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ABSTRACT
Information diffusion in social networks is emerging as a promising
solution to successful viral marketing, which relies on the effective
and efficient identification of a set of nodes with the maximal social
influence. While there are tremendous efforts on the development
of social influence models and algorithms for social influence max-
imization, limited progress has been made in terms of designing
both efficient and effective algorithms for finding a set of nodes
with the maximal social influence. To this end, in this paper, we
provide a bounded linear approach for influence computation and
influence maximization. Specifically, we first adopt a linear and
tractable approach to describe the influence propagation. Then, we
develop a quantitative metric, named Group-PageRank, to quickly
estimate the upper bound of the social influence based on this lin-
ear approach. More importantly, we provide two algorithms Linear
and Bound, which exploit the linear approach and Group-PageRank
for social influence maximization. Finally, extensive experimental
results demonstrate that (a) the adopted linear approach has a close
relationship with traditional models and Group-PageRank provides
a good estimation of social influence; (b) Linear and Bound can
quickly find a set of the most influential nodes and both of them are
scalable for large-scale social networks.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; H.2.8 [Database Manage-
ment]: Database Application—Data Mining

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
The diffusion of influence in social networks has provided oppor-

tunities for viral marketing, which aims at finding a set of individ-
uals in the network to maximize the word-of-mouth propagation of
a brand [24]. In general, there are two challenges for the successful
viral marketing in social networks. First, how to model the influ-
ence diffusion process in the network? Second, how to design an
efficient algorithm to identify which set of nodes to target in the
network based on the learned diffusion models [7]?

In the literature, many efforts have been made on the develop-
ment of influence propagation models for social influence maxi-
mization. For instance, both the Independent Cascade (IC) model
[14] and the Linear Threshold (LT) model [20] were developed to
model the influence propagation. While there are high expectations
on efficient and scalable influence computing, limited progress has
been made in terms of designing both efficient and tractable algo-
rithms for finding a set of nodes with the maximal social influence.
One of the main reasons is that the existing influence models, such
as the IC and LT models, usually require to run Monte-Carlo simu-
lation for a significant number of times before the nodes’ influence
can be computed. This is very time-consuming [10] and is not s-
calable for large-scale social networks. As a result, some compu-
tationally efficient heuristic algorithms based on existing influence
models, such as DegreeDiscountIC [10] and PMIA [9], have been
proposed to solve the social influence maximization problem for
viral marketing. However, as a tradeoff, these heuristic approaches
usually sacrifice the effectiveness.

To this end, we provide a bounded linear approach for effec-
tive and efficient influence computation and influence maximiza-
tion. Specifically, our method is based on a linear approach which
was preliminarily proposed in [41] for describing the social influ-
ence propagation. The unique perspective is that this linear ap-
proach assumes the influence flowing into each node is a linear
combination of the influence from its neighbors. Therefore, the
influence of an arbitrary node set can be linearly computed in a
closed form. For leveraging this linear influence approach to the
task of social influence maximization, in this paper we first define
a quantitative metric, called Group-PageRank. Unlike traditional
PageRank algorithm which can only be used to compute the in-
fluence of an individual node, Group-PageRank could estimate the
influence strength between any node sets in nearly constant time.
We show that Group-PageRank is essentially an upper bound of the
influence spread under the linear approach. Then, based on linear
approach and Group-PageRank, we design two greedy algorithms
for viral marketing campaign, Linear (based on the original lin-
ear approach) and Bound (based on Group-PageRank), which can
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efficiently find the node set with maximal social influence. Final-
ly, we perform extensive experiments on real-world social network
datasets. The experimental results show that: (a) The adopted lin-
ear approach could be used to approximate two traditional influ-
ence models, i.e., the IC model [14] and the Stochastic model [2],
and Group-PageRank is a good estimation of social influence under
the linear approach; (b) For social influence maximization, Linear
and Bound can find influential nodes in an efficient way. Actually,
Linear is more effective while Bound is more efficient.

In summary, the main contributions of this paper are as follows.
1. We discover an upper bound, named Group-PageRank (which

can be quickly computed), for the social influence estimation
under the linear approach. In the experiments, we show that
the influence output by Group-PageRank is closely related to
the true influence computed by the linear approach.

2. We design two greedy algorithms, Linear and Bound, by ex-
ploiting the properties of the linear influence approach and
Group-PageRank, for the social influence maximization prob-
lem. In terms of efficiency as well as effectiveness, Lin-
ear and Bound outperform several state-of-the-art algorithm-
s, and are scalable for large-scale social networks.

3. We experimentally show that the linear influence modeling
approach adopted in this paper has similar capability as the
traditional models (e.g., IC model) for describing the influ-
ence propagation in social networks. However, the linear ap-
proach is more efficient.

