of selecting a small

set of seed nodes in a social network, such that its overall in-

fluence coverage is maximized, under certain influence dif-

fusion models. Popular influence diffusion models include

the independent cascade (IC) model and the linear thresh-

old (LT) model, which was first summarized by Kempe et al.

in [14] based on prior research in social network analysis and

∗Corresponding author. Email: gjsong@pku.edu.cn

particle physics. Both IC and LT models are stochastic mod-

els characterizing how influence are propagated throughout

the network starting from the initial seed nodes.

However, all of the above research works only study the

diffusion of a single idea in the social networks. In reality,

it is often the case that different and often opposite informa-

tion, ideas and innovations are competing for their influence

in the social networks. Such competing influence diffusion

could range from two competing companies engaging in two

marketing campaigns trying to grab people’s attentions, or

two political candidates of the opposing parties trying to in-

fluence their voters, to government authorities trying to in-

ject truth information to fight with rumors spreading in the

public, and so on.

Motivated by the above scenarios, several recent studies

have looked into competitive influence diffusion and its cor-

responding influence maximization problems [1, 17, 21, 24,

2, 3, 4]. Most of them propose some extensions to the exist-

ing influence diffusion models to incorporate competitive in-

fluence diffusion, and then either focus on the influence max-

imization problem for one of the competing parties, or study

the game theoretic aspects of competitive influence diffusion

(see Section 2 for more details on these related works). In

this paper, we concentrate on the problem of how to block

the influence diffusion of an opposing party as much as pos-

sible. For example, when there is a negative rumor spread-

ing in the social network about a company, the company may

want to react quickly by selecting seed nodes to inject posi-

tive opinions about the company to fight against the negative

rumor. Similar situations could occur when a political candi-

date tries to stop a negative rumor about him or her, or when

government or public officials try to stop erroneous rumors

about public health and safety, terrorist threat, etc. We call

the problem of selecting positive seed nodes in a social net-

work to minimize the effect of negative influence diffusion,

or to maximize the blocking effect on negative influence, the

influence blocking maximization (IBM) problem.

We study the IBM problem under a competitive linear

threshold (CLT) model, which we extend naturally from the

classic linear threshold model and is similar to a model pro-

posed independently in [2]. We prove that the objective func-

tion of IBM under the CLT model is monotone and submod-

ular, which means a standard greedy algorithm can achieve

an approximation ratio of 1 − 1/e − ǫ to the optimal solu-

tion, where ǫ is any positive number. However, the greedy

algorithm requires Monte-Carlo simulations of competitive

influence diffusion, which becomes very slow for large net-

works, if we want to keep ǫ above small. For example, in

our simulation, for a network with 6.4k nodes, the greedy

algorithm takes more than 8 hours to finish. This is espe-

cially problematic for the IBM problem, since blocking in-

fluence diffusion usually requires very swift decisions before

the negative influence propagates too far. To address the effi-

ciency issue, we utilize the efficient computation property of

the LT model for directed acyclic graphs (DAGs), and design

an efficient heuristic CLDAG for the IBM problem under the

CLT model. Because of the complex interaction in the com-

petitive influence diffusion under the CLT model, we need

a carefully designed dynamic programming method for in-

fluence computation in our CLDAG algorithm. To test the

efficiency and effectiveness of our CLDAG algorithm, we

conduct extensive simulations on three real-world networks

as well as synthetic networks. We compare the performance

of CLDAG with the greedy algorithm and other heuristic

algorithms. Our results show that (a) comparing with the

greedy algorithm, our CLDAG algorithm achieves matching

influence blocking effect while it runs two orders of magni-

tude faster; and (b) comparing with other heuristics such as

degree-based heuristics, our algorithm consistently performs

well and is often better than the other heuristics with a sig-

nificant margin.

To the best of our knowledge, our work is the first

to study the IBM problem under the competitive linear

threshold model. The study closest to our work is the one

in [3], but they study the IBM problem under an extension

of the independent cascade model, and due to the issue of

non-submodularity, their study only works for a restricted

extention to the IC model that is less natural. Moreover, their

work does not address the efficiency issue, which is vital to

influence blocking maximization.

The rest of the paper is organized as follows. We discuss

related works in Section 2. In Section 3, we specify the

competitive linear threshold model. In Section 4, we define

the influence blocking maximization problem, show that it is

NP-hard, and prove its submodularity under the CLT model.

We describe our CLDAG algorithm in Section 5, and then

provide our experimental evaluation results in Section 6. We

conclude the paper with discussions in Section 7. The full

version with complete proofs and the pseudocode of CLDAG

algorithm can be found in [12].

2 Related Work

Independent cascade model and linear threshold model are

two extensively studied influence diffusions models origi-

nally summarized by Kempe et al. [14], based on earlier

works of [11, 23, 10]. Kempe et al. prove that the gen-

eralized versions of these two models are equivalent [14].

Based on the IC and LT model, Kempe et.al [14, 15] pro-

pose a greedy algorithm to solve the influence maximization

problem (brought about by Richardson [22]) to maximize the

spreading of a single piece of ideas, innovations, etc. under

these two models. Many follow-up studies propose alter-

native heuristics and try to solve the influence maximization

problem more efficiently [16, 19, 6, 5, 7, 25]. In terms of effi-

cient algorithm design, our work follows the idea in [5, 7] of

finding efficient local graph structures to speed up the com-

putation. In particular, our CLDAG algorithm is similar to

the LDAG algorithm of [7], which is also based on the DAG

structure, but our CLDAG algorithm is novel in dealing with

competitive influence diffusion using the dynamic program-

ming method.

Recently, there are a number of studies on competitive

influence diffusion [1, 17, 21, 24, 2, 3, 4]. Bharathi et al,

extend the IC model to model competitive influence [1], but

they only provide a polynomial approximation algorithm for

trees. Kostka et al. study competitive rumor spreading [17]

on a more restricted model than IC and LT, and focused on

showing the hardness of computing the optimal solution for

the two competing parties. Pathak et al. study a model of

multiple cascades [21], which is an extension of a different

diffusion model called the voter model [8, 13], even though

they claim it to be a generalization of the linear threshold

model. They only study model dynamics and do not address

the influence maximization problem. Trpevski et al. [24]

propose another competitive rumor spreading model based

on the epidemic model of SIS and study the dynamics in

several classes of graphs, and they do not address the issue

of influence maximization either. Borodin et.al [2] extend

the LT model in several different ways to model competitive

influence diffusion, one of which is essentially our CLT

model except for a different tie-breaking rule. However,

they only study the influence maximization problem, not

the influence blocking maximization. In particular, they

show that influence maximization in the CLT model is not

submodular, which is an interesting contrast to our result

that influence blocking maximization under the CLT model

is submodular. We provide some reason in Section 7 on why

there is such a subtle difference. The work of Budak et al. [3]

is the only one we found that studies influence blocking

maximization (they call it eventual influence limitation),

but they study this problem under an extension of the IC

model. They show that the general extension of the IC

model in which positive influence and negative influence has

a separate set of parameters (same as the case in our CLT

model) is not submodular, and thus to achieve submodularity

they have to restrict the model such that positive propagation

probability is 1 or is the same as negative propagation

probability, which limits the expressiveness of the model.

