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We present modeling and analysis of a hysteretic deformable mirror where the facesheet interacts with a continuous
layer of piezoelectric material that can be actuated distributively by a matrix of electrodes through multiplexing.
Moreover, a method to calculate the actuator influence functions is described considering the particular arrange-
ment of electrodes. The results are presented in a semi-analytical model to describe the facesheet’s deformation
caused by a high-density array of actuators, and validated in a simulation. The proposed modeling of an intercon-
nection layout of electrodes is used to determine the optimal pressures the actuators must exert to achieve a desired
surface deformation. ©2020Optical Society of America

https://doi.org/10.1364/AO.397472

1. INTRODUCTION

Deformable mirrors (DMs) are instruments used for the cor-
rection of light wavefront aberrations in many imaging and
nonimaging applications such as three-dimensional (3D)
imaging to increase the realism of depth perception [1,2],
microscopes to correct static lenses [3], medical applications
[4], or industrial applications like laser material processes [5].
In general, DMs are distinguished in segmented and continu-
ous facesheet mirrors, and can be further classified by means
of their actuator type that is mounted below the reflective top
layer to deform the mirror surface. Depending on the appli-
cation, various actuator technologies are used, which include,
for example, piezoelectric [6–8], electrostatic [9], thermal
[10,11], magneto-restrictive, and shape memory alloy [12] and
voice coil/reluctance actuators [13,14]. Furthermore, DMs
are applied in adaptive optical systems and key instruments
for space telescopes. When a distorted incoming wavefront
arrives at the telescope, a wavefront sensor is used to measure the
wavefront distortion and subsequently used to adjust the shape
of DM to correct the distorted wavefront. Future large space
telescopes like LUVOIR [15] use coronographic instruments
for high-contrast imaging of exoplanets. Although thousands of
exoplanets have been identified, the current state of technology
limits our capability to measure and understand these exoplan-
ets beyond their mass, radius, orbital period, and distance to the
host star. To overcome these challenges and provide the required

capabilities for a direct exoplanet imaging space mission, DMs
strive among others after high actuator density, meaning that
the number of actuators must be increased to the maximum that
can still guarantee practical operability for wire bonding, har-
ness and electronics. DMs usually have a number of actuators
ranging from 100 to 6000, but rarely higher [14,16,17]. One
of the major limitations of employing the mirrors with a large
number of actuators on a space mission is the reliability of the
associated cable harness and electronics. If every actuator must
be driven continuously to hold a specific position, a dedicated
channel consisting of a digital-to-analog converter and a high
voltage amplifier is required per actuator, which results in bulky
electronics.

The recently presented concept of a high pixel number
deformable mirror using piezoelectric hysteresis for stable shape
configurations [18], an abbreviated hysteretic deformable mir-
ror (HDM), demonstrates what we believe to the best of our
knowledge is a new DM concept whose actuation mechanism
consists of multilayered piezoelectric actuators with high hys-
teresis. Figure 1 shows a schematic illustration of the HDM. The
high hysteresis of the newly developed piezoelectric material
guarantees a remnant deformation of the mirror surface after the
input has been removed. This property enables the combination
of a simple electrode layout to define actuators at the intersec-
tions and use multiplexing to address those intersections. The
control of the remnant of a single actuator is presented in [19].
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Fig. 1. 3D visualization of the mirror concept. The HDM consists
of multilayered piezoelectric actuators that can deform the mirror sur-
face by application of an electrical potential to the electrodes. Exploded
view of the HDM with respective description of the individual compo-
nents: mirror surface, isolation layer, parallel electrodes, piezo layers,
and perpendicular electrodes.

Fig. 2. Conceptual electrode layout of the hysteretic deformable
mirror from the top view. As an example in the illustration, the central
actuator is actuated by the application of an electrical potential to the
center top and bottom electrodes, which are visualized in blue while
the other (not activated) actuators are represented in gray.

The HDM focuses on applications where typically slowly
varying disturbances (>1 Hz) must be corrected with extremely
high accuracy (< nm) and spatial frequency content, as it is
the case for LUVOIR. Due to the HDM’s design and working
principle, it is possible to employ a large number of actuators
(128 × 128) on an approximate surface area of 900 mm2 and
reach high-resolution accuracy in correcting wavefront aberra-
tions. In addition, it benefits from time-division multiplexing,
which reduces the number of wires needed to connect and
address the actuators. Subsequently, the HDM provides a very
simple electrode layout, as illustrated in Fig. 2. The top and
bottom electrodes are rotated by 90◦ to form intersecting areas
of the electrodes presenting the actuators. The actuation is
bundled by sharing the same electrodes for actuators along a
line. The voltage is transmitted over a shared top electrode while
the corresponding bottom electrode for the desired actuator is
grounded.

Motivated by what we believe is a novel concept, we present
the modeling and analysis of a mirror’s facesheet that is sub-
jected to the key characteristics of the HDM, including a high
actuator density and an interconnection layout. The mirror is

described with a mechanical model to show the relation between
the facesheet deflection and the pressures applied by the actua-
tors. We follow the approach presented by Claflin and Bareket
[20] in assuming that the deflection is governed by Poisson’s
equation. To guarantee a high accuracy in modeling, we incor-
porate the particular arrangement of the electrodes in the HDM
into the solution of Poisson’s equation and present the analytical
solutions for the parametrization of squared electrodes as one of
our contributions. In addition, an actuator model is introduced
that incorporates the concept that the actuator’s pressure is a
function of hysteresis modeled by the Preisach operator. Based
on this approach, we can compute the required pressures to
fit several Zernike polynomials [21], which are the preferred
representation for light wavefront aberrations in adaptive
optical systems. The simulation is performed for low actuator
numbers to demonstrate the calculation method with the given
conditions, and high actuator numbers that will allow a high
spatial frequency wavefront correction. The results, including
the method’s accuracy and limits of applicability, are discussed.