2. RELATED WORK
We discuss the related works on social influence analysis models

and the existing strategies for social influence maximization.
Social Influence Models. Social influence modeling has been wide-
ly studied in the literature. Some work focuses on inferring the in-
fluence probabilities between nodes [17, 36]. For instance, Anag-
nostopoulos et al. [4] proved the existence of social influence by
statistical tests. Gomez-Rodriguez et al. [15] tried to reconstruc-
t the network over which the influence propagates. In addition,
there are several models to describe the entire propagation process.
For instance, Granovetter et al. [20] proposed the Linear Threshold
(LT) model, while Goldenberg et al. [14] proposed the Independent
Cascade (IC) model. Let’s use IC model for explanation. Under
IC model, in each iteration, the activated/influenced nodes have
a single chance to influence their neighbors independently with a
certain probability. This iterative propagation process will not stop
until there is no newly influenced node in an iteration. The IC mod-
el with each link sharing the same propagation probability is called
the Uniform IC Model, and the one with non-uniform edge weights
is called the Weighted Cascade (WC) Model [24].

Both IC model and LT model are descriptive models, and we usu-
ally have to run the Monte-Carlo simulation for sufficiently many
(e.g., 20,000) times to estimate the nodes’ influence. This is very
time-consuming and not applicable to large-scale social network-
s. Thus, Aggarwal et al. [2] proposed a stochastic model to ad-
dress this scalability issue. Meanwhile, Kimura et al. [25] proposed
Shortest-Path model (SPM), Zhang et al. [46] designed probabilis-
tic solutions and Yang et al. [43] designed Gauss-Seidel (GS) algo-
rithm to approximate the influence spread under the IC model with
some specific constraints, e.g., the propagation probabilities should
be very small. In another direction, PageRank [34] and random
walk related algorithms [30, 41], which are quite efficient, have al-
so been proposed for modeling influence propagation and ranking
nodes [38]. For instance, by connecting PageRank based methods
with the existing social influence analysis, Xiang et al. [41] pro-
posed a linear social influence modeling approach, which could be
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Figure 1: A social network example.
viewed as PageRank with priors by fixing a prior probability αi to
describe with how much probability the node i spreads influence to
its neighbors. Here, the prior αi functions like a supervised label [5]
for label propagation and node classifications [48] in the graph. Ac-
tually, the defined influence propagation process is similar to that of
the Credit Distribution model [18]. However, the further relation-
ship between linear approach and the traditional influence models
(e.g., the IC model) is still not carefully studied. Meanwhile, how
to use this linear approach for the social influence maximization
problem is also underexplored.

Recently, Easley et al. [13], Aggarwal et al. [1] and Chen et
al. [7] summarized and generalized many research aspects of social
networks. More importantly, they demonstrated that social influ-
ence can be further leveraged to deal with some of the real-world
application problems (those from online marketing or social secu-
rity). For instance, exploiting social influence to make better node
ranking [30] and more accurate link recommendation [42].
Social Influence Maximization. Among these applications, viral
marketing campaign is an important research branch. This appli-
cation is usually formalized as the social influence maximization
problem [7], targeting at finding a small set of influential individu-
als (called seed nodes) from the network. By triggering a cascade
of information propagation that people recommend the product to
their friends and the friends’ friends, we hope that the product will
be adopted by the maximum number of individuals.

With the help of existing social influence models, there are many
works which aim at solving this problem, and to the best of our
knowledge, social influence maximization could be traced back to
Domingoes and Richardson [12, 35]. Kempe et al. formulated it
as a discrete optimization problem and they proved that the opti-
mization problem is NP-hard, and presented a greedy approxima-
tion algorithm which guarantees that the influence spread result is
within (1 − 1/e) ≈ 0.63 of the optimal result [24]. To address the
inefficiency issue, Leskovec et al. [27] presented a “Lazy Forward”
scheme (called CELF optimization) which takes advantage of the
submodular property of the influence maximization objective to re-
duce the number of evaluations on the influence spread of individ-
uals. Recently, this scheme is further improved by the CELF++
optimization (exploiting the submodularity to avoid unnecessary
re-computation of the marginal gains) [19] and the StaticGreedy
algorithm (using snapshots to avoid huge number of Monte-Carlo
simulations) [11]. To address the scalability issue, Chen et al. pro-
posed several heuristic methods, including DegreeDiscountIC [10]
and PMIA [9], to approximate the social influence propagation
using local arborescence structures of each individual. Wang et
al. [40] presented a community-based greedy algorithm to find the
top-K influential nodes from the selected potential communities.
Jung et al. [23] proposed the IRIE algorithm which integrates the
advantages of influence ranking (IR) and influence estimation (IE)
methods for influence maximization. Similar to our work, Zhou et
al. found an upper bound for the influence spread function under
IC model [47]. However, their method still requires a number of
Monte-Carlo simulations for choosing seed sets.