Moreover, they only study the greedy algorithm and some

simple heuristics, and do not provide efficient and scalable

solution that maintains good accuracy at the same time.

Finally the work of [4] studies negative opinions emerging

from poor product or service qualities, not generated by

competitors. They study positive influence maximization

under an extension to the IC model, and thus different from

our study on blocking negative influence under the extension

of the LT model. The efficient influence maximization

algorithm in [4] also uses dynamic programming, which

bears some resemblance to our work.

3 Competitive Linear Threshold Model

Kempe et al. proposed the linear threshold model in [14]

as a stochastic model to address information cascade in a

network. In this model, a social network is considered

as a directed graph G = (V,E), where V is the set

of vertices representing individuals and E is the set of

directed edges representing influence relationships among

individuals. Each edge (u, v) ∈ E has a weight wuv ≥
0, indicating the importance of u in influencing v. For

convenience, for any (u, v) 6∈ E, wuv = 0. For each

v ∈ V , we have
∑

u∈V wuv ≤ 1. Each vertex v picks an

independent threshold θv uniformly at random from [0, 1].
Each vertex is either inactive or active, and once it is active, it

stays active forever. The diffusion process unfolds in discrete

time steps. At step 0 a seed set S ⊆ V is activated while all

other vertices are inactive. At any later step t > 0, a vertex

v is activated if and only if the total weight of its active in-

neighbors exceeds its threshold θv , that is
∑

u∈St−1
wuv ≥

θv , where St−1 ⊆ V is the set of active vertices by time t−1,

with S0 = S.

We now extend the LT model to incorporate competitive

influence diffusion. The idea is that we allow each vertex

to be positively activated or negatively activated, each of

which is determined by concurrent positive diffusion and

negative diffusion, respectively. In the case that a vertex is

both positively activated and negatively activated in the same

step, then negative activation dominates the result.

More precisely, we define competitive linear threshold

(CLT) model as an extension to the LT model in the follow-

ing way. Each vertex has three states, inactive, +active, and

-active, and it does not change state once it becomes +ac-

tive or -active. Each edge (u, v) has two weights, positive

weight w+
uv and negative weight w−

uv . We can also think of

it as (u, v) splitting into two virtual edges, one positive edge

propagating positive influence and one negative edge propa-

gating negative influence. Each vertex v picks two indepen-

dent thresholds uniformly at random from [0, 1], one positive

threshold θ+v and one negative threshold θ−v . At step 0, there

are two disjoint seed sets, the positive seed set P0 and the

negative seed set N0. At each step t, positive influence and

negative influence propagate independently as in the origi-

nal LT model, using positive weights/thresholds and negative

weights/thresholds, respectively. If a vertex v is activated

only by positive diffusion (or resp. negative diffusion), then

v becomes +active (or resp. -active). If in step t v is activated

by both positive diffusion and negative diffusion, then nega-

tive diffusion dominates and v becomes -active. The negative

dominance rule reflects the negativity bias phenomenon well

studied in social psychology, and matches the common sense

that rumors are usually hard to fight with.

The CLT model defined here is essentially the same as

the separate threshold model of [2], except that we use the

negative dominance as the tie-breaking rule, while they use

the random rule — +active and -active status are picked

uniformly at random. We comment that the difference in

the tie-breaking rule is not essential for our study: the

submodularity property still holds and our algorithm can be

properly adapted for the random tie-breaking rule.

4 Influence Blocking Maximization Problem

In this section, we first define the influence blocking maxi-

mization (IBM) problem, then show that IBM under the CLT

model is NP-hard, and finally prove that the objective func-

tion of IBM is monotone and submodular, which leads to a

greedy approximation algorithm.

4.1 Problem definition. Informally, the IBM problem is

an optimization problem in which given a graph G = (V,E),
its positive and negative edge weights, a negative seed set

N0, and a positive integer k, we want to find a positive

seed set S of size at most k such that the expected number

of negatively activated nodes is minimized, or equivalently,

the reduction in the number of negatively activated nodes is

maximized.

More precisely, let ~θ+ and ~θ− be the vector of positive

thresholds and negative thresholds, respectively, for all ver-

tices in G. According to the CLT model, they are drawn from

the probability space [0, 1]|V | uniformly at random. When
~θ+ and ~θ− are fixed, all randomness in the CLT model is

fixed. Let IBS (S,N0 | ~θ+, ~θ−) be the set of nodes v in G

such that under thresholds ~θ+ and ~θ−, v is negatively acti-

vated if N0 is the negative seed set and positive seed set is

empty, while v is not negatively activated if N0 is the nega-

tive seed set and S is the positive seed set. Thus this set rep-

resents the set of nodes that have been blocked from negative

influence, and IBS stands for influence blocking set. Since

we always use N0 as the negative seed set, we will omit N0

from the notation for simplicity. When the context is clear,

we may also omit ~θ+ and ~θ− and only use IBS (S) to repre-

sent the influence blocking set. We define negative influence

reduction (NIR) of a positive seed set S, denoted as σNIR(S),

to be the expected value of the size of IBS (S | ~θ+, ~θ−), with

expectation taken over all ~θ+’s and ~θ−’s, that is,

σNIR(S) = E~θ+,~θ−
(|IBS (S | ~θ+, ~θ−)|).

Then the influence blocking maximization is the problem

of finding a positive seed set S of size at most k that

maximizes σNIR(S), i.e., computing

P ∗ = arg max
|S|≤k

σNIR(S).

We first show that the exact problem of IBM is NP-hard.

THEOREM 4.1. Under the CLT model, IBM problem is NP-

hard.

4.2 Submodularity of σNIR(S) and the greedy approx-

imation algorithm. To overcome the NP-hardness result of

Theorem 4.1, we look for approximation algorithms. The

submodularity of set function σNIR(S) provides a good way

to obtain an apporiximation algorithm for the IBM prob-

lem. We say that a set function f(S) with domain 2V is

submodular if for all S ⊆ T ⊆ V , and x 6∈ T , we have

f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T). Intuitively,

submodularity of f means f has the diminishing marginal

return property. Moreover, we say that f is monotone if for

all S ⊆ T ⊆ V , f(S) ≤ f(T).
We now show that σNIR(S) is monotone and submod-

ular. We follow the general methodology as in [14] for the

proof, but our proof is more involved because of the com-

plexity of our CLT model and the IBM problem. We first

construct an equivalent random process, and then use this

random process to prove the result.