This paper has four sections. Section 2 presents the semi-
analytical plate model to calculate the facesheet deflection
caused by a high-density array with square pressure planes of the
actuators interacting with the facesheet. Section 3 describes the
least-square fitting to determine optimal actuator pressures to
represent wavefront aberrations and presents simulation results
for a 5 × 5 actuator array as well as a 129 × 129 actuator array.
Finally, results are discussed and the conclusions are given in
Section 4.

2. SEMI-ANALYTICAL PLATE MODEL

An influence function defines the characteristic shape of the
mirror surface corresponding to the deformation caused by one
actuator. Several methods currently exist for modeling these
influence functions of continuous facesheet mirrors. Besides
the use of Gauss functions and splines [22–24], or a biharmonic
plate equation [25], influence functions can be modeled by
application of the Kirchhoff or von Kármán theory [26–28] for
plate deformations smaller than the plate thickness. Methods
using the thin plate theory to calculate influence functions
for real time computation for specific mirror geometries are
given in [29,30]. Furthermore, models based on the Kirchhoff
plate model, for example, include assumptions for actuator
forces that either presuppose the exerted force as point load or
approximated electrode areas with constantly distributed loads
as well as boundary conditions presenting circularly clamped
DMs [20,31] or a free outer edge [32]. Next to these modeling
approaches which mainly consider the static characteristics, a
detailed review and analysis of a DM’s dynamic properties for
control purposes can be found in [33].

To determine the influence functions as precisely as possible
with static characteristics, it is necessary to define the interaction
areas according to their actual shapes. Given the concept of
the HDM, the electrodes have an interconnection layout that
creates pressure planes lying under a thin circular facesheet.
Since the upper electrodes are the closest layer to the facesheet
besides the comparable thin isolation layer, which is neglected
for simplicity of our modeling, we idealized these pressure
planes as squares. The actuators are separated by a specified
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distance. To describe the surface displacement, it is necessary to
integrate over the area of each pressure plane. Therefore, each
plane is separated into several areas that can be described by a
coordinate transformation using Cartesian coordinates as well
as the radial and angular limits. It is assumed that the thickness
of electrodes can be neglected and the piezoelectric actuators
modeled as springs in parallel to a force source over an area that
creates pressure on the facesheet.

A. Determination of Influence Matrix

We consider the Poisson equation [34]

∇2z = −
q

T
, (1)

which governs the relation between small surface displacements
z of a thin facesheet with surface tension T generated by an
exerted pressure q . The solution to Poisson’s equation in polar
coordinates (r , φ) can be given by

z(r , φ, r̄ , φ̄) = C

∫∫

A

F(r , φ, r̄ , φ̄(r̄ ))q(r̄ , φ̄)dφ̄dr̄ , (2)

with

A = {(r̄ , φ̄)|φ1(r̄ ) ≤ φ̄ ≤ φ2(r̄ ), 0 ≤ r̄ ≤ 1}, (3)

where z(r , φ) is the out-of-plane displacement of the thin
facesheet, (r̄ , φ̄) are the integration variables, q(r̄ , φ̄) are the
distributed forces over the particular electrode area, and con-
stant C = a2/T contains the relation between the facesheet
radius a and the surface tension for normalization of the func-
tionF to unity. The edge deflection and slopes are equal to zero.
Furthermore,F is defined as

F(r , φ, r̄ , φ̄(r̄ )) =

{

f1(r , φ, r̄ , φ̄(r̄ )) if 0 < r̄ < r
f2(r , φ, r̄ , φ̄(r̄ )) if r < r̄ < 1.

(4)

The resulting deflection will be the integral of z(r , φ, r̄ , φ̄)

over the area A of the facesheet

z(r , φ) =
q(r , φ)a2

2πT

∫ 1

0

∫ 2π

0

F(r , φ, r̄ , φ̄(r̄ ))dφ̄dr̄ , (5)

assuming that q(r̄ , φ̄) is a piecewise constant function on
R1 < r < R2, which gives q(r , φ). Note that R1 and R2 desig-
nate the smallest and greatest radius to describe the electrodes,
respectively.

Following the approach of Claflin and Bareket [20], the equa-
tion to calculate the surface deflection on a specific point on the
clamped facesheet is

z(r , φ) =

Ne
∑

j=1

M(r ,φ) j q(r ,φ) j , (6)

where M represents the coefficients derived from the solutions
of the Poisson equation, q(r ,φ) j are piecewise constant pressures
exerted on the respective j -th electrode, and Ne is the total num-
ber of electrodes.

The exact shape of an electrode is defined via a coordinate
transformation. It allows us to implement the information

Fig. 3. Conceptual top view of a 5 × 5 actuator array to illustrate
the classification of cases that arises from the geometric description and
modeling method.

Table 1. Definition of Radial Limits for Splitting the

Electrode Areas

Case 1 Case 2 Case 3 Case 4 Case 5

r̄ = 0 r̄ ≤ r1 r̄ ≤ r1e r̄ ≤ r1 r̄ ≤ r1

r̄ ≥ r1 r̄ ≥ r4 r̄ ≥ r4 r̄ ≥ r4 r̄ ≥ r4

0 < r̄ ≤ r1e r1 < r̄ ≤ r2 r1e < r̄ ≤ r1 r1 < r̄ ≤ r3 r1 < r̄ ≤ r2

r1e < r̄ < r1 r2 < r̄ < r4 r1 < r̄ ≤ r4e r3 < r̄ ≤ r2 r2 < r̄ ≤ r3

r4e < r̄ < r4 r2 < r̄ < r4 r3 < r̄ < r4

later to the Poisson’s equation [Eq. (2)] and find a solution.
The electrode is split into parts based on areas of radial limits.
These radial limits are used to implement the transformation
from Cartesian to polar coordinates. Thus, φ depends on r . For
convenience, the integration with respect to φ is performed first,
and results in

z(r , φ) =
q(r , φ)

2π
C{− ln(r )

∫ r

0

r̄ (φ2(r̄ ) − φ1(r̄ ))

− r̄

∞
∑

n=1

1

n2

(

(r̄ r )n −

(

r̄

r

)n)

× [sin(n(φ2(r̄ ) − φ)) − sin(n(φ1(r̄ ) − φ))]dr̄

+

∫ 1

r

r̄ ln

(

1

r̄

)

(φ2(r̄ ) − φ1(r̄ ))

− r̄

∞
∑

n=1

1

n2

(

(r̄ r )n −

(r

r̄

)n)

× [sin(n(φ2(r̄ ) − φ)) − sin(n(φ1(r̄ ) − φ))]dr̄ }.
(7)

The introduced coordinate transformation is inserted and the
integration with respect to r is solved as a function of the posi-
tion of the electrodes. We define five cases according to the actu-
ator position (Fig. 3): Case 1, central actuator; Case 2, diagonal
actuators; Case 3, midline actuators; Case 4, actuators above the
diagonals; and Case 5, actuators below the diagonal. The defini-
tion of each radial limit can be found in Table 1, and is visualized
in Figs. 4–8 together with a respective pressure plane.
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Fig. 4. Definitions of the radial limits to describe Case 1, central
actuator.

