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Abstract— Motivated by the recent emergence of large online
social networks, we seek to understand the effects the underlying
social network (graph) structure and the information dynamics
have on the creation of influence of an individual. We examine
a natural model for information dynamics under two important
temporal scales: a first impression setting and a long– term or
equilibrated setting. We obtain a characterization of relevant net-
work structures under these temporal aspects, thereby allowing
us to formalize the existence of influential agents. Specifically,
we find that the existence of an influential agent corresponds
to: (a) strictly positive information theoretic capacity over an
infinite-sized noisy broadcast tree network in the first impression
case, and (b) positive recurrent property of an appropriate
(countable state space) Markov chain in the long-term case. As
an application of our results, we evaluate the parameter space of
the popular “small world” network model to identify when the
network structure supports the existence of influential agents.

I. INTRODUCTION

Social networks have been a key medium for information
spreading since ages, and recently they are becoming increas-
ingly important as online social communities of unprecedented
size are being formed. This phenomenon has given rise to
many important socio-economically relevant questions, such
as what determines the likelihood of an individual joining a
particular group [3] ?; how and when can one perform efficient
search in social networks [19] ?; how and for what information
acquisition should incentive-based approaches be used [13],
[14] ? and what properties of a social network determine
the feasibility of efficient information spreading (e.g., viral
advertisement) or of reaching a global consensus?

In this work, we wish to address this last question. Specif-
ically, we wish to identify qualitative structural properties
of social networks that determine the existence of influen-
tial agent(s). Indeed, this structural characterization has to
be strongly coupled with the dynamics of the information
propagation. In the broad temporal spectrum of information
propagation, there are two natural extreme aspects: the short-
term or first impressions and the long-term or equilibrium. We
therefore undertake the task of characterizing influence of an
individual in terms of a structural property of networks under
these two representative types of information dynamics.

Anecdotal evidence of the importance of leaving good
first impressions is vast. Consider the following motivating
situation: suppose a political candidate speaks in person for

the very first time in front of a community. The audience will
likely form a strong first opinion of the candidate based on
the candidate’s ability to persuade them during the speech. In
turn, this first impression can quickly spread to other people
through the social network. However, this setting will leave
little chance for people to discuss the candidate’s message
at length. In that sense, the social impact of the candidate’s
political message is akin to broadcasting some information
from a source successively through a network. Other natural
examples where the influence arising from first impressions
abound: advertisement of a product that yields to its quick
and wide adoption (known as viral marketing), ad-injection
in the peer-to-peer applications, fast rumor (or emergency
information) spreading in a social community, etc.

In addition to the short-term or first impressions effect of
information spreading, in many other situations the opinion is
allowed to settle after individuals of a society communicate
and exchange information over a longer time scale. Influence
again plays a central role in many scenarios. Representative
applications include developing an interest for a particular
type of a television show, adoption of a certain lifestyle or
a prevalence of a certain (un)healthy habit, and so on.

A. Related work

In order to capture the notion of influence in an effective
manner for a variety of applications discussed above, it is
important to devise a simple, useful framework to study
information dynamics. This topic has been of great recent
interest, and here we present only a small part of relevant
related literature.

The algorithmic perspective and the approximations to the
optimization problem of identifying a subset of influential
nodes in a social network was studied in [10]. Subsequent
work [18] generalized the results of [10]. Decentralized search
in a (social) network was the subject of [11], [12], where,
among other observations, a precise connection between the
delivery time and the explicit values of the parameters of the
underlying model was established. Cascades of information
and their patterns where the influence is via a recommendation
of one agent to another was the subject of [15]. A related
line of work studying influence in a social network focuses
on explaining empirical and/or experimental data, with appli-
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cation across multiple and wide-ranging disciplines including
medicine [4], sociology [16], and economics [1].

The most relevant related work is by Golub and Jackson [9],
who recently studied the process of learning in a social
network under the naı̈ve update model: this work models
the effect of information propagation in a large network
over a long time-scale. In this model, each agent takes a
weighted average of her/his neighbors’ opinions in forming
her/his own. Under this model, Golub and Jackson defined
and characterized the notion of “wisdom” in a society.

B. Our contributions

The primary contribution of this paper is a simple, effective
model for characterizing the existence of influential agents
in terms of the social network structure and information dy-
namics that itself captures the two extreme but representative
temporal aspects.