From the original graph G = (V,E) with positive and

negative weights, we construct a random live-path graph GX

as follows. For each v ∈ V , we randomly pick one positive

in-edge (u, v) with probability w+
uv , and with probability

1 −
∑

u∈V w+
uv no positive in-edge is selected; we also

randomly pick one negative in-edge (u, v) with probability

w−
uv , and with probability 1−

∑
u∈V w−

uv no negative in-edge

is selected. Let G+ be the subgraph of GX consisting of only

positive edges, and let G− be the subgraph of GX consisting

of only negative edges. Given a positive seed set P0 and a

negative seed set N0, define dG+(P0, v) to be the shortest

graph distance from any node in P0 to v only through the

positive edges, and dG−(N0, v) to be the shortest graph

distance from any node in N0 to v only through the negative

edges. The above distance could be ∞ if no such path exists.

Then in the random live-path graph, we say a node v is

+active if dG+(P0, v) < ∞ and dG+(P0, v) < dG−(N0, v),
and v is -active if dG−(N0, v) < ∞ and dG−(N0, v) ≤
dG+(P0, v). The following lemma shows that the positive

and negative activation sets generated by the above random

process is equivalent to the corresponding one generated by

the CLT model.

LEMMA 4.1. For a given positive seed set P0 and negative

seed set N0, the distribution over +active sets and -active

sets is identical in the following two definitions.
1. distribution obtained by running CLT process,
2. distribution obtained from reachability defined above in

the live-path graph.

Proof. The activation process under the CLT model consists

of several iterations. In each iteration, some nodes change

from inactive to +active or -active. Thus we first define A+
t

to be the set of +active nodes at the end of iteration t and

A−
t as the set of -active nodes at the end of iteration t, for

t = 0, 1, 2.... Here we consider a node v which has not been

activated by the end of iteration t, namely v 6∈ A+
t ∪ A−

t .

Thus the probability v becomes +active in iteration t + 1
equals to the chance that the positive influence weights

in A+
t \A

+
t−1 push it over the positive threshold while the

negative influence weights is still less than the negative

threshold. The above probability under the condition that

neither node v’s negative nor positive threshold is exceeded

already by step t is:

(
∑

u∈A
+

t
\A+

t−1

w+
uv)(1−

∑
u∈A

−

t
\A−

t−1

w−
uv)

(1−
∑

u∈A
+

t−1

w+
uv)(1−

∑
u∈A

−

t−1

w−
uv)

.

Similarly we can get the probability that node v becomes

-active in iteration t + 1 given than node v is inactive from

iteration 0 to t. The probability is:
∑

u∈A
−

t
\A−

t−1

w−
uv

(1−
∑

u∈A
+

t−1

w+
uv)(1−

∑
u∈A

−

t−1

w−
uv)

.

On the other hand, we consider the above discussed

probability when using the random live-path graph. We start

from seed set P0 and N0 and called them B+
0 and B−

0 ,

respectively. For each t = 1, 2, . . ., we define B−
t to be

the set containing any v 6∈ B+
t−1 ∪ B−

t−1 such that v has one

in-edge from some node in B−
t−1; we define B+

t to be the set

containing any v 6∈ B+
t−1∪B−

t−1 such that v has one in-edge

from some node in B+
t−1 but no in-edge from any node in

B−
t−1.

By the definition of the random live-path graph, the

probability that a node v is in B+
t+1 \ B+

t conditioned on

that v is not in B+
t ∪B−

t is

(
∑

u∈B
+

t
\B+

t−1

w+
uv)(1−

∑
u∈B

−

t
\B−

t−1

w−
uv)

(1−
∑

u∈B
+

t−1

w+
uv)(1−

∑
u∈B

−

t−1

w−
uv)

.

Similarly, the probability that a node v is in B−
t+1 \ B−

t

conditioned on that v is not in B+
t ∪B−

t is
∑

u∈B
−

t
\B−

t−1

w−
uv

(1−
∑

u∈B
+

t−1

w+
uv)(1−

∑
u∈B

−

t−1

w−
uv)

.

The above conditional probabilities are the same as

derived from the CLT model. Since A+
0 = B+

0 and

A−
0 = B−

0 , by induction over the iterations, we reach at the

conclusion that the random live-path graph model produces

the same distribution over +active and -active sets as the CLT

model. �

With the equivalence shown in Lemma 4.1, we now

focus on showing the monotonicity and submodularity of

negative influence reduction in the random live-path graph

model. With a bit of abuse in notation, given a live-path

graph GX and a negative seed set N0, we also use IBS (S)
to denote the set of nodes in V which would be -active

if the positive seed set is empty but is not -active if the

positive seed set is S. Then the negative influence reduction

σNIR(S) = EGX
(|IBS (S)|).

Given a set S and a node u 6∈ S, we say that there is

a unique path from S to u if there exists some path from a

node in S to u, and for any two paths from any two nodes

in S to u, one path must be a sub-path of the other. In

addition, whenever we refer to the unique path from S to u,

we mean the unique shortest path from any node in S to u.

The following lemma shows a simple yet important property

of the live-path graph that leads to the submodularity proof.

LEMMA 4.2. In a live-path graph GX , for any node v, there

is a unique positive path from some node in the positive seed

set S to v, if dG+(S, v) < ∞, and there is a unique negative

path from some node in the negative seed set N0 to v, if

dG−(N0, v) < ∞.

Then we use next two lemmas to give the sufficient and

necessary conditions for v ∈ IBS (S) and v ∈ IBS (T ∪
{u})\IBS (T) in a live-path graph GX .

LEMMA 4.3. The sufficient and necessary condition for v ∈
IBS (S) is:

1. There exist a unique negative path in G− from node set

N0 to v, namely dG−(N0, v) < ∞, and

2. there exists at least one node u in the unique negative

path, such that dG+(S, u) < dG−(N0, u).

LEMMA 4.4. The sufficient and necessary condition for u ∈
IBS (T ∪ {v})\IBS (T) is:

1. There exists a unique negative path from N0 to u,

2. there exists at least one node w on the unique negative

path from N0 to u, such that dG+(T ∪ {v}, w) <
dG−(N0, w), and

3. for all node t on the unique negative path from N0 to u,

there holds that dG+(T, t) ≥ dG−(N0, t).

LEMMA 4.5. The cardinality set function |IBS (S)| for a

live-path graph GX is monotone and submodular.

Proof. We first prove the monotonicity of |IBS (S)|, namely

for any node u ∈ V \(S ∪ N0) and subset S ⊆ V ,

|IBS (S)| ≤ |IBS (S ∪ {u})|. We prove the result by

showing that IBS (S) ⊆ IBS (S ∪ {u}). Consider any node

v ∈ IBS (S). By Lemma 4.3, we have dG−(N0, v) < ∞,

and there exists a node w in the unique negative path from

N0 to v such that dG+(S,w) < dG−(N0, w). It is also

clear that dG+(S ∪ {u}, w) ≤ dG+(S,w). Thus, we have

dG+(S ∪ {u}, w) < dG−(N0, w), and by Lemma 4.3, v ∈
IBS (S ∪ {u}).