Fig. 5. Definitions of the radial limits to describe Case 2, diagonal
actuator.

Fig. 6. Definitions of the radial limits to describe Case 3, midline
actuator.

Fig. 7. Definitions of the radial limits to describe Case 4, actuators
above the diagonal.

The detailed summary of the calculation of the coefficients
resulting from the solution to Poisson’s equation can be found
in Appendices A–G.

Fig. 8. Definitions of the radial limits to describe Case 5, actuators
below the diagonal.

1. Case 1—Central Actuator

The central actuator (visualized in Fig. 4) was described by the
use of two radial limits, r1 and r1e , where r1 denotes the radius
measured from the center to the corner points and r1e denotes an
extra radius measured from the center to the inner side length.
The calculation of coefficients for this case can be found in
Appendix C.

2. Case 2—Diagonal Actuators

The actuators that lie on the diagonals (visualized in Fig. 5)
were described by the use of three radial limits: r1, r2 = r3, and
r4. The numbering of the radii is systematically distributed
according to the corner position. The calculation of coefficients
for this case can be found in Appendix D.

3. Case 3–MidlineActuators

The actuators that lie on the midlines (visualized in Fig. 6) were
described by use of four radial limits: r1e , r1, r4, and r4e . r1

and r4 denote radii measured from the center to certain corner
points, and r1e and r4e denote extra radii indicating inner side
lengths. The calculation of coefficients for this case can be found
in Appendix E.

4. Case 4–ActuatorsAbove theDiagonal

The actuators that lie above the diagonals (visualized in Fig. 7)
were described by the use of four radial limits: r1, r3, r2, and
r4. The numbering of the radii is systematically distributed
according to the corner position. The calculation of coefficients
for this case can be found in Appendix F.

5. Case 5—ActuatorsBelow theDiagonal

The actuators that lie below the diagonals (visualized in Fig. 8)
were described by the use of four radial limits: r1, r3, r3, and r4.
The numbering of the radii is systematically distributed accord-
ing to the corner position. The calculation of coefficients for this
case can be found in Appendix G.

B. Actuator Model

The actuators become coupled through the stiffness of the
facesheet. Usually, DMs profit by low inter-actuator cou-
pling, denoting the mechanical coupling between neighboring
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Fig. 9. Simplified actuator model, modeled by a stiffness k in paral-
lel to a force source over an area 8 acting on the mirror facesheet.

actuators, which improves the surface accuracy. If significant
inter-actuator coupling is present, it needs to be considered
in the modeling and control processes [6]. Here, we intro-
duce the model of actuators based on two components, which
correspond to a spring in parallel with a force source (Fig. 9).

The pressure term q(r , φ) can be split so that it captures both
components in terms of stiffness and force source over an area.
Consequently, the relation from Eq. (6) may be described by

z(r , φ) =

Ne
∑

j=1

M(r ,φ) j (8Pj(V ) − k j z̃ j ), (8)

with

8Pj(V ) = Y j 8Tj(V ), (9)

and

z̃ j :=

∑

i∈E j zi/ne

Ae
, (10)

where 8Pj(V ) denotes the Preisach operator capturing the
highly nonlinear hysteresis of the actuators in regard to the
total deformation in relation to the initial thickness dimension,
the diagonal matrix containing the Young’s modulus Y j , the
longitudinal elongations of the actuators 8Tj(V ), the diagonal
stiffness matrix containing the actuators’ stiffness k j , and the
mean surface deflection above the respective electrode with area
Ae z̃ j calculated by means of ne surface displacement points
zi on a specific position within the electrode area. It is assumed

Fig. 10. Asymmetric butterfly hysteresis loop with remnant defor-
mation, the measured data of which was collected from previous mate-
rial tests. The axial displacement was measured while a certain voltage
was applied.

that all the actuators are identical and can exert an asymmetric
butterfly loop, as presented in Fig. 10. A framework to model the
electric-field dependence on the strain in piezoelectric materials
purposely designed to exhibit loops with remnant deformation
was presented by Jayawardhana et al . [35] based on the use of
the Preisach operator. The complete formal definition of the
Preisach operator is given in [36].

3. RESULTS AND DISCUSSION

A. 2D Pattern for Influence Functions of Case 1–5

The influence function of every case can be seen in Fig. 11. The
actuators were individually addressed, and their arrangement
corresponds to the 5 × 5 actuator array that is exemplarily
visualized in Fig. 3.

B. Least-Square Fitting

The preferred representation for light wavefront aberrations
in adaptive optical systems is via Zernike polynomials. They
are defined on a unit circle using polar coordinates (r , θ) as
functions of azimuthal frequency m and radial degrees n, where
m ≤ n. The set of polynomials [21] can be given by

Zm
n (r , θ) = Rm

n (r ) cos(mθ) for m ≥ 0
Z−m

n (r , θ) = Rm
n (r ) sin(mθ) for m < 0

, (11)

where

Rm
n (r ) =

(n−m)/2
∑

S=0

(−1)S(n − S)!r n−2S)

S![(n + m)/2 − S]![(n − m)/2 − S!]
.