Here, the short-term or the first-impression setting reflects
the following natural information propagation: suppose an
individual, call it v, wishes to disseminate a particular opinion
on an important issue over the social network. To so do, s/he
communicates the opinion to immediate neighbors (friends).
They in turn communicate the opinion to their respective
friends and so on. While propagating this information, an
individual may change the opinion depending upon her/his
belief on the topic. When only first impressions count, various
individuals do not get a chance to interact further to reach a
global consensus. In such a setup, we define the individual
v to be influential if her/his opinion survives (information-
theoretically) among the far away individuals.

This characterization of the existence of influence of an indi-
vidual v becomes equivalent to the well studied reconstruction
problem under broadcasting over a tree (e.g., [7], [8]). Using
the results of [7], we obtain the following : if the neighborhood
of the agent v in a large social network is socially expanding1

then the agent v is influential; else if her/his neighborhood is
socially non-expanding then v is not influential.

The other important temporal aspect to consider is that of
the equilibrium or long term setting. This state of the social
network can be viewed as the generalization of the first-
impressions setting, equilibrated after a sufficiently long period
of time. In this setting it is then natural to consider that the
agents will have the opportunity to interact with all of their
immediate neighbors when settling on their opinions. Here, we
establish that the existence of influential individuals in such a
setup is equivalent to the existence of positive recurrent states
of an appropriate Markov chain. This characterization allows
to interpret influence of individuals as well as a “degree of
democracy” in the society.

C. Organization

The rest of the paper is organized as follows. In Section II,
we formally introduce the above discussed model. Next, in
Section III we state the main results. Detailed proofs are

1The precise definitions of a socially (non)-expanding network are provided
later.

deferred to the longer version of this paper [6]. We present
conclusions and future work in Section IV.

II. MODEL

We begin by describing a natural model for dynamics of
information spreading. Let Gn = (Vn, En) be the graph given
by the vertex set Vn, with |Vn| = n, and by the edge set En

that together describe this social network: the elements of Vn

correspond to the individuals (or agents), and the elements
of En describe the connections in the social network between
the respective individuals. Let Nn(v) denote the neighborhood
of vertex (agent) v in Gn. We are interested in the large-
scale behavior of this social network, i.e., as n → ∞. We
assume throughout a simplistic model where the opinion is
binary or {+1,−1} valued or YES/NO. Next, we describe
information dynamics of the opinions of individuals over a
very short time scale (first impressions) or a very long time
scale (equilibrium).

A. Information dynamics: First impression/short-term

Here, our interest is in understanding whether an agent or
individual is influential on a short-term time scale. To this end,
consider an individual v ∈ Vn having an opinion ±1. We want
to understand influence of this agent, given the social network
structure Gn.

On the short time scale, the opinion is propagated through
the social network as follows. Initially, v communicates the
opinion to her/his neighbors as–is. These neighbors commu-
nicate it further to their neighbors, who have not heard the
opinion before from any of the other nodes, and so on. Here the
restriction of propagating the opinion to neighbors who have
not heard it before tries to capture the ‘short time scale’ or
‘first impressions’ effect – agents do not have enough time to
discuss over the opinion, and hence agree or disagree only with
the opinion they hear for the first time. When an agent hears an
opinion from one of her/his neighbors, s/he will form her/his
opinion to be the same as the heard opinion with probability
1 − pa, and will form the complement of the heard opinion
with probability pa. The first impressions restriction will mean
that each agent forms an opinion once and retains it forever.

This information dynamics essentially leads to a propaga-
tion of opinion over a ‘sub-tree’ of Gn with node v as its root.
Specifically, let Tn(v, pa) denote this subtree of Gn, and with
v as its root. For simplicity, we will assume that Tn(v, pa)
is generated by the breadth first search of Gn starting from
v. Clearly, it has n total number of nodes. We will restrict
our attention to social networks Gn with each node having a
bounded degree – therefore, Tn(v, pa) has a bounded degree.
The use of notation pa in this representation is to capture the
‘noisy’ propagation of the original opinion of v along the tree.
Initially, v has value ±1. Each node, starting with v, sends its
information (±1) to its children successively. A node, upon
receiving the information from its parent, retains it as-is with
probability 1−pa, and takes the opposite value with probability
pa. In summary, each agent pays attention to the first instance
of the received opinion (a.k.a. the agent listens only once),
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which s/he hears from her/his parent. Note that we assume
that the probability of alteration pa is the same on every edge,
and that the opinion propagation is independent across siblings
and across levels.