We then prove submodularity of |IBS (S)| by showing:

For any subset S ⊆ V, T ⊆ V, S ⊆ T and v ∈ V \(T ∪N0),

IBS (T ∪ {v})\IBS (T) ⊆ IBS (S ∪ {v})\IBS (S).

Given any u ∈ IBS (T ∪ {v})\IBS (T), we prove that

u ∈ IBS (S ∪ {v})\IBS (S) by showing all three conditions

in Lemma 4.4 are satisfied. The satisfaction of 1 is obvious,

since dG−(N0, u) doesn’t change. As for condition 2, we

know that there exists a node w on the unique negative path

from N0 to u, dG+(T ∪ {v}, w) < dG−(N0, w) and for all

node t on path from N0 to u, dG+(T, t) ≥ dG−(N0, t). Then

for node w, dG+(T ∪{v}, w) < dG−(N0, w) ≤ dG+(T,w),
which implies that dG+(T ∪ {v}, w) = dG+(v, w). Accord-

ing to Lemma 4.2, the positive influence can reach node w
only in the unique positive path from v to w. Thus dG+(S ∪
{v}, w) = dG+(v, w) = dG+(T ∪ {v}, w) < dG−(N0, w).
Then consider condition 3. For any node t in the unique neg-

ative path from N0 to u, dG+(T, t) ≥ dG−(N0, t). Since

S ⊆ T , it is easy to verify that dG+(S, t) ≥ dG+(T, t).
Therefore, dG+(S, t) ≥ dG−(N0, t) and condition 3 also

holds. �

THEOREM 4.2. For the CLT model, σNIR(S) is monotone

and submodular.

Proof. By Lemma 4.1, we know that the CLT model

is equivalent to the random live-path graph model. By

Lemma 4.5, we know that for each live-path graph, the size

of the influence blocking set is monotone and submodular.

Since σNIR(S) = EGX
(|IBS (S)|) and any convex com-

binations of monotone and submodular functions are still

monotone and submodular, we know that σNIR(S) is mono-

tone and submodular. �

We have shown that the influence blocking maximiza-

tion problem under CLT model is monotone and submodular.

Moreover, we have σNIR(∅) = 0. Then by the famous result

in [20], the greedy algorithm given in Algorithm 1 achieves

1 − 1/e approximation of the optimal solution. The algo-

rithm simply selects seed nodes one by one, and each time

it always selects the node that provides the largest marginal

gain to the negative influence reduction.

However, the greedy algorithm requires the evaluation

of σNIR(S), which cannot be done efficiently. The standard

Algorithm 1 Greedy(k,N0)

1: initialize S = ∅
2: for i = 1 to k do

3: select u = argmaxv∈V \(N0∪S)(σNIR(S ∪ {v}))
4: S = S ∪ {u}
5: end for

6: return S

way of using Monte-Carlo simulations to estimate σNIR(S)
is slow, especially when we need to simulate the interfering

propagation of competing influences. Even with powerful

optimization method such as the lazy forward optimization

of [18] or more advanced approach in [6], greedy algorithm

still takes unacceptable long time for large graphs of more

than 10k nodes. We address this efficiency issue in the next

section with our new algorithm CLDAG.

5 CLDAG Algorithm for the IBM Problem

Motivated by the extremely low efficiency of greedy al-

gorithm, we try to tackle this problem with an innovative

heuristic approach proposed by Chen et al. in [5, 7]. This

heuristic is characterized (a) by restricting influence compu-

tation of a node v to its local area to reduce computation cost;

and (b) by carefully selecting a local graph structure for v to

allow efficient and accurate influence computation for v un-

der this structure. For the LT model, Chen et al. use a local

directed acyclic graph (LDAG) structure [7], because it al-

lows linear computation of influence in a LDAG, as well as

efficient construction of LDAGs using an algorithm similar

in style to the Dijkstra’s shortest path algorithm. We repeat

the LDAG construction algorithm of [7] in our Algorithm 2

for completeness. We use Nin(x) to denote the set of in-

neighbors of node x and wuv for the weight of edge ~uv. The

θ in the algorithm is a threshold from 0 to 1 controlling the

size of the LDAG — the smaller the θ, the larger the LDAG.

The algorithm includes a node x only if its influence to v
through the LDAG edges are at least θ. The key update step

in line 7 is based on the important linear relationship of ac-

tivation probabilities in DAG structures shown in [7], and

repeated below:

(5.1) ap(x) =
∑

u∈Nin(x)

wux · ap(u),

where ap(x) is the activation probability of node x when a

seed set is fixed.

However, for the CLT model, negative and positive in-

fluence are propagated concurrently in the network and in-

terfere with each other. Thus we need to adjust our LDAG

construction and influence computation for the CLT model.

First, for each node v, we use Algorithm 2 to construct

two LDAGs, LDAG+(v) and LDAG−(v), using positive

weights and negative weights respectively. Second, we

Algorithm 2 Find-LDAG(G,v,θ),compute LDAG for v with

threshold θ
1: X = ∅;Y = ∅;∀v ∈ V, Inf (u, v) = 0;Inf (v, v) = 1
2: while maxv∈V \X Inf (u, v) ≥ θ do

3: x = argmaxu∈V \X Inf (u, v)
4: Y = Y ∪ {(x, u)|u ∈ X}
5: X = X ∪ {x}
6: for each node u ∈ Nin(x) do

7: Inf (u, v)+= wux ∗ Inf (x, v)
8: end for

9: end while

10: return D = (X,Y,w) as the LDAG(v,θ)

need to carefully compute the positive activation probabil-

ity ap+(v) and negative activation probability ap−(v), for

any node v under the CLT model, assuming positive and

negative influence are propagated through LDAG+(v) and

LDAG−(v) respectively. This involves a dynamic program-

ming formulation detailed in the following subsection.

5.1 Influence computation. We propose a dynamic pro-

gramming method, Inf-CLDAG, to compute the exact ac-

tivation probability of the central node v in local structure

LDAG+(v) and LDAG−(v). Under the CLT model, two

opposite influence diffusions correlate together when dis-

seminating in the graph, which makes it more tricky than

the computation in the origin LT model. In this case, num-

ber of steps taken to activate a node becomes an important

factor that must be taken into consideration when computing

the cascade result.

For the following computation, we assume that the

positive seed set S and the negative seed set N0 are fixed, and

influence to v only diffuses in LDAG+(v) and LDAG−(v).
For the IBM problem, we want to compute the negative

influence reduction under the positive seed set S. It is

essentially a computation of negative influence coverage,

which is given by
∑

v ap
−(v).