(12)

To calculate the required pressure terms to fit several Zernike
polynomials, each displacement of a respective point on the
facesheet that is defined by (r , φ) is fit to the correspond-
ing point on Zernike polynomials. An overdetermined set of
equations is solved in the least-square sense resulting in

8 = (M⊺
M)−1

M(zd +Mkz̃d ), (13)

which aims to minimize the root-mean-square deviation
(RMSD) between the two quantities.

Fig. 11. Influence functions in the optically active area plotted
along the radial line φ for Case 1 and Case 3 (top, left), Case 2 (top,
right), Case 4 (bottom, left), and Case 5 (bottom, right). Each actuator
was addressed individually with a pressure of 0.01 Nm−2.
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C. Simulation Results

Using Matlab R2019a, a low-density array with 5 × 5 actuators
and a high-density array with 129 × 129 actuators were gener-
ated. To decrease the computational effort in the latter case, the
coefficient calculations were executed in parallel per five actua-
tors and run in a compute cluster (Peregrine HPC cluster). For
all experiments, we used a partition of two Intel Xeon E5 2680
v3 or v4 (2.50 GHz or 2.40 GHz, respectively) CPUs with 5 GB
of memory. Thereby, the computational time was decreased to
about 2 h when all jobs ran in parallel.

To assess the mechanical model, a second simulation in
Matlab was generated fitting the mirror surface to selected
Zernike polynomials. The procedure of this approach included
three steps. The first step consisted of reducing the mirror

Fig. 12. 129 × 129 actuator array fitted to Zernike polynomial Z1
3

with a peak-to-valley amplitude of 1.972 µm in a graphic representa-
tion showing the active area of the mirror as unit disc with a vertical col-
orbar giving the surface displacement.

Fig. 13. Surface displacement along the radial line φ = 0 for a
129 × 129 actuator array fitted to Zernike polynomial Z1

3 with a
peak-to-valley amplitude of 1.972 µm.

surface to an optically active area due to the boundary condi-
tions to circumvent an increasing fitting error caused by zero
deflection at the clamped edge. Second, a mask was gener-
ated to match selected points of the Zernike polynomial disc
plot to the surface points of the mirror. This mask was created
with a partition in radial and angular coordinates according
to r0 < r1 < ... < r(n−1) < rn with r0 = 0 and rn = 1, and
φ0 < φ1 < ... < φ(n−1) < φn with φ0 = 0 and φn = 2π ,
respectively. In the third step, the RMSD of the estimator zd

with respect to the actual surface deflection z was calculated
[Eq. (14)] to evaluate the mirror accuracy by

RMSD(z) =

√

∑X
x=1 (zx − zdx )

2

x
. (14)

Fig. 14. 129 × 129 actuator array fitted to Zernike polynomial Z0
4

with a peak-to-valley amplitude of 1.199 µm in a graphic representa-
tion showing the active area of the mirror as unit disc with a vertical col-
orbar giving the surface displacement.

Fig. 15. Surface displacement along the radial line φ = 0 for a
129 × 129 actuator array fitted to Zernike polynomial Z0

4 with a
peak-to-valley amplitude of 1.199 µm.
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There were 4961 surface points selected based on the
described partition over a diameter of 0.8, which corre-
sponds to the active area. The facesheet surface tension
amounted to 15 N m−2 and total mirror radius normalized to 1.
Figures 12–15 show the results for a 129 × 129 actuator array
of fitting the mirror surface to lower-order Zernike polynomials
while Figs. 16 and 17 show the results for a selected higher-order
polynomial. Table 2 summarizes the RMSDs for the first 28
Zernike polynomials and selected higher-order ones fitted with
a peak-to-valley amplitude in the region of approximately 1.5 to
2 µm with a low- and high-density array.

Considering the fitting results for a low-density array with
5 × 5 actuators (25 actuators in the active area), the intersec-
tion layout became clear and the positions of the few actuators
play a major role for the final results. The fitting errors are

Fig. 16. 129 × 129 actuator array fitted to Zernike polynomial Z4
10

with a peak-to-valley amplitude of 1.718 µm in a graphic representa-
tion showing the active area of the mirror as unit disc with a vertical col-
orbar giving the surface displacement.

Fig. 17. Surface displacement along the radial line φ = 0 for a
129 × 129 actuator array fitted to Zernike polynomial Z4

10 with a
peak-to-valley amplitude of 1.718 µm.

Table 2. Summary of Root-Mean-Square Deviations

(RMSDs) for Selected Zernike Polynomials (ZPs) with a

5× 5 [Low Density (LD)] and 129× 129 Actuator Array

[High Density (HD)]

ZPs LD: RMSDs in [%] HD: RMSDs in [%]

Z−1
1 4.426 0.001433

Z1
1 4.352 0.001373

Z−2
2 3.806 0.000298

Z0
2 12.840 0.065971

Z2
2 9.498 0.004775

Z−3
3 10.138 0.007609

Z−1
3 13.937 0.131942

Z1
3 13.756 0.134622

Z3
3 9.974 0.007343

Z−4
4 11.376 0.005252

Z−2
4 12.662 0.082268

Z0
4 25.917 0.524411

Z2
4 20.755 0.409452

Z4
4 13.069 0.011954

Z−5
5 13.847 0.017128

Z−3
5 18.909 0.406282

Z−1
5 18.838 0.675500

Z1
5 18.674 0.692096

Z3
5 18.717 0.400501

Z5
5 13.649 0.016273

Z−6
6 14.903 0.009467

Z−4
6 20.851 0.364835

Z−2
6 18.077 0.346565

Z0
6 25.742 1.735849

Z2
6 17.145 1.670824

Z4
6 16.980 0.729995

Z6
6 14.790 0.049802

Z−10
10 16.216 0.087481

Z−8
10 18.114 1.420633

Z−6
10 18.901 2.341578

Z−4
10 20.592 2.417903

Z−2
10 22.680 1.451910

Z0
10 27.243 6.092243

Z2
10 21.649 6.225307

Z4
10 18.076 4.505920

Z6
10 18.868 3.345968

Z8
10 17.221 1.468534

Z10
10 17.303 0.271556

between 3.8% and 27.2%. Comparing these results to a high-
density array with 129 × 129 actuators (16073 actuators in
the active area, 568 actuators outside), we observe that the
RMSDs decrease drastically. With 129 × 129 actuators, we
have deviations between 0.000298% and 6.23% for the selected
polynomials. For higher-order polynomials, corner effects are
visible. Although the fitting errors for low- and high-density
arrays behave in a similar manner with an increasing degree of
the polynomial, it is noticeable that with Zernike polynomials in
the cosine phase, the RMSD is slightly higher due to the square
grid that characterizes the HDM. For further fitting improve-
ment, the position of the square region, in which the actuators
are created due to the interconnection of electrodes, might be
adjusted with the active area to cover completely upper, lower,
left, and right corners of the unit disc.
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4. CONCLUSIONS