The following auxiliary objects will be useful. Let Tn,k
v be

the depth k sub-tree of Tn(v, pa) from root v. By construction,
Tn,k−1

v is strictly contained in Tn,k
v . Let Ln,k

v = Tn,k
v \Tn,k−1

v ,
i.e., Ln,k

v is the set of leaf nodes at level k for Tn,k
v .

A.1. Influence of an individual

Now, we define when is an individual influential. Intuitively,
if v is influential then nodes or individuals that are far away
from v should still share the opinion originally held by v, or
equivalently, they should be able to collectively reconstruct
what was agent’s v original opinion based on their received
belief under information dynamics described above. Formally,
consider the node v, the root of the tree Tn(v, pa). Let Rn,k

v

be the set of nodes in Vn that are at a distance at least k + 1
away from v (i.e., not contained in the tree Tn,k

v ). Let XRn,k
v

denote the (random) collection of the received opinions under
the dynamics described above at nodes in Rn,k

v . A predictor of
Xv , the opinion of v, based on XRn,k

v
, is some function F that

generates prediction of Xv (i.e., with the value in {−1,+1})
from XRn,k

v
. The reconstruction probability, QF , is defined as

QF =
1
2

∑

i∈{−1,+1}
P(F (XRn,k

v
) = i|Xv = i);

where we assume equal prior uncertainty across all values
of Xv . Define Qk as the maximum of QF over the set of
all possible predictors based on XRn,k

v
. Clearly, Qk ≥ 1/2

since this lower bound is achieved through a trivial prediction
function that predicts any one of the two values uniformly at
random without using XRn,k

v
. This suggests that if there is any

information captured in XRn,k
v

about Xv , then Qk should be
strictly greater than 1/2. Therefore, the following definition
about v being influential follows naturally: v is influential, if
there exists kn →∞ as the social network size n →∞, such
that

lim inf
n→∞

Qkn ≥
1 + δ

2
,

for some δ > 0, where then δ indicates the improvement in
the reconstruction probability relative to the uninformed case.
If no such positive δ exists, the agent v is not influential.

B. Information dynamics: equilibrium/long-term

Recall that the graph Gn = (Vn, En) describes the social
network of n members. To determine the influence of an
agent v ∈ Vn in the equilibrium state, we consider a natural
extension of the first-impressions setting by now assuming that
the agents have enough time to listen to all of their neighbors’
(friends’) opinions in forming their own. In contrast to the first-
impressions setting where the opinion of an agent is based on
the first instance of the heard opinion and is subsequently set
once and for all, here it is natural to consider that the opinion
value can change over time. Let xv(t) denote the opinion of
the agent v at time t, t ≥ 0, for 1 ≤ v ≤ n, and where the

opinion xv(t) ∈ {−1, +1}. The opinion update at time t + 1
is then

xv(t + 1) =

{
xw(t) with probability pn(v, w) for w 6= v

xv(t) with probability pn(v, v) for w = v,

where pn(v, w) is the probability that the agent v
will adopt the current opinion of neighbor w, whereby∑

w∈Nn(v)∪v pn(v, w) = 1.
The expected evolution of opinions xn(t) =

(x1(t), . . . , xn(t)) is then

E[xv(t + 1)|xn(t)] =
∑

w∈Nn(v)∪v

xw(t)pn(v, w).

Hence,
E[xn(t + 1)T |xn(t)T ] = Pnxn(t)T ,

where Pn is the stochastic n× n matrix with pn(w, v) as the
(w, v) entry, and where (·)T denotes the transpose of the row
vector. The matrix Pn is referred to as the influence matrix.
Then

E[xn(t + 1)T ] = PnE[xn(t)T ].

By successively iterating,

E[xn(t)T ] = P t
nE[xn(0)T ]. (1)

We consider a connected social network so that each agent
could eventually influence every other agent. As a result,
in the underlying Markov chain representation M(Vn, Pn)
we assume that the transition matrix Pn is irreducible and
aperiodic.

B.1. Influence of an individual

Under this set-up, we are interested in the persistence of
the original opinion value after sufficiently many interactions
(steps) have taken place. Intuitively, agent v is influential if
after a long time period other agents in the network continue
to pay attention to v’s opinion.