Let P+(v, t) be the probability that the summation

of the positive weights of in-edges of positively activated

neighbors of node v exceeds its positive threshold exactly

at time t, and similar for P−(v, t). Let ap+(v, t) be the

probability that v becomes positively activated exactly at

time t, and similar for ap−(v, t). Then we have ap+(v) =∑
t ap

+(v, t) and ap−(v) =
∑

t ap
−(v, t). We now show

how to compute ap+(v, t) and ap−(v, t).
By the definition of the CLT model, we have the follow-

ing for any v ∈ V \ (S ∪N0) and any t ≥ 1:

P+(v, t) =
∑

u∈LDAG+(v) w
+
uvap

+(u, t− 1),(5.2)

P−(v, t) =
∑

u∈LDAG−(v) w
−
uvap

−(u, t− 1),(5.3)

ap+(v, t) = P+(v, t)(1−
∑t

k=0 P
−(v, k)),(5.4)

ap−(v, t) = P−(v, t)(1−
∑t−1

k=0 P
+(v, k)).(5.5)

Equations (5.2) and (5.3) can be reached by subtracting

the probability that the summation of the weights of in-edges

of activated neighbors of node v exceeds threshold in any

round from 0 to t − 1 from the corresponding probability

for rounds from 0 to t. Equation (5.4) is derived from the

fact that if a node v becomes positively activated at round t,
then exactly at round t the summation of positive weights

must exceed the positive threshold, while by round t the

summation of negative weights does not exceed the negative

threshold (otherwise v would be negatively activated). The

case for Equation (5.5) is similar.

The boundary conditions of the above equations are (a)

for v ∈ S, ap+(v, 0) = 1,P+(v, 0) = 0, P+(v, t) =
ap+(v, t) = 0 for all t ≥ 1, P−(v, t) = ap−(v, t) = 0 for

all t ≥ 0; (b) for v ∈ N0, ap−(v, 0) = 1,P−(v, 0) = 0
P−(v, t) = ap−(v, t) = 0 for all t ≥ 1, P+(v, t) =
ap+(v, t) = 0 for all t ≥ 0; and (c) for v 6∈ S ∪ N0,

P+(v, 0) = ap+(v, 0) = P−(v, 0) = ap−(v, 0) = 0.

From the above equations together with the boundary con-

ditions, the dynamic programming algorithm can be applied

to compute the exact activation probability for every node

v. However, the naive implementation will take O(mDℓD)
time, where mD is the size of LDAG+(v) and LDAG−(v)
and ℓD is the length of the longest path in LDAG+(v) and

LDAG−(v). With a careful planning, as described below,

we could reduce the time to O(mD) instead.

Algorithm 3 provides the pseudocode for our algo-

rithm Inf-CLDAG, which computes the negative influ-

ence ap−(v) to v from positive seed set S and nega-

tive seed set N0, through v’s LDAGs LDAG+(v) and

LDAG−(v). The key feature of the algorithm is the alter-

nating breadth-first-search (BFS) traversal on LDAG−(v)
and LDAG+(v). Starting from the negative seed set we do

one step BFS in LDAG−(v) and compute P−(x, 1)’s and

ap−(x, 1)’s for those traversed nodes. We then do one step

BFS in LDAG+(v) from the positive seeds, and compute

P+(x, 1)’s and ap+(x, 1)’s for the traversed nodes. We then

go back to LDAG−(v) to do one more layer of BFS and

then go back to LDAG+(v) for one more layer of BFS, and

so on. With this setup, we only need one BFS traversal of

LDAG+(v) and LDAG−(v) to compute all ap−(u, t)’s, and

thus save the running time to O(mD).
As an example, we show the computation for the struc-

ture of LDAG+(v) and LDAG−(v) of Figure 1. In the

example, d is the only positive seed while a and e are two

negative seeds. In initialization, ap+(d, 0), ap−(a, 0) and

Algorithm 3 Inf-CLDAG(v,LDAG+(v),LDAG−(v), S,N0)

1: Q+
0 := S ∩ V (LDAG+(v))

2: Q−
0 := N0 ∩ V (LDAG−(v))

3: initialize ap+(u, t), ap−(u, t), P+(u, t), P−(u, t) for

all u and t to 0 or according to the boundary condition

// can do initialization just when needed, so no extra time

needed

4: set t = 0
5: while Q+

t 6= ∅ or Q−
t 6= ∅ do

6: for all node u in Q−
t do

7: for all node x in LDAG−(v) and w−
ux 6= 0 and

x 6∈ S ∪N0 do

8: add node x into Q−
t+1

9: P−(x, t+ 1) = P−(x, t+ 1) + w−
uxap

−(u, t)
10: end for

11: end for

12: for all node x in Q−
t+1 do

13: ap−(x, t+1) = P−(x, t+1)(1−
∑t

k=0 P
+(x, k))

14: end for

15: for all node u in Q+
t do

16: for all node x in LDAG+(v) and w+
ux 6= 0 and

x 6∈ S ∪N0 do

17: add node x into Q+
t+1

18: P+(x, t+ 1) = P+(x, t+ 1) + w+
uxap

+(u, t)
19: end for

20: end for

21: for all node x in Q+
t+1 do

22: ap+(x, t+1) = P+(x, t+1)(1−
∑t+1

k=0 P
−(x, k))

23: end for

24: set t = t+ 1
25: end while

26: ap−(v) =
∑

t ap
−(v, t)

27: return ap−(v)

Figure 1: A simple example of Inf-CLDAG algorithm (red

node d is the positive seed and blue nodes a and e are

negative seeds).

ap−(e, 0) are set to 1 and all other values are set to 0. In

the first iteration, we start from the negative seeds a and e
to do one level BFS traversal in LDAG−(v), and thus com-

pute P−(b, 1),P−(c, 1), P−(v, 1), ap−(b, 1),ap−(c, 1) and

ap−(v, 1). Next we go to LDAG+(v) and do one level

BFS traversal starting from the positive seed d, and com-

pute ap+(f, 1),ap+(c, 1) and ap+(v, 1), which use the val-

ues P−(c, 1) and P−(v, 1) computed. Then we start the

second iteration, which is second level BFS traversal in

LDAG−(v), and this only gives us node v, for which we

compute ap−(v, 2). We will do another BFS traversal on

LDAG+(v), and then we find that the BFS traversal has

reached all nodes in both LDAGs. The computation com-

pletes at this point.

5.2 CLDAG algorithm. Once we have the computation

of negative influence reduction for any seed set as given in

Algorithm 3, we can plug it into the greedy algorithm for

positive seed selection. We call this algorithm CLDAG. The

full pseudocode description of CLDAG can be found in [12].

The algorithm contains an initialization part and an

iteration part. In initialization, we construct LDAG+(v) and

LDAG−(v) for all nodes v. We also maintain an auxiliary

set OutLS+(v), which is the set of nodes to which v may

have positive influence, i.e., u ∈ OutLS+(v) if and only

if v ∈ LDAG+(u). Since positive seed set is changing in

the algorithm, we use ap−(v, S) to represent the negative

activation probability of v in its LDAGs under positive seed

set S. Then, for each node u ∈ LDAG+(v), we compute

the incremental influence reduction ap−(v, ∅)−ap−(v, {u})
when adding u ∈ LDAG+(v) as a positive seed, and

sum them up for each u to get DecInf(u), the overall

incremental influence reduction of node u.