In summary, a common theme behind the above heuristics is that
they avoid Monte-Carlo simulations by exploiting specific aspects
of the graph structure and the social influence model to significant-
ly speed up the influence computations [7]. In addition, many re-
searchers also consider some constraints in practice. For instance,
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Lee et al. [26], Chen et al. [8], and Goyal et al. [16] all included
time constraints into their approximation algorithms. Guo et al. s-
tudied the problem of finding the top-K most influential nodes to
the target user [21] and Tang et al. [37, 32] modeled social influ-
ence at the topic level. Bharathi et al. [6], Wang et al. [39] and Li et
al. [31] focused on the influence diffusion or maximization on the
competitive, heterogeneous and signed networks, respectively. One
step further, Yu et al. [44] studied the way of parallelizing the so-
cial influence maximization computation and Liu et al. [33] tried to
figure out the “independent influence” of each selected seed. Some
of the general techniques and issues with respect to social influence
maximization problem were discussed by Chen, Lakshmanan, and
Castillo in Chapter 3 of Ref. [7].

Table 1: Several important mathematical notations.
Notations Description

fS→ j influence from node set S to j, j-th entry of fS
dj damping factor for node j

fS→T total influence from S to the nodes in set T
ti j transition probability of i on j, (i, j)-th entry of T

f PRi influence-PageRank value of node i, i-th entry of fPR
P (I − dT′)−1, where I is the identity matrix
hS an auxiliary vector satisfying fS = (I − dT′)−1hS

f A
S→i

the probability of node i being activated under model A
(e.g., IC, Linear) when S is the seed set

eT a vector with ei = 1 if i ∈ T and ei = 0 otherwise
GPR(S,T ) Group-PageRank value from S to T
Δs(S,T ) marginal influence increment of S on T when adding s to S

3. SOCIAL INFLUENCE COMPUTING
We first present the preliminaries of the linear approach for mod-

eling influence propagations [41]. Since the influence computation
is still not efficient enough for the task of social influence max-
imization, we find an upper bound, called Group-PageRank, to
quickly estimate the social influence between any node sets. For
better illustration, Table 1 lists some mathematical notations.

3.1 Preliminaries of the Linear Approach
As already mentioned, traditional influence propagation models

are usually descriptive and we have to run Monte-Carlo simulation
for a significant number of times before the nodes’ influence can
be computed. This is very time-consuming, especially for the task
of social influence maximization, as we have to compute the so-
cial influence for many different candidate sets. Thus, we refer to a
linear approach for efficient social influence computation [41]. In-
deed, to show the rationality of adopting the linear approach, the
evidence of the close relationship between this approach and two
of the existing models is included in the following experiments.

We could model a social network as a graph G = (V,A,T).
Here, V = {1, 2, ..., n} is the set of nodes, A is the set of edges,
and T = [ti j] is the influence transition probability from node i to
node j, where ti j is a non-zero value, 0 < ti j ≤ 1 if ( j, i) ∈ A
and 0 otherwise. An example G = (V,A,T) is given in Fig. 1,
where V = {1, 2, 3, 4}, A = {(1, 4), (3, 1), (3, 2), (4, 3)}, and T =
[[0, 0, 0.1, 0], [0, 0, 0.1, 0], [0, 0, 0, 0.05], [0.01, 0, 0, 0]] in its matrix
representation. The transition probabilities could be pre-learned

[17]. Thus, we assume matrix T is known and
n∑

i=1
ti j ≤ 1 [43].

Given a social network G, let’s consider a non-empty set of n-
odes, S(⊆ V), and call it the influencer-set. Then we show how to
compute the expected social influence of S by the linear influence
modeling approach. Actually, it follows two assumptions given in
the literature [1, 14, 18, 20]: (1) A node in the influencer-set S has
the 100% probability to be influenced by S itself, 1 i.e., each node
1This assumption is a special case of that in Ref. [41], i.e., fixing
the prior probability αi=1, since it is easy to be accepted and the
linear approach performs well under this setting.

is on the same line with others in S; (2) The probability that a node
not in S gets influenced depends on its neighbors’ influence. Based
on the two assumptions, we denote fS→ j as the final value that a
node j ∈ V is influenced by the influencer-set S.

Definition 1. The influence of the influencer-set S on a specific
node j in G, denoted by fS→ j , is defined below.

fS→ j = 1, f or j ∈ S, (1)

fS→ j = djΣ( j,k)∈Atk j fS→k, f or j � S. (2)

Here, dj is the damping factor of j for influence propagation, in the
range of (0, 1).