This study investigated the fundamental characteristics of
actuator positions of high-density arrays and presented a
generalization of cases to calculate every actuator position of
deformable mirrors for application in what we believe to the
best of our knowledge is a novel hysteretic deformable mirror.
Based on the introduced coordinate transformation while
solving the Poisson equation, it was possible to exactly model
the shape of the pressure planes and guarantee a more realistic
description of the actuator influence functions. By calculating
the coefficient matrix in a cluster, the computational time was
decreased, which presents a usable method for computations on
deformable mirrors with high actuator densities. Furthermore,
the mirror model includes the mechanical coupling between the
actuators and the facesheet. The presented results contribute
to achieve a higher accuracy in modeling the actuator influence
functions according to the actual properties of the DM, and
therefore decrease fitting errors. It provides a framework on
how to consider high actuator densities and calculate them in
a reasonable way regarding actuator position case classification
and computation time.

APPENDIX A: RESPECTIVE FORMULAS

For actuators of the right side of the plate, the left corner of
a pressure plane is denoted with x1, the right corner with
x2, the lower corner with y1, and the upper corner with y2.

Table 3. Definition of Radial Limits in Interval I with

Coordinate Transformation for Splitting the Electrode

Areas

Case 1 Boundaries Coordinate transformation

I1 0 ≤ r̄ ≤ r1e 0 < φ̄ < 2π

I21 r1e < r̄ < r1 arccos(x2/r̄ ) < φ̄ < arcsin(y2/r̄ )

I22 arcsin(y2/r̄ ) < φ̄ < arccos(x1/r̄ )

I23 arccos(x1/r̄ ) < φ̄ < arcsin(y1/r̄ )

I24 arcsin(y1/r̄ ) < φ̄ < arccos(x2/r̄ )

Case 2 Boundaries Coordinate transformation

I1 r1 < r̄ ≤ r2 arcsin(y1/r̄ ) < φ̄ ≤ arccos(x1/r̄ )

I2 r2 < r̄ < r4 arccos(x2/r̄ ) < φ̄ < arcsin(y2/r̄ )

Case 3 Boundaries Coordinate transformation

I11 r1e < r̄ ≤ r1 0 < φ̄ ≤ arccos(x1/r̄ )

I12 2π − arccos(x1/r̄ ) < φ̄ < 2π

I2 r1 < r̄ ≤ r4e arcsin(y1/r̄ ) < φ̄ ≤ arcsin(y2/r̄ )

I31 r4e < r̄ < r4 arccos(x2/r̄ ) < φ̄ < arcsin(y2/r̄ )

I32 arcsin(y1/r̄ ) < φ̄ < arccos(x2/r̄ )

Case 4 Boundaries Coordinate transformation

I1 r1 < r̄ ≤ r3 arcsin(y1/r̄ ) < φ̄ ≤ arccos(x1/r̄ )

I2 r3 < r̄ ≤ r2 arccos(x2/r̄ ) < φ̄ ≤ arccos(x1/r̄ )

I3 r2 < r̄ < r4 arccos(x2/r̄ ) < φ̄ < arcsin(y2/r̄ )

Case 5 Boundaries Coordinate transformation

I1 r1 < r̄ ≤ r2 arcsin(y1/r̄ ) < φ̄ ≤ arccos(x1/r̄ )

I2 r2 < r̄ ≤ r3 arcsin(y1/r̄ ) < φ̄ ≤ arcsin(y2/r̄ )

I3 r3 < r̄ < r4 arccos(x2/r̄ ) < φ̄ < arcsin(y2/r̄ )

Table 4. Assignment of Symbols to Reoccurring

Formulas

Symbol Formula Symbol Formula

κx1 x1

√

1 − x 2
1/r 2 κy1 y1

√

1 − y 2
1/r 2

κx2 x2

√

1 − x 2
2/r 2 κy2 y2

√

1 − y 2
2/r 2

ǫx1 x1

√

(r 2 − x 2
1 )/r 2 ǫy1 y1

√

(r 2 − y 2
1 )/r 2

ǫx2 x2

√

(r 2 − x 2
2 )/r 2 ǫy2 y2

√

(r 2 − y 2
2 )/r 2

α1 arccos(x1/r ) α2 arccos(x2/r )

β1 arcsin(y1/r ) β2 arcsin(y2/r )

γ1 arcsin(x1/r ) γ2 arcsin(x2/r )

The designation is mirrored with actuators on the left side of the
plate. In general, it can be said that |x1| ≤ |x2| and |y1| ≤ |y2|.

Table 3 summarizes the definition of all radial limits with
coordinate transformations for splitting the electrode areas. The
symbols assigned to reoccurring formulas are listed in Table 4.

APPENDIX B: NUMERICAL INTEGRATION

Here are the two subintegrals that are solved numeri-
cally. 174 is the maximum number of n terms required for
convergence [20], so

f1n :=

∞
∑

n=1

∫ R2

R1

r̄

n2

(

(r̄ r )n −

(

r̄

r

)n)

× [sin(n(φ2(r̄ ) − φ)) − sin(n(φ1(r̄ ) − φ))]dr̄

f2n :=

∞
∑

n=1

∫ R2

R1

r̄

n2

(

(r̄ r )n −

(r

r̄

)n)

× [sin(n(φ2(r̄ ) − φ)) − sin(n(φ1(r̄ ) − φ))]dr̄ .