By the standard theory of Markov chains, the underlying
aperiodic and irreducible Markov chain M(Vn, Pn) has a
unique stationary distribution πn = (πn(1), . . . , πn(n)), such
that

PnπT
n = πT

n ,

where πT
n corresponds to the transpose of row vector πn. Now

due to uniqueness of stationary distribution of Pn, it follows
that

lim
t→∞

P t
n = P∞n , (2)

where P∞n has all rows equal to πn.
Let xn(0) be the initial set of values held by the members

of the social network. From (1) and (2), it follows that

lim
t→∞

E[xn(t)T ] =
(
πnxn(0)T

)
1,

4
= yn1, (3)

where 1 is the vector of all 1s. Thus, as time t → ∞, the
average value of each agent goes to the same value yn.
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Since we seek to capture the long-term influence of the
agent v in a large society (i.e., as the social network size
n → ∞), suppose that xv(0) = 1 and xw(0) = −1 for all
w ∈ Vn \ v. We define y∗ as y∗ = lim infn→∞ yn. Then, the
agent v is considered influential if

y∗ > −1 .

For the assumed xn(0), we have that yn = πv −∑
i∈Vn\v πi = 2πv−1 from (3). Therefore, in the limit n →∞

of a large society, if πv is strictly positive, the probability that
any agent w holds the opinion value +1 is also strictly positive.
That is, even if there is severe opposition to this opinion value,
it is strictly possible that any given agent will adopt v’s original
opinion – thus capturing what influence is all about!

III. MAIN RESULTS

In this section we state the main results. We first consider
the short-term (or first-impression) setting, and we describe
the characterization of the relevant network graph structures
under which influential individuals exists under this temporal
constraint. We apply these results to the case of a small
world network model, and express the lack of/presence of
influential agents in terms of the value of the model parameter.
Then, we state the results regarding the characterization of the
network graph structure that imply the existence of influential
individuals under the long-term (or equilibrium) setting, itself
viewed as the time-averaged version of the first-impressions
setting. We contextualize this characterization as a “democratic
property” of a society. Detailed proofs of these results are
omitted due to space constraints and they will appear in the
longer version of this work [6].

A. Information dynamics: first-impression/short-term

A.1. Some preliminaries

We start off with some useful definitions and notation.
Definition 1 (Socially expanding network): We say that Gn

is socially expanding with respect to v if, for a fixed v, ∃
constants c, c ∈ (1/2, 1) and d, d > 0, such that ∀k, k ≤
k∗(n, c),

E
[|N(S) ∩ Ln,k+1

v | Tn,k
v

] ≥ (1 + d)|S|, (4)

where S ⊂ Ln,k
v , and N(S) denotes the neighborhood set of

S. Here , k∗(n, c) is the largest k satisfying Tn,k
v ≤ nc.

In the above definition, the expectation in (4) is with respect to
the probability distribution over the choice of graph – in case
of a random graph model, this is over the choice of randomly
generated graph; in case of a deterministic graph, it becomes
a deterministic condition.

Note that the above definition is a somewhat more con-
strained condition than the traditional expansion property [5].
It nonetheless captures the essence of what it means to
expand: the innovation in new connections by freshly intro-
duced nodes should be non-negligible, until at least a large
enough subgraph, which is itself captured by the constant
c. Another reason to introduce c is that under the breadth-
first search construction of a tree based on the graph Gn,

and when considering n →∞, connections to previously un-
seen nodes are eventually exhausted and the graph cannot be
expanding forever. However, to maintain reconstruction and
hence influence it is in fact sufficient to have a large enough
subgraph be socially expanding. Based on this theoretical
foundation, we provide a concrete example in the next section
where we prove that the well-studied and general model of
small-world networks [11] contains influential agents for non-
trivial ranges of the probability of alteration pa. Another useful
definition for the broadcasting tree model is the following.

Definition 2 (socially non-expanding network): We say
that Gn is socially non-expanding (has a polynomial growth)
with respect to the node v if the total number of nodes up to
the level k from the root v, i.e., the number of nodes in Tn,k

v ,
scales as O(ka) for some positive constant a ≥ 1.

A.2. Result

We now state the result. The proofs are a somewhat direct
adaption of techniques from [7]. Again, the details are in [6].
In essence, we establish a dichotomy of the (non-) existence
of influential agents: if the graph is socially expanding then
influential agents exists, if graph is socially non-expanding
then influential agents do not exist.

Theorem 1: Consider a social network Gn = (Vn, En) and
an individual v ∈ Vn. Let v start with an opinion in {+1,−1}.
Consider the short-term information dynamics of opinion of v
as described above with alteration probability pa > 0. Then,
in the limit n →∞, the following holds:

(a) If the graph Gn is socially non-expanding with respect
to the node v, then v is not influential.