The unique feature of this approach is that the influence to a node
j is a linear combination of the influence coming from j’s neighbors
if j � S (Eq. (2)). It leads to linear efficient iterative algorithms in
computing influence propagation. For the damping factor dj, the
smaller dj is, the more influence will be blocked by node j. For
simplicity, the same dj is chosen for each node [34].

Meanwhile, the influencer-set S can influence a specific subset
of nodes T (⊂ G). We denote the influence from S to T as fS→T ,
and it is computed as follows.

fS→T =
∑
j∈T

fS→ j. (3)

By Eq. (3), the influence from S to T is the total influence from
S to each node in T . Here, S can be a single node in G, and T
can be the entire node set of G, i.e., V. In the following, we use
fS = [ fS→1, fS→2, ... fS→n]′ to denote the influence spread of S. The
computation of fS→i can be finished efficiently as shown in [41].
Specifically, for node j ∈ S, fS→ j = 1. Then, for node j � S, the
influence fS→ j can be computed iteratively, e.g., fS→ j in the (t+1)-
th iteration is f (t+1)

S→ j = djΣ
n
k=1tk j f (t)

S→k, and f (t+1)
S→ j will converge to its

final solution fS→ j quickly under the following condition.

dj ≤
1∑n

k=1 tk j
, f or each node j. (4)

It is worth noting that Eq. (4) is the Gauss-Seidel convergence

condition for Eq. (2). Since
n∑

k=1
tk j ≤ 1 [43], Eq. (4) always holds.

As a result, the influence of S can be solved in O(|A|) time.

3.2 Group-PageRank
From Definition 1, we can see that linear approach is a random-

walk-like model and this is similar to PageRank [34] (their differ-
ences will be shown later). Actually, Ref. [41] has connected these
two types of models together and demonstrated that PageRank val-
ue could be used to form upper bounds for the influence of a single
node under linear influence approach. However, that upper bound
is not good enough for influence maximization. One step further, in
this paper, we find another upper bound, called Group-PageRank,
which can be viewed as the PageRank value of a set of nodes.

First, we explain why linear influence approach needs an upper
bound. By Definition 1, when given S, the influence computation
for both fS→T and fS→ j could be done in linear time (in O(|A|)),
and thus significantly outperforms the traditional models. However,
this linear approach still can not meet the demand when computing
fS→T for any possible influencer-set S and influencee-set T over
a large-scale social network, e.g., with billions of nodes. As we
have to spend O(|A|) time for each S and T , and there may be too
many S and T candidates (i.e., 2|V| for S). Thus, to reduce the time
complexity, we propose Group-PageRank.
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Then, we introduce Group-PageRank via PageRank. Follow-
ing [22, 34], PageRank (topic-sensitive PageRank) is computed by

PRi = d
∑

( j,i)∈A
wjiPRj +

(1 − d)
|T | δi,

where wji =
weight( j,i)

OutWeight( j) , d ∈ (0, 1), and δi = 1 if i ∈ T and 0
otherwise. In terms of PageRank, to compute influence propagation
in G = (V,A,T), we need to replace the wji by ti j for the transition
probability on each edge ( j, i) is ti j, that is

f PRi = d
n∑

j=1

ti j f PR j +
(1 − d)
|T | δi. (5)

f PRi indicates the node i’s importance with respect to social in-
fluence and we call it the influence-PageRank of node i to distin-
guish it from other applications. Clearly, f PRi for node i can be
solved in O(|A|) time. Let fPR = [ f PR1, f PR2, ..., f PRn]′. Eq. (5),
for i = 1, 2, ..., n, becomes Eq. (6).

fPR =
1 − d
|T | (I − dT)−1eT , (6)

where eT = [e1, e2, ..., en]′, and ei is 1 if i ∈ T and 0 otherwise.
Similar to PageRank [34], fPR could be solved in O(|A|) time.

Next, let’s go back to the linear influence approach, and the Def-
inition 1 can be represented by one single equation as below.

fS→ j = d
n∑

k=1

tk j fS→k + hS, j , f or i = 1, 2, ..., n. (7)

hS, j is equal to 0 if j � S, and is a number to ensure fS→ j = 1,
otherwise. By summarizing Eq. (7), for i = 1, 2, ..., n, we have

fS = (I − dT′)−1hS. (8)