APPENDIX C: COEFFICIENT CALCULATION IN

CASE 1

Here are the formulas to calculate the coefficients M for actua-
tors that can be categorized in Case 1:

r i = 0

M= (1/(2π)) × (( f2(I1)(r1e )) + ( f2(I21)(r1) − f2(I21)(r1e ))

+ ( f2(I22)(r1) − f2(I22)(r1e )) + ( f2(I23)(r1) − f2(I23)(r1e ))

+ ( f2(I24)(r1) − f2(I24)(r1e ))),

(C1)

0 < r i ≤ r1e ,

M= (1/(2π)) × (( f1(I1)(r i ) − f1(I1)(0)) − f1n(I1)

+ ( f2(I1)(r1e ) − f2(I1)(r i )) − f2n(I1)

+ ( f2(I21)(r1) − f2(I21)(r1e )) − f2n(I21)

+ ( f2(I22)(r1) − f2(I22)(r1e )) − f2n(I22)

+ ( f2(I23)(r1) − f2(I23)(r1e )) − f2n(I23)

+ ( f2(I24)(r1) − f2(I24)(r1e )) − f2n(I24)), (C2)
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r1e < r i < r1,

M= (1/(2π)) × (( f1(I21)(r i ) − f1(I21)(r1e )) − f1n(I21)

+ ( f1(I22)(r i ) − f1(I22)(r1e )) − f1n(I22)

+ ( f1(I23)(r i ) − f1(I23)(r1e )) − f1n(I23)

+ ( f1(I24)(r i ) − f1(I24)(r1e )) − f1n(I24)

+ ( f2(I21)(r1) − f2(I21)(r i )) − f2n(I21)

+ ( f2(I22)(r1) − f2(I22)(r i )) − f2n(I22)

+ ( f2(I23)(r1) − f2(I23)(r i )) − f2n(I23)

+ ( f2(I24)(r1) − f2(I24)(r i )) − f2n(I24)

+ ( f1(I1)(r1e ) − f1(I1)(0)) − f1n(I1)),

(C3)

r i ≥ r1,

M= (1/(2π)) × (( f1(I1)(r1e ) − f1(I1)(0)) − f1n(I1)

+ ( f1(I21)(r1) − f1(I21)(r1e )) − f1n(I21)

+ ( f1(I22)(r1) − f1(I22)(r1e )) − f1n(I22)

+ ( f1(I23)(r1) − f1(I23)(r1e )) − f1n(I23)

+ ( f1(I24)(r1) − f1(I24)(r1e )) − f1n(I24)) (C4)

A. Sub-Functions of f1

f1(I1)= −(πr 2 log(r i ))

f1(I21)= (r (−(κx2) − κy2 + r α2 − r β2) log(r i ))/2

f1(I22)= (r (κx1 + κy2 − r α1 + r β2) log(r i ))/2

f1(I23)= (r (−(κx1) − κy1 + r α1 − r β1) log(r i ))/2

f1(I24)= (r (κx2 + κy1 − r α2 + r β1) log(r i ))/2

B. Sub-Functions of f2

f2(I1) = 2π(r 2/4 + (r 2 log(r −1))/2)

f2(I21) = (3r ǫx2
)/4 + (3r ǫy2

)/4 − (r 2α2)/4 + (x 2
2γ2)/2

+ (r 2β2)/4 + (y 2
2β2)/2 + (r (ǫx2

− r α2) log(r −1))/2

+ (r (ǫy2
+ r β2) log(r −1))/2

f2(I22) = (−3r ǫx1
)/4 − (3r ǫy2

)/4 + (r 2α1)/4 − (x 2
1γ1)/2

− (r 2β2)/4 − (y 2
2β2)/2 − (r (ǫx1

− r α1) log(r −1))/2

− (r (ǫy2
+ r β2) log(r −1))/2

f2(I23) = (3r ǫx1
)/4 + (3r ǫy1

)/4 − (r 2α1)/4 + (x 2
1γ1)/2

+ (r 2β1)/4 + (y 2
1β1)/2 + (r (ǫx1

− r α1) log(r −1))/2

+ (r (ǫy1
+ r β1) log(r −1))/2

f2(I24) = (−3r ǫx2)/4 − (3r ǫy1)/4 + (r 2α2)/4 − (x 2
2γ2)/2

− (r 2β1)/4 − (y 2
1β1)/2 − (r (ǫx2 − r α2) log(r −1))/2

− (r (ǫy1 + r β1) log(r −1))/2

APPENDIX D: COEFFICIENT CALCULATION IN

CASE 2

Here are the formulas to calculate the coefficients M for actua-
tors that can be categorized in Case 2:

r i ≤ r1,

M= (1/(2π))((( f2(I1)(r2) − f2(I1)(r1)) − f2n(I1))

+ (( f2(I2)(r4) − f2(I2)(r2)) − f2n(I2))) (D1)

r1 < r i ≤ r2,

M= (1/(2π))((( f1(I1)(r i ) − f1(I1)(r1)) − f1n(I1))

+ (( f2(I1)(r2) − f2(I1)(r i )) − f2n(I1))

+ (( f2(I2)(r4) − f2(I2)(r2)) − f2n(I2))) (D2)

r2 < r i < r4,

M= (1/(2π))((( f1(I2)(r i ) − f1(I2)(r2)) − f1n(I2))

+ (( f2(I2)(r4) − f2(I2)(r i )) − f2n(I2))

+ (( f1(I1)(r2) − f1(I1)(r1)) − f1n(I1))) (D3)

r i ≥ r4,

M= (1/(2π))((( f1(I1)(r2) − f1(I1)(r1)) − f1n(I1))

+ (( f1(I2)(r4) − f1(I2)(r2)) − f1n(I2))) (D4)