In the main iteration, we iterate k times to select k seeds.

In each iteration, we select a new seed s with the largest

DecInf(s). Once s is selected, other nodes’ DecInf(u)
may need to be updated. Since s may positively influence

all nodes in OutLS+(s), thus all nodes u ∈ LDAG+(v)
with v ∈ OutLS+(s) needs to update their DecInf(u).
Note that here we take advantage of the local DAG structure,

so that we do not need to update the incremental influence

reduction of every node in the graph. The update is done by

using Algorithm 3.

Complexity Analysis. Let n = |V |, m+
iθ =

maxv |LDAG
+(v)|, m−

iθ = maxv |LDAG
−(v)|, and n+

oθ =
maxv |OutLS+(v)|. Let t+iθ and t−iθ be the time of effi-

cient construction of LDAG+(v)’s and LDAG−(v)’s, re-

spectively. Note that m+
iθ = O(t+iθ) and m−

iθ = O(t−iθ), and

for sparse graphs, efficient Dijkstra shortest path algorithm

implementation could make t+iθ and t−iθ close to the order of

m+
iθ and m−

iθ. We first analyze the complexity of storing all

LDAG structures.

In the initialization step, we need to compute

LDAG+(v)’s and LDAG−(v)’s for all nodes, and thus it

takes O(n(t+iθ + t−iθ)) time. We use a max-heap structure to

store DecInf(u)’s, and it takes O(n) time to initialize. The

DecInf(u) computation by Algorithm 3 takes O(n(m+
iθ +

m−
iθ)) time. Overall, initialization takes O(n(t+iθ+t−iθ)) time.

For the iteration step, each iteration needs to update

DecInf(u)’s for at most n+
oθm

+
iθ nodes, and each update

involves influence computation by Algorithm 3, which takes

O(m+
iθ +m−

iθ) time, plus updating DecInf(u) on the max-

heap, which takes O(log n) time. Therefore, the iteration

step takes O(kn+
oθm

+
iθ(m

+
iθ +m−

iθ + log n)) time.

Hence the total time complexity of the algorithm is

O(n(t+iθ + t−iθ) + kn+
oθm

+
iθ(m

+
iθ +m−

iθ + log n)).
For space complexity, we store all LDAGs and

OutLS+(v)’s, so the space complexity is O(n(m+
iθ+m−

iθ+
n+
oθ)). In actual implementations one may not afford to store

all the LDAG structures (as in our implementation), so an al-

ternative is to store only OutLS+(v)’s and compute LDAGs

whenever needed. It is easy to see that in this case, the time

complexity is O(n(t+iθ + t−iθ)+ kn+
oθm

+
iθ(t

+
iθ + t−iθ + log n)),

which is not significantly worse than storing LDAGs, while

the space complexity is reduced to O(nn+
oθ).

6 Experiments

To test the efficiency and effectiveness of CLDAG for influ-

ence blocking maximization problem under the CLT model,

we conduct experiments on three real-world datasets as well

as synthetic networks.

6.1 Experiment setting The three real-world datasets are

mobile network and collaboration networks. The mobile

network is a graph derived from a partial call detailed record

(CDR) data of a Chinese city from China Mobile, the largest

mobile communication service provider in China. In the

mobile network, every node corresponds to a mobile phone

user and the edges correspond to their phone calls between

one another. We use the number of calls between two

users as the edge weight and normalize it among all edges

incident to a node (the edge thus becomes directed with

asymmetric edge weights). The NetHEPT and NetPHY

are both collaboration networks extracted from the e-print

arXiv (http://www.arXiv.org). The former is extracted from

the ”High Energy Physics - Theory” section (form 1991 to

2003), and the latter is extracted from ”Physics” section,

and both are the same datasets used in [6]. The nodes in

both networks are authors and an edge between two nodes

means the two authors coauthored at least one paper. We

use the number of coauthored papers as the edge weight and

normalize it among all edges incident to a node. Some basic

statistics of these networks are shown in Table 1.

The edge weights described above do not differentiate

between positive and negative weights yet. To differentiate

them and study the effect of different diffusion strength

for positive and negative diffusions, we introduce positive

propagation rate p+ and negative propagation rate p−, both

of which are values from 0 to 1. We multiply edge weight

with p+ and p− of each edge to obtain its positive and

Table 1: Statistics of the three real-world networks.

Dataset Mobile NetHEPT NetPHY

Node 15.5K 15.2K 37.1K

Edge 37.0K 58.9K 231.5K

Average Degree 4.77 7.75 12.48

negative edge weight, respectively. The effect is that all

positive edge weights of in-edges of a node sums up to

p+, and thus with probability 1 − p+ the node will not

be activated even if all of its in-neighbors are positively

activated. The case for p− is similar.

We compare the performance of the following algorithm

and heuristics:

• CLDAG: Our CLDAG algorithm with θ = 0.01;1

• Greedy: Algorithm 1 under the CLT model with the

lazy-forward optimization of [18], and 10000 simula-

tion runs for each influence estimate.
• Degree: a baseline heuristic, simply choosing nodes

with largest degrees as positive seeds.
• Random: a baseline heuristic, simply choosing nodes at

random as positive seeds.
• Proximity Heuristic: A simple heuristic under which

we choose the direct out-neighbors of negative seeds as

positive seeds to block the negative influence. Among

these direct out-neighbors, we sort them by the negative

weights of their in-edges connecting them with negative

seeds, and select the top k nodes as the positive seeds.

Proximity heuristic introduced above is based on the

simple idea of trying to block the influence of negative

seeds at their direct neighbors. It should be noticed that

the proximity heuristic can be considered as a simplified

version of our CLDAG algorithm. In fact, for each node

v, if we construct its LDAG+(v) to be only the node v
itself, while its LDAG−(v) to be v itself if v has no in-

neighbors in the negative seed set N0, or else to be v with

one of v’s in-neighbors in N0 with the largest negative

edge weight to v. It is easy to verify that our CLDAG

algorithm under these LDAG structures exactly matches the

proximity heuristic. Therefore, proximity heuristic can be

treated as an intermediate algorithm between the baseline

random algorithm and the full-blown CLDAG algorithm, and

is helpful for understanding the features of CLDAG.

Since the CLT model is a probabilistic model, when

we evaluate the blocking effect for any given positive and

negative seed sets, we test it for 1000 times and take their

average as the result. The negative seeds in N0 are chosen

either randomly or from nodes with the largest degrees. The

scalability test is run on Intel Xeon E5504 2G*2 (4 cores for

1We found that θ < 0.01 will not have significant improvement for the

blocking effect, for all networks tested.

(a)Mobile (b)NetHEPT

(c)Running time for selecting 200 seeds

Figure 2: Experiment result of comparison with Greedy

algorithm.

every CPU), 36G memory server, while all others are run on

Dell D630 laptop with 2G memory. All experiment code is

written in C++.