(b) If the graph Gn is socially expanding with respect to
the node v, then v is influential as long as pa ≤ γ, for
some γ > 0.

A.3. An application: small world model

For many social networks, the popular small world network
model is considered appropriate. To this end, recall the small-
world network model over n = M2 nodes in 2 dimensions 2

with parameter α > 0 [11]: (a) nodes are organized in
an M × M 2-dimensional lattice with each node having 4
immediate neighbors (with the exception of the nodes on the
boundary); (b) each node, say v, has an additional so-called
long range contact, say u, chosen randomly and independently
with probability proportional to 1

d(v,u)α , where d(v, u) is the
`1 (or manhattan) distance between the nodes v and u.

Consider a social network Gn with n → ∞ exhibiting the
small-world property. For α small (i.e., close to 0), the random
contact is roughly uniform and hence most nodes indeed have
a long-range contact (and the network has a small diameter).
For α large (i.e., going to ∞), nodes have almost exclusively
their random contacts within a short range.

Theorem 2: If α = 0, then the underlying graph Gn is
socially expanding. Hence, as n → ∞ the social network
Gn contains influential agents. If, however α → ∞ (or

2We consider a 2-dimensional lattice, the extension to higher dimensions
follows immediately.
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Ω(log n)), then the underlying graph Gn is socially non-
expanding. Hence, as n → ∞ the social network contains
no influential agents.
The proof of theorem is in [6]. These observations have
the following socio-economic implications for large on-line
communities with a small-world network property [2]: even
as the on-line communities grow very large, the influence of a
singled-out member does not vanish with respect to members
that are far away, provided certain underlying structural prop-
erties are satisfied. These observations could play a critical
role in designing marketing strategies that target commanding
members of social communities.

B. Information dynamics: long-term/equilibrium

B.1. Some preliminaries

Before stating the main result for the long-term setting, we
recall the following useful result from the standard Markov
chain theory. For a positive recurrent Markov chain defined
on a countably infinite state space, the stationary distribution
π is unique, and is allocated to a finite subset Y of the state
space V , which we call stationary support. Foster-Lyapunov
criterion [17] can be used to establish positive recurrence by
using a so-called negative drift from V \Y into Y .

B.2. Result

Here we state the result, where we show that the existence
of influential agents is equivalent to the positive-recurrent
property of the underlying Markov chain. The proof is in [6].

Theorem 3: Consider a social network Gn = (Vn, En) with
the influence matrix Pn. Consider the long-term information
dynamics of opinions as described above via the irreducible
and aperiodic Markov chain M(Vn, Pn). Let G = (V, E) be
limiting graph of sequence Gn and P be the limiting influence
matrix of Pn

3. Here V is a countable state space. Then, the
following holds.

(a) If the Markov chain M(V, P ) is positive recurrent, then
there exists an agent v that is influential.

(b) If the Markov chain M(V, P ) is null-recurrent or tran-
sient, then no agent is influential.

B.3. Implications

An interpretation of the above results is that an agent is
influential if and only if the majority of a large society believes
her/him. Moreover, since the absence of individual influence
is equivalent to wisdom as defined in [9], a consequence of
the above is that for the näive update model proposed in [9],
positive recurrence implies lack of wisdom.

One social implication is regarding a degree of democracy.
We say that the society is “reasonably democratic”, in the
sense that the concordance of the agents implies that eventually
only reasonable and unimposing opinions can survive. Null
recurrence of the underlying Markov chain can be interpreted
as follows: everyone in the society is influential (infinite
number of influential agents) but it takes infinitely long for
individual opinions to be widely accepted. This situation then

3We assume that the notion of convergence is well defined.

describes an “overly democratic” society, in which too many,
possibly conflicting, opinions matter for them to propagate
in finite time. Under the transience where no one has any
influence on opinion of others, the implication is that nobody
cares what others believe, and nobody is cared about. This
setting then results in an “anarchic” society in which each
agent forms her/his own opinion as s/he pleases without caring
about what others think.

IV. CONCLUDING REMARKS

In this work we addressed the question of what kind of
effect the underlying graphical structure and the information
propagation have on the existence of influential agents in large
social networks. In order to answer this question, we consid-
ered archetypical (short and long) time-scales of propagated
opinion. While the focus of this paper was on the notion
of influence, future work involves establishing the connection
between other important social features – such as privacy and
anonymity – and an appropriate graphical model that describes
a large social network.
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