A. Sub-Functions of f1

f1(I1)= (r (κx1 + κy1 − r α1 + r β1) log(r i ))/2

f1(I2)= (r (−(κx2) − κy2 + r α2 − r β2) log(r i ))/2

B. Sub-Functions of f2

f2(I1) = (−3r ǫx1)/4 − (3r ǫy1)/4 + (r 2α1)/4 − (x 2
1γ1)/2

− (r 2β1)/4 − (y 2
1β1)/2 − (r (ǫx1 − r α1) log(r −1))/2

− (r (ǫy1 + r β1) log(r −1))/2

f2(I2) = (3r ǫx2)/4 + (3r ǫy2)/4 − (r 2α2)/4 + (x 2
2γ2)/2

+ (r 2β2)/4 + (y 2
2β2)/2 + (r (ǫx2 − r α2) log(r −1))/2

+ (r (ǫy2 + r β2) log(r −1))/2

APPENDIX E: COEFFICIENT CALCULATION IN

CASE 3

Here are the formulas to calculate the coefficients M for actua-
tors that can be categorized in Case 3:
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r i ≤ r1e ,

M= (1/(2π))(( f2(I11)(r1) − f2(I11)(r1e )) − f2n(I11)

+ ( f2(I12)(r1) − f2(I12)(r1e )) − f2n(I12)

+ ( f2(I2)(r4e ) − f2(I2)(r1)) − f2n(I2)

+ ( f2(I31)(r4) − f2(I31)(r4e )) − f2n(I31)

+ ( f2(I32)(r4) − f2(I32)(r4e )) − f2n(I32)) (E1)

r1e < r i ≤ r1,

M= (1/(2π))(( f1(I11)(r i ) − f1(I11)(r1e )) − f1n(I11)

+ ( f1(I12)(r i ) − f1(I12)(r1e )) − f1n(I12)

+ ( f2(I11)(r1) − f2(I11)(r i )) − f2n(I11)

+ ( f2(I12)(r1) − f2(I12)(r i )) − f2n(I12)

+ ( f2(I2)(r4e ) − f2(I2)(r1)) − f2n(I2)

+ ( f2(I31)(r4) − f2(I31)(r4e )) − f2n(I31)

+ ( f2(I32)(r4) − f2(I32)(r4e )) − f2n(I32)) (E2)

r1 < r i ≤ r4e ,

M= (1/(2π))(( f1(I2)(r i ) − f1(I2)(r1)) − f1n(I2)

+ ( f2(I2)(r4e ) − f2(I2)(r i )) − f2n(I2)

+ ( f1(I11)(r1) − f1(I11)(r1e )) − f1n(I11)

+ ( f1(I12)(r1) − f1(I12)(r1e )) − f1n(I12)

+ ( f2(I31)(r4) − f2(I31)(r4e )) − f2n(I31)

+ ( f2(I32)(r4) − f2(I32)(r4e )) − f2n(I32)) (E3)

r4e < r i < r4,

M= (1/(2π))(( f1(I31)(r i ) − f1(I31)(r4e )) − f1n(I31)

+ ( f1(I32)(r i ) − f1(I32)(r4e )) − f1n(I32)

+ ( f2(I31)(r4) − f2(I31)(r i )) − f2n(I31)

+ ( f2(I32)(r4) − f2(I32)(r i )) − f2n(I32)

+ ( f1(I11)(r1) − f1(I11)(r1e )) − f1n(I11)

+ ( f1(I12)(r1) − f1(I12)(r1e )) − f1n(I12)

+ ( f1(I2)(r4e ) − f1(I2)(r1)) − f1n(I2)) (E4)

r i ≥ r4,

M= (1/(2π))(( f1(I11)(r1) − f1(I11)(r1e )) − f1n(I11)

+ ( f1(I12)(r1) − f1(I12)(r1e )) − f1n(I12)

+ ( f1(I2)(r4e ) − f1(I2)(r1)) − f1n(I2)

+ ( f1(I31)(r4) − f1(I31)(r4e )) − f1n(I31)

+ ( f1(I32)(r4) − f1(I32)(r4e )) − f1n(I32)) (E5)

A. Sub-Functions of f1

f1(I11)= −((−(r κx1) + r 2α1) log(r i ))/2

f1(I12)= −((−(r κx1) + r 2α1) log(r i ))/2

f1(I2)= (r (κy1 − κy2 + r β1 − r β2) log(r i ))/2

f1(I31)= (r (−(κx2) − κy2 + r α2 − r β2) log(r i ))/2

f1(I32)= (r (κx2 + κy1 − r α2 + r β1) log(r i ))/2

B. Sub-Functions of f2

f2(I11) = (−2x 2
1γ1 + r 2α1(1 + 2 log(r −1))

− r κx1(3 + 2 log(r −1)))/4

f2(I12) = (−2x 2
1γ1 + r 2α1(1 + 2 log(r −1))

− r κx1(3 + 2 log(r −1)))/4

f2(I2) = (−(r (κy1 − κy2)(3 + 2 log(r −1))) − β1(r
2 + 2y 2

1

+ 2r 2 log(r −1)) + β2(r
2 + 2y 2

2 + 2r 2 log(r −1)))/4

f2(I31) = (3r ǫx2)/4 + (3r ǫy2)/4 − (r 2α2)/4 + (x 2
2γ2)/2

+ (r 2β2)/4 + (y 2
2β2)/2 + (r (ǫx2 − r α2) log(r −1))/2

+ (r (ǫy2 + r β2) log(r −1))/2

f2(I32) = (−3r ǫx2)/4 − (3r ǫy1)/4 + (r 2α2)/4 − (x 2
2γ2)/2

− (r 2β1)/4 − (y 2
1β1)/2 − (r (ǫx2 − r α2) log(r −1))/2

− (r (ǫy1 + r β1) log(r −1))/2

APPENDIX F: COEFFICIENT CALCULATION IN

CASE 4

Here are the formulas to calculate the coefficients M for actua-
tors that can be categorized in Case 4:

r i ≤ r1,

M= (1/(2π))((( f2(I1)(r3) − f2(I1)(r1)) − f2n(I1))

+ (( f2(I2)(r2) − f2(I2)(r3)) − f2n(I2))

+ (( f2(I3)(r4) − f2(I3)(r2)) − f2n(I3))) (F1)

r1 < r i ≤ r3,

M= (1/(2π))((( f1(I1)(r i ) − f1(I1)(r1)) − f1n(I1))