6.2 Results with the greedy algorithm. We first run tests

that include the greedy algorithm. Since the greedy algo-

rithm runs very slow on large graphs, we extract two sub-

graphs from the datasets for comparison. One subgraph is a

1000 node graph extracted from the mobile network, and an-

other is a 5000 node graph extracted from the NetHEPT net-

work. The extraction is done by randomly selecting a node

in the graph and doing BFS from the node until we obtain the

desired number of nodes, and we include all edges for these

nodes in the subgraph. We choose 50 nodes with the high-

est degrees as negative seeds and select 200 positive seeds

to block their influence. Both p+ and p− are set to 1. The

experiment result are showed in Figure 2.

From Figure 2 (a) and (b), we can see that the CLDAG

algorithm consistently matches the performance of the

greedy algorithm for both datasets, i.e. our CLDAG achieves

more than 90% blocking effect of greedy algorithm in the

1000 nodes mobile network and more than 95% in the 5000

nodes Hep network on average. In the 1000-node mobile

network test, CLDAG significantly outperforms the Proxim-

ity heuristic, e.g., when CLDAG completely blocks all nega-

tive influence with 130 seeds, proximity heuristic still allows

negative influence to reach about 30 more nodes. In term of

negative influence reduction, this is (120−50)/(120−80) =
175% improvement. In the 5000-node NetHEPT dataset,

proximity heuristic performs as well as CLDAG and the

(a)result with log-log scale (b)result with log-normal scale

Figure 3: Experiment result on algorithm scalability.

greedy algorithm. In both cases, random and degree heuris-

tic perform badly, essentially having no blocking effect at

all. This is in contrast with degree heuristic result for influ-

ence maximization reported in the previous papers [6, 5, 7],

where degree heuristic still have moderate gain when select-

ing more seeds. Our interpretation is that for influence block-

ing maximization, knowing where the negative seeds are be-

comes very important, and thus proximity heuristic could be-

have reasonably well while degree heuristic oblivious to the

location of negative seeds becomes useless.

From Figure 2 (c), we see that CLDAG is much faster

than the greedy algorithm, with more than two orders of

magnitude speedup. With 5000 nodes, the greedy algorithm

already takes more than five hours, while CLDAG only takes

one minute to select 200 seeds.

We further compare the scalability of CLDAG with the

greedy algorithm. For this test, we use a family of synthetic

power-law graphs generated by the DIGG package [9]. We

generate graphs with doubling number of nodes, from 0.2K,

0.4K, up to 6.4K, using power-law exponent of 2.16. Each

size has 10 different random graphs and our running time

result is the average among the runs on these 10 graphs. We

randomly choose 50 nodes as negative seeds and find 50

positive seeds to block the negative influence. We set both

p+ and p− to 1. The scalability result is shown in Figure 3.

The result clearly shows that CLDAG is two orders of

magnitude faster than the greedy algorithm and its running

time has linear relationship with the size of the graph,

which indicates good scalability of the CLDAG algorithm.

Therefore, comparing with the greedy algorithm, CLDAG

matches the blocking effect of the greedy algorithm while

has at least two orders of magnitude speedup in running time.

6.3 Results on larger dataset without the greedy algo-

rithm. We conduct experiments on the full graphs of the

three datasets, but we do not include the greedy algorithm

since its running time becomes too slow. The initial negative

seeds are chosen either randomly or with highest degrees.

We first set p+ and p− to 1.

As shown in Figure 4 (a) to (f), the performance of

CLDAG strictly dominates the proximity heuristic in all

cases. For random negative seed selection, the negative

(a)NetHEPT: Max degree (b) NetHEPT:Random

(c)Mobile: Max degree (d) Mobile:Random

(e)NetPHY: Max degree (f) NetPHY:Random

(g) Running Time of CLDAG algorithm on real networks

Figure 4: Experiment result of CLT model on three real

dataset. We choose 200 negative seeds with max degree

in experiment (a),(c),(e) and 400 random negative seeds in

experiment (b),(d),(f).

influence reduction of CLDAG is on average 78.24% higher

than that of the proximity algorithm (percentage taken as the

average of results from 1 seed to 200 seeds). For max-degree

negative seed selection, CLDAG improves the performance

of proximity heuristic even more, for 80.75% on average.

Degree and random heuristic still show no blocking effect on

all test cases. The running time of CLDAG is consistently

low, as shown in Figure 4 (g). The results demonstrate

that across all networks and all negative seed selection

methods, CLDAG has consistently good performance in

(a) p+ = 0.5, p− = 1 (b) p+ = 1, p− = 0.5

Figure 5: Experiment result of CLT model on propagation

rate p+ and p−.

negative influence reduction over other heuristics, and it

achieves this good performance efficiently.

Next, we vary propagation rate p+ and p− to check their

effect on influence dissemination and the performance of our

algorithm. For simplicity, we only present experiment result

on the NetHEPT network. We choose 200 nodes with max

degree as negative seeds and select 200 positive nodes to

block their influence. In one test we have p+ = 0.5 and

p− = 1, and thus negative influence diffusion is stronger,

while in the second test, we use p+ = 1 and p− = 0.5,

making positive influence diffusion stronger.

Figure 5 reports our simulation results. First, as ex-

pected, when the negative influence is stronger, more nodes

become negative without positive influence (1350 nodes vs.

560 nodes in our two test cases). More importantly, we see

that our CLDAG algorithm performs much better than the

proximity heuristic when the negative influence is stronger

(Figure 5 (a)). This is because in this case negative diffu-

sion can traverse long paths and thus simply placing positive

seeds next to the negative seeds may not block the negative

diffusion well. On the other hand, when the negative influ-

ence is weak (Figure 5 (b)), negative influence could be ef-

fectively blocked by placing positive seeds next to them, and

thus proximity heuristic performs close to CLDAG.

To summarize, our results show that CLDAG has the

best performance among tested heuristics across all graphs,

and especially when negative influence diffusion is strong.

Proximity heuristic as a simplified version of CLDAG has

reasonable performance in a few cases especially when

negative influence diffusion is weak, and can be used as a

fast alternative to CLDAG in this case. However, there are

situations in which proximity heuristic is significantly worse

than CLDAG. Traditional degree heuristic cannot be used for

influence blocking maximization at all from our test results.

6.4 Effectiveness of influence blocking at different neg-

ative seed size. Finally, we test the effectiveness of influ-

ence blocking with CLDAG, when the size of negative seeds

increases. We vary the negative seed size from 1 to 1000,

Table 2: Result on the effectiveness of influence blocking

|N0| σN (∅, N0) |S| σN (S,N0)

1 72.8979 23 6.7396

2 77.4516 68 6.0182

5 156.48 145 15.6667

10 213.077 199 20.6628

20 581.366 557 57.6617

50 963.633 926 95.8451

100 1006.37 1000 108.823

200 1669.85 1000 680.518

500 3635.95 1000 2640.8

1000 5836.48 1000 4845.58

and see how many positive seeds are required by CLDAG

to reduce negative influence to 10%. We cap the number of

positive seeds at 1000. For this test, we use the NetHEPT

network, select negative seeds with largest degrees, and set

p+ = p− = 1. The results are shown in Table 2, where

σN (S,N0) denotes the expected number of negative activa-

tions with positive seeds S and negative seeds N0.