Now, considering Eq. (6) for influence-PageRank and Eq. (8) for
linear influence approach, we could find that there are two matrices
(I − dT)−1 and (I − dT′)−1, which are transposes to each other. Be-
sides this, the significant difference is that no entry of fPR is given
before running Eq. (6) (i.e., PageRank), while in linear approach
(Eq. (8)) some of the values (for those nodes belonging to S) of fS
are fixed as the priors (i.e., 1 in this paper). In summary, with a giv-
en matrix (I − dT)−1 and a given vector eT , influence-PageRank
will output the value in each entry of fPR. In contrast, with a
given matrix (I − dT′)−1 and some priors in fS, linear approach
tries to figure out other values in fS. Then, a question arises: how
to quantitatively measure the connection between linear influence
and influence-PageRank? To address this question and to introduce
Group-PageRank, we first rewrite Eq. (3) as fS→T = f′SeT . By
combining it with Eq. (8) and Eq. (6), we have

fS→T = hS′(I − dT)−1eT = hS′
|T |

1 − d
fPR

=
|T |

1 − d

∑
i∈S

hS ,i f PRi, (9)

which shows that the influence from S to T by Definition 1 is pro-
portional to a linear combination of the influence-PageRank. Fur-
thermore, we have

Lemma 1. hS,i ≤ 1 − d ·∑k∈S tki.

Proof Sketch: Let Γ = (I − dT′) and P = (I − dT′)−1. Then,
fS = (I−dT′)−1hS = PhS. Recall that for each node i ∈ S, fS→i = 1.
We have PSShSS = e and hSS = P−1

SSe. PSS is the matrix reduced
from P by removing its rows and columns that do not correspond
to the members in S, and hSS is reduced from hS by removing the

entries that do not correspond to the members in S. By rearranging
the rows and columns in Γ,

Γ =

[
ΓSS ΓSS

ΓSS ΓSS

]
.

Based on the linear algebra theory, we have

P =

[
PSS PSS
PSS PSS

]
= Γ−1 =

[
ΓSS ΓSS

ΓSS ΓSS

]−1

=

⎡⎢⎢⎢⎢⎢⎢⎣
M −MΓSSΓ

−1
SS

− Γ−1
SS
ΓSSM Γ−1

SS
+ Γ−1

SS
ΓSSMΓSSΓ

−1
SS

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where M = (ΓSS − ΓSSΓ−1

SS
ΓSS)

−1. Thus, PSS = M. In addition,

hSS = P−1
SSe = ΓSSe − ΓSSΓ−1

SS
ΓSSe. Because ΓSSΓ

−1
SS
ΓSS is a non-

negative matrix,2 we have hSS ≤ ΓSSe.
Thus, when i ∈ S, hS,i ≤ 1 − d ·∑k∈S tki, and Lemma 1 holds. �

Definition 2. We define our Group-PageRank from S to T as

GPR(S,T ) =
|T |

(1 − d)
(
∑
i∈S

f PRi − d
∑
i∈S

∑
k∈S

tki f PRi). (10)

And we have the following theorem.

Theorem 1. For the influence fromS toT , fS→T ≤ GPR(S,T ).

Proof Sketch: Based on Eq. (9) and Lemma 1,

fS→T =
|T |

1 − d

∑
i∈S

hS ,i f PRi

≤ |T |
1 − d

∑
i∈S

(1 − d ·
∑
k∈S

tki) f PRi

= GPR(S,T ).

�
Actually, GPR is a generalization of the influence-PageRank.

When |S| = 1, GPR(S,T ) is proportional to f PRi; When |S| > 1,
GPR(S,T ) is essentially the collection of each single influence-
PageRank (for the nodes in S) with a “discount” by which we mean
that the mutual influences between the nodes in S are removed
when estimating the influence spread of S. Therefore, GPR can es-
timate the importance of any non-empty set of nodes which can be
either a single node or a set of nodes. From Eq. (10), we can see that
GPR is a combination of the basic elements of fPR. This implies
the following: to get GPR(S,T ) for any S, we can compute the
fPR in advance (in O(|A|) time) and maintain it in a look-up table
with the size of |V|, and then we only need to take O(|S|) look-ups
and O(|S|2) additional computations (Eq. (10)). The computation
of GPR(S,T ) can be done in near constant time with limited space
consumption (as S are usually small, e.g., |S| = 100).

Thus, if we use GPR(S,T ) as the estimation for fS→T , this in-
fluence computation will then meet the efficiency demand of large-
scale online social networks. Group-PageRank has two properties.
• Group-PageRank is an estimation of the influence spread fS→T

and is also a very compact (we will show this claim experi-
mentally) upper bound for fS→T .

• Group-PageRank can be quickly computed in advance and
maintained in a table of length |V|. Then, it only takes O(|S|2)
to compute Group-PageRank for any small S.