+ (( f2(I1)(r3) − f2(I1)(r i )) − f2n(I1))

+ (( f2(I2)(r2) − f2(I2)(r3)) − f2n(I2))

+ (( f2(I3)(r4) − f2(I3)(r2)) − f2n(I3))) (F2)
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r3 < r i ≤ r2,

M= (1/(2π))((( f1(I2)(r i ) − f1(I2)(r3)) − f1n(I2))

+ (( f2(I2)(r2) − f2(I2)(r i )) − f2n(I2))

+ (( f1(I1)(r3) − f1(I1)(r1)) − f1n(I1))

+ (( f2(I3)(r4) − f2(I3)(r2)) − f2n(I3))) (F3)

r2 < r i < r4,

M= (1/(2π))((( f1(I3)(r i ) − f1(I3)(r2)) − f1n(I3))

+ (( f2(I3)(r4) − f2(I3)(r i )) − f2n(I3))

+ (( f1(I1)(r3) − f1(I1)(r1)) − f1n(I1))

+ (( f1(I2)(r2) − f1(I2)(r3)) − f1n(I2))) (F4)

r i ≥ r4,

M= (1/(2π))((( f1(I1)(r3) − f1(I1)(r1)) − f1n(I1))

+ (( f1(I2)(r2) − f1(I2)(r3)) − f1n(I2))

+ (( f1(I3)(r4) − f1(I3)(r2)) − f1n(I3))). (F5)

A. Sub-Functions of f1

f1(I1)= (r (κx1 + κy1 − r α1 + r β1) log(r i ))/2

f1(I2)= (r (κx1 − κx2 − r α1 + r α2) log(r i ))/2

f1(I3)= (r (−(κx2) − κy2 + r α2 − r β2) log(r i ))/2

B. Sub-Functions of f2

f2(I1) = (−3r ǫx1)/4 − (3r ǫy1)/4 + (r 2α1)/4 − (x 2
1γ1)/2

− (r 2β1)/4 − (y 2
1β1)/2 − (r (ǫx1 − r α1) log(r −1))/2

− (r (ǫy1 + r β1) log(r −1))/2

f2(I2) = (−3r ǫx1)/4 + (3r ǫx2)/4 + (r 2α1)/4 − (r 2α2)/4

− (x 2
1γ1)/2 + (x 2

2γ2)/2 − (r (ǫx1 − r α1) log(r −1))/2

+ (r (ǫx2 − r α2) log(r −1))/2

f2(I3) = (3r ǫx2)/4 + (3r ǫy2)/4 − (r 2α2)/4 + (x 2
2γ2)/2

+ (r 2β2)/4 + (y 2
2β2)/2 + (r (ǫx2 − r α2) log(r −1))/2

+ (r (ǫy2 + r β2) log(r −1))/2

APPENDIX G: COEFFICIENT CALCULATION IN

CASE 5

Here are the formulas for calculating the coefficients M for
actuators that can be categorized in Case 5:

r i ≤ r1,

M= (1/(2π))((( f2(I1)(r2) − f2(I1)(r1)) − f2n(I1))

+ (( f2(I2)(r3) − f2(I2)(r2)) − f2n(I2))

+ (( f2(I3)(r4) − f2(I3)(r3)) − f2n(I3))) (G1)

r1 < r i ≤ r2,

M= (1/(2π))((( f1(I1)(r i ) − f1(I1)(r1)) − f1n(I1))

+ (( f2(I1)(r2) − f2(I1)(r i )) − f2n(I1))

+ (( f2(I2)(r3) − f2(I2)(r2)) − f2n(I2))

+ (( f2(I3)(r4) − f2(I3)(r3)) − f2n(I3))) (G2)

r2 < r i ≤ r3,

M= (1/(2π))((( f1(I2)(r i ) − f1(I2)(r2)) − f1n(I2))

+ (( f2(I2)(r3) − f2(I2)(r i )) − f2n(I2))

+ (( f1(I1)(r2) − f1(I1)(r1)) − f1n(I1))

+ (( f2(I3)(r4) − f2(I3)(r3)) − f2n(I3))) (G3)

r3 < r i < r4,

M= (1/(2π))((( f1(I3)(r i ) − f1(I3)(r3)) − f1n(I3))

+ (( f2(I3)(r4) − f2(I3)(r i )) − f2n(I3))

+ (( f1(I1)(r2) − f1(I1)(r1)) − f1n(I1))

+ (( f1(I2)(r3) − f1(I2)(r2)) − f1n(I2))) (G4)

r i ≥ r4,

M= (1/(2π))((( f1(I1)(r2) − f1(I1)(r1)) − f1n(I1))

+ (( f1(I2)(r3) − f1(I2)(r2)) − f1n(I2))

+ (( f1(I3)(r4) − f1(I3)(r3)) − f1n(I3))). (G5)

A. Sub-Functions of f1

f1(I1)= (r (κx1 + κy1 − r α1 + r β1) log(r i ))/2

f1(I2)= (r (κy1 − κy2 + r β1 − r β2) log(r i ))/2

f1(I3)= (r (−(κx2) − κy2 + r α2 − r β2) log(r i ))/2

B. Sub-Functions of f2

f2(I1) = (−3r ǫx1)/4 − (3r ǫy1)/4 + (r 2α1)/4 − (x 2
1γ1)/2

− (r 2β1)/4 − (y 2
1β1)/2 − (r (ǫx1 − r α1) log(r −1))/2

− (r (ǫy1 + r β1) log(r −1))/2

f2(I2) = (−(r (κy1 − κy2)(3 + 2 log(r −1))) − β1(r
2 + 2y 2

1

+ 2r 2 log(r −1)) + β2(r
2 + 2y 2

2 + 2r 2 log(r −1)))/4
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f2(I3) = (3r ǫx2)/4 + (3r ǫy2)/4 − (r 2α2)/4 + (x 2
2γ2)/2

+ (r 2β2)/4 + (y 2
2β2)/2 + (r (ǫx2 − r α2) log(r −1)/2

+ (r (ǫy2 + r β2) log(r −1))/2.
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