The result shows that it requires about 20 to 30 times

of positive seeds to reduce negative influence to about 10%
level, and it becomes increasingly hard to block negative

influence. For example, with 1000 negative seeds, we spend

an equal number of 1000 positive seeds but can only reduce

17% negative influence. Therefore, first mover has a clear

advantage, and the best way to block negative influence is

before it becomes pervasive.

7 Conclusion and Discussions

In this work, we study influence blocking maximization

problem under the competitive linear threshold model. We

show that the objective function of the IBM problem is

submodular under the CLT model, and thus the greedy

approximation algorithm is available. We then design an

efficient algorithm CLDAG to overcome the slowness of the

greedy algorithm. Our simulation results demonstrate that

CLDAG matches the greedy algorithm in the blocking effect

while significantly improving running time. CLDAG also

outperforms other heuristic algorithms such as proximity

heuristic that selects direct neighbors of negative seeds,

showing that CLDAG is a stable and robust algorithm for

the IBM problem.

Finally, we compare two closely related results in the

literature, which showing some interesting subtleties in com-

petitive influence diffusion. First, in [3], Budak et al. study

the IBM problem for the extended IC model. They show,

however, that when we extend the IC model to allow positive

and negative diffusions having two set of different param-

eters, the IBM is not submodular. This indicates a subtle

difference between different diffusion models. In this sense,

CLT model is more expressive, since it is easier to model

different diffusion strength in the CLT model and see its ef-

fect, as we did in our evaluation (Figure 5). They also show

that when restricting the positive weights to be 1, or to be the

same as negative weights, the problem becomes submodular.

For these cases, we are able to design efficient algorithms

close to MIA and MIA-N of [5, 4], and our simulations re-

sults are similar when comparing with the greedy algorithm

and other heuristics, but we do not report them here.

Second, in [2], Borodin et al. propose several competi-

tive diffusion models extended from the LT model. In partic-

ular, their separate threshold model is essentially the CLT

model in this paper (with a slightly different tie-breaking

rule). Interestingly, they show that the problem of maxi-

mizing positive influence given a fixed negative seed set is

not submodular (applicable to our CLT model), while we

show here that influence blocking maximization is submod-

ular. Intuitively, this is because even though a positive seed

x blocks the negative influence, to maximize positive influ-

ence it may also need other positive seeds to activate nodes

that are blocked from negative influence by node x. There-

fore, the marginal gain of x is larger for the positive influence

maximization objective when there are other positive seeds

corporating with x, making it not submodular.

Several improvements and future directions are possi-

ble. One direction is looking into even faster and more

space-efficient algorithms for influence blocking maximiza-

tion. Another direction is to tackle the IBM problem in

other competitive diffusion models, especially models with-

out submodularity property.

Acknowledgement

This work is supported by the National Natural Science

Foundation of China (60703066, 60874082), and Beijing

Municipal Natural Science Foundation (4102026).

References

[1] S. Bharathi, D. Kempe, and M. Salek. Competitive influence

maximization in social networks. In WINE, pages 306–311,

2007.

[2] A. Borodin, Y. Filmus, and J. Oren. Threshold models for

competitive influence in social networks. In WINE, pages

539–550, 2010.

[3] C. Budak, D. Agrawal, and A. E. Abbadi. Limiting the spread

of misinformation in social networks. In WWW, pages 665–

674, 2011.

[4] W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincn,

X. Sun, Y. Wang, W. Wei, and Y. Yuan. Influence maximiza-

tion in social networks when negative opinions may emerge

and propagate. In SDM, pages 379–390, 2011.

[5] W. Chen, C. Wang, and Y. Wang. Scalable influence max-

imization for prevalent viral marketing in large-scale social

networks. In KDD, pages 1029–1038, 2010.

[6] W. Chen, Y. Wang, and S. Yang. Efficient influence maxi-

mization in social networks. In KDD, pages 199–208, 2009.

[7] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maxi-

mization in social networks under the linear threshold model.

In ICDM, pages 88–97, 2010.

[8] P. Clifford and A. Sudbury. A model for spatial conflict.

Biometrika, 60(3):581–688, 1973.

[9] L. Cowen, A. Brady, and P. Schmid. DIGG: DynamIc Graph

Generator. http://digg.cs.tufts.edu.

[10] J. Goldenberg, B. Libai, and E. Muller. Using com-

plex systems analysis to advance marketing theory develop-

ment: Modeling heterogeneity effects on new product growth

through stochastic cellular automata. Academy of Marketing

Science Review, 2001(9):1–18, 2001.

[11] M. Granovetter. Threshold Models of Collective Behavior.

American Journal of Sociology, 83(6):1420, 1978.

[12] X. He, G. Song, W. Chen, and Q. Jiang. Influence blocking

maximization in social networks under the competitive linear

threshold model. Technical Report arXiv:1110.4273, 2011.

[13] R. A. Holley and T. M. Liggett. Ergodic theorems for weakly

interacting infinite systems and the voter model. Annals of

Probability, 3:643–663, 1975.

[14] D. Kempe, J. M. Kleinberg, and v. Tardos. Maximizing the

spread of influence through a social network. In KDD, pages

137–146, 2003.

[15] D. Kempe, J. M. Kleinberg, and v. Tardos. Influential nodes

in a diffusion model for social networks. In ICALP, pages

1127–1138, 2005.

[16] M. Kimura and K. Saito. Tractable models for information

diffusion in social networks. In PKDD, pages 259–271, 2006.

[17] J. Kostka, Y. A. Oswald, and R. Wattenhofer. Word of mouth:

Rumor dissemination in social networks. In SIROCCO, pages

185–196, 2008.

[18] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. Van-

Briesen, and N. S. Glance. Cost-effective outbreak detection

in networks. In KDD, pages 420–429, 2007.

[19] R. Narayanam and Y. Narahari. Determining the top-k nodes

in social networks using the shapley value. In AAMAS, pages

1509–1512, 2008.

[20] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of

the approximations for maximizing submodular set functions.

Mathematical Programming, 14:265–294, 1978.

[21] N. Pathak, A. Banerjee, and J. Srivastava. A generalized

linear threshold model for multiple cascades. In ICDM, pages

965–970, 2010.

[22] M. Richardson and P. Domingos. Mining knowledge-sharing

sites for viral marketing. In KDD, pages 61–70, 2002.

[23] T. C. Schelling. Micromotives and Macrobehavior. W. W.

Norton & Company, 1978.

[24] D. Trpevski, W. K. S. Tang, and L. Kocarev. Model for rumor

spreading over networks. Physics Review E, 81:056102, May

2010.

[25] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based

greedy algorithm for mining top-k influential nodes in mobile

social networks. In KDD, pages 1039–1048, 2010.