2ΓSS is an M-matrix, and its inverse (denoted as N = [ni j])
is nonnegative. Let K = ΓSSNΓSS = [ki j], there is ki j =∑

l�S
∑

m�S(γilnlmγm j). Because γil = −til ≤ 0, γm j = −tm j ≤ 0,
nlm ≥ 0, and ki j ≥ 0. Thus, K = ΓSSΓ

−1
SS
ΓSS is also nonnegative.
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4. SOCIAL INFLUENCE MAXIMIZATION
In this section, we show how the linear approach and Group-

PageRank can be used to support viral marketing by addressing the
influence maximization problem. This aims at finding a set of in-
fluencer nodes (e.g., S) to maximize the product’s word-of-mouth
propagation in the entire or a part of the network. Formally, the
influence maximization problem, which is NP-hard [24], is defined
as follows.

S = arg maxS⊂T fS→T , s. t. |S| = K,

where K is the desired seed set size (e.g., 50). In the following, we
use T and V interchangeably, because usually we have T = V.

We adopt the greedy framework proposed by Kempe et al. [24],
and the entire process is shown in Algorithm 1. Initially, S = ∅. At
each iteration, it adds a new node s into S if s maximizes the in-
crement on influence, s = arg maxs∈V\SΔs(S,T ), e.g., Δs(S,T ) =
fS∪{s}→T − fS→T . This iterative process will continue until the seed
set size is up to K.

Algorithm 1: GreedyFramework

1. S = ∅;
2. s = arg maxs∈V\SΔs(S,T );
3. S = S ∪ {s};
4. If |S| < K, then go back to step2; else terminate.

For Algorithm 1, we propose two ways to compute Δs(S,T ), by
Linear or by Bound.

• Linear: ΔI
s(S,T ) = fS∪{s}→T − fS→T .

• Bound: ΔII
s (S,T ) = GPR(S ∪ {s},T ) −GPR(S,T ).

By Linear, the time cost of ΔI
s(S,T ) is O(|A|) due to the compu-

tation of fS∪{s}→T . By Bound, i.e., Group-PageRank, with the help
of Eq. (10), we have

ΔII
s (S,T ) =

|T |
1 − d

⎛⎜⎜⎜⎜⎜⎜⎝(1 − d
∑
j∈S

t js) f PRs − d
∑
j∈S

ts j f PR j

⎞⎟⎟⎟⎟⎟⎟⎠ . (11)

Since f PRs for each s is a basic element that can be computed in
advance for any S and s, the computation of Δs(S,T ) in Eq. (11)
only takes O(|S|) time. Moreover, the marginal influence incre-
ment Δs(S,T ) satisfies the submodular property (proof is shown in
the following two corollaries), and combining with the monotonic-
ity property (e.g., fS∪{s}→T ≥ fS→T ) we could guarantee that the
greedy framework is lazy-forward [27]. Actually, the monotonic-
ity property strictly holds for the linear approach, and we can on-
ly prove that the monotonicity property of Group-PageRank holds
when d ≤ 0.5 (Ref. [38] has presented a similar proof strategy).
However, the real-world influence transition probabilities (e.g., ti j)
are quite small [43, 47] (especially for those between the seed n-
odes, as the seeds are usually far away from each other), and the
monotonicity property generally holds even when 0.5 < d ≤ 1.
Meanwhile, considering the positive experimental results, in this
paper we simply treat Group-PageRank as monotone and leave the
detailed discussion for future work. In the following, let’s denote
the influencer-set S in iteration k as Sk.

Corollary 1.

ΔI
s(S0,T ) ≥ ΔI

s(S1,T ) ≥ ... ≥ ΔI
s(SK ,T ).

.Proof Sketch 3:
First, we show Eq. (8) is a linear function.

3Detailed proof is omitted due to the limited space.

Second, based on the linear function, we show fS′→ j ≥ fS→ j

where S′ = S ∪ {t} and t can be an arbitrary node.
Third, we show fS′∪{s}→T − fS′→T ≤ fS∪{s}→T − fS→T .
Finally, because

ΔI
s(Si,T ) = fSi∪{s}→T − fSi→T ,

we have

ΔI
s(Si,T ) = fSi∪{s}→T − fSi→T ≥ fSi+1∪{s}→T − fSi+1→T = Δ

I
s(Si+1,T ).

Thus, ΔI
s(S0,T ) ≥ ΔI

s(S1,T ) ≥ ... ≥ ΔI
s(SK ,T ) holds. �

Corollary 2.

ΔII
s (S0,T ) ≥ ΔII

s (S1,T ) ≥ ... ≥ ΔII
s (SK ,T ).

.Proof: First, we prove GPR(S∪ {v},T )−GPR(S,T ) ≥ GPR(S′ ∪
{v},T ) −GPR(S′,T ), where S ⊆ S′, arbitrary node v � S′.

GPR(S ∪ {v},T ) −GPR(S,T )

=
|T |

1 − d

⎛⎜⎜⎜⎜⎜⎜⎝ f PRv + d
∑
i∈S

∑
k∈S

tki f PRi − d
∑

i∈S∪{v}

∑
k∈S∪{v}

tki f PRi

⎞⎟⎟⎟⎟⎟⎟⎠

=
|T |

1 − d

⎛⎜⎜⎜⎜⎜⎜⎝ f PRv − d

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i∈S∪{v}
tvi f PRi +

∑
k∈S

tkv f PRv

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

≥ |T |
1 − d

⎛⎜⎜⎜⎜⎜⎜⎝ f PRv − d

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i∈S′∪{v}

tvi f PRi +
∑
k∈S′

tkv f PRv

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

=GPR(S′ ∪ {v},T ) −GPR(S′,T ).

Then, because

ΔII
s (Si,T ) = GPR(Si ∪ {s},T ) −GPR(Si,T ),

we have

ΔII
s (Si,T ) ≥ GPR(Si+1 ∪ {s},T ) −GPR(Si+1,T ) = ΔII

s (Si+1,T ).

Thus, ΔII
s (S0,T ) ≥ ΔII

s (S1,T ) ≥ ... ≥ ΔII
s (SK ,T ) holds. �

Based on Corollary 1 and Corollary 2, we propose a lazy-forward
greedy framework for social influence maximization, as shown in
Algorithm 2. Specifically, we use Δs for both the upper bound and
the real value of the marginal influence increment Δs(S,T ), and
meanwhile, we use Δmax and smax for the maximal Δs(S,T ) and
its corresponding node s, respectively. This algorithm starts with
S = ∅ (initial Δs =

|T |
1−d f PRs). In each iteration, it adds a new node

s with the maximal Δs(S,T ) into S until the size of S is equal
to K. We use a priority queue such that Δs ≥ Δs+1 in the queue.
For each node s, we compare its upper bound Δs with Δmax. There
are two cases. First, if Δs > Δmax, we compute its real influence
increment for s (either by Linear or by Bound). If its real increment
is still larger than Δmax, the node s is truly a better one, and then we
use this as smax and store the real increment into Δmax. Second, if
Δs ≤ Δmax, then s and all of its successors cannot be better than
the current smax for Δmax ≥ Δs ≥ Δs+1, and thus we find the smax

and break the loop. We only need to add s into S, and add the real
increment by smax into fS→T . Finally, we reset Δsmax = 0, i.e., we
remove node smax from the candidate list.

In the lazy-forward greedy framework, an influencer-seed set S
with the maximum influence propagation will be found efficient-
ly. We call Algorithm 2 the Linear algorithm if it computes the
real increment Δs by Linear (see Function GetDeltaI), and call Al-
gorithm 2 the Bound algorithm if it computes Δs by Bound (see
Function GetDeltaII).
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Algorithm 2: LinearFramework(G, K, λ)

input : G(V,A,T),K, λ,
output: S
S = ∅;
Compute influence-PageRank vector fPR = [ f PR1, ..., f PRn]′

(see Section 3.2);
for each node s in G do
Δs =

|T |
1−d f PRs; // Upper bound

while |S| < K do
re-arrange the order of nodes to make Δs ≥ Δs+1;
Δmax = 0;
for s = 1 to n − |S| do

if Δs > Δmax then
Compute the real increment Δs by Linear or by
Bound;
if Δs > Δmax then
Δmax = Δs;
smax = s;

else
break;

S = S ∪ {smax};
fS→T = fS→T + Δmax;
Δsmax = 0;

return S;

5. EXPERIMENTAL RESULTS
In our empirical studies, we focus on validating the following

performance: (1) The effectiveness and efficiency of the adopt-
ed linear social influence modeling approach compared with two
of the existing influence models, and the effectiveness of Group-
PageRank (Section 5.1); (2) The social influence maximization re-
sults of our two algorithms (Linear and Bound) compared with
some of the state-of-the-art solutions (Section 5.2).

The four real-world social network datasets we used are: Face-
book [29] which is sampled from Facebook.com4, ca-HepPh [28]
which is a collaboration network from the e-print arXiv covering
collaborations between authors whose papers are submitted to High
Energy Physics - Phenomenology category5, web-NotreDame [3]
which is a webpage link network where nodes represent pages from
University of Notre Dame and directed edges represent hyperlinks
between them6, and LiveJournal [45] which is a friendship net-
work published in July, 20107. The four networks (two directed
and two undirected) used cover a variety of networks with sizes
ranging from 88K edges to 14M edges. Some basic data statistics
about these networks are given in Table 2.

We implemented the approaches in C++ and conducted the fol-
lowing experiments on a server with 2.0GHz Quad-Core Intel Xeon
E5410 and 16G memory.

5.1 The Linear Approach & Group-PageRank
In this subsection, we show that the linear influence modeling ap-

proach adopted in this paper has similar capability as the traditional
models for describing the influence propagation in social networks.
Meanwhile, Group-PageRank provides a good estimation of social
influence under the linear approach. Furthermore, both linear ap-
proach and Group-PageRank are efficient.

4http://snap.stanford.edu/data/egonets-Facebook.html
5http://snap.stanford.edu/data/ca-HepPh.html
6http://snap.stanford.edu/data/web-NotreDame.html
7http://socialcomputing.asu.edu/datasets/LiveJournal

Function GetDeltaI(S, s, fS→T )

input : S, s, fS→T
output: Δs

α = 0; S′ = S ∪ {s};
for each node i of G do

if i ∈ S′ then
fS′→i = 1;

else
fS′→i = 0;

while α < MAX_IT ERAT IONS do
for each node j inV − S′ do

fS′→ j = d
∑

( j,k)∈A tk j fS′→k;
α++;

fS′→T = 0;
for each j ∈ T do

fS′→T = fS′→T + fS′→ j;
return fS′→T − fS→T ; // Δs

Function GetDeltaII(S, s, fPR)

input : S, s, fPR
output: Δs

Δs = f PRs;
for each j ∈ S do
Δs = Δs − d · t js f PRs − d · ts j f PR j;

return Δs · |T |1−d ;

Similarity of Influence Vectors. We empirically verify whether
the output of linear approach (LA) is similar to two traditional in-
fluence models, Independent Cascade (IC) model [14] and Stochas-
tic (ST) model [2]. Specifically, the comparison in this experiment
is focused on the similarity of the influence vectors. Suppose fA

S,
fB
S are the influence vectors of influencer-set S under model A and

model B, respectively, where A, B are the model indicators, e.g.,
LA, IC, or ST. If model A is similar to model B, then fA

S must be
close to fB

S for any S, and vice versa.
We use the cosine similarity to measure the similarity between

fA
S and fB

S, denoted as S im(fA
S, f

B
S). Specifically, the formula that we

use to measure the similarity between these models is as follows.

S im(A,B) =

∑
S⊂V S im(fA

S, f
B
S)∑

S⊂V
. (12)

Thus, if S im(A, B) is close to 1, then model A and B is simi-
lar. Because Eq. (12) is very expensive to compute (as there are
2|V| choices for S), we randomly select a certain number of sets as
representation to approximate S im(A, B). Also, since the Monte-
Carlo simulation for the IC model is time consuming, we use two
small datasets, Facebook and ca-HepPh, to evaluate the similarity
between models. The computation is done under the following set-
tings: We randomly select a certain number of influencer-sets (i.e.,
30 and 30,000, respectively) with the size ranging in [1,100] as the
representation of all influencer-sets. Parameter d ranges in (0, 1), s-
tarting from 0.01 and stepping by 0.01. Transition matrix T is set as
the transpose of PageRank matrix W (same as the transition matrix
of WC model [24]), i.e., ti j on edge ( j, i) is equal to Weight( j,i)

OutWeight( j) .
As shown in Fig. 2, S im30000(A, B) and S im30(A, B) are the

similarity curves computed using 30,000 sets and 30 sets, respec-
tively. The purple horizontal line shows the similarity between IC
and ST on 30,000 sets (i.e., S im30000(IC, S T )). The black vertical
dashed line is used to mark the peak point in the S im30000 curve.
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Table 2: Statistics of four real-world networks.
Networks Facebook ca-HepPh web-NotreDame LiveJournal
#Node 4,039 12,008 325,729 2,238,731
#Edge/Arc 88,234 237,010 1,497,134 14,608,137
Type undirected undirected directed directed
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Figure 2: The similarity of influence vectors.

In the figure, we have three observations: First, LA can approach
the other two models with a high similarity (larger than 0.99 and
0.96 respectively), while IC model and ST model are less similar to
each other (with similarity value 0.96 and 0.89 respectively); Sec-
ond, the curves of S im30000(LA, X) and S im30(LA,X) are very
close, where X is either IC or ST. This means the similarities are
irrelevant to the number of the sampled sets; Finally, the similari-
ty curves between LA and the other two models all increase firstly
and then decrease. The peaks are reached at a value when d is near
to the value of 0.85.

These experimental observations show that the linear approach is
a similar influence modeling method compared to traditional IC and
ST models. Actually, in real applications, we could even replace
the IC or ST model (e.g., by simply setting d = 0.85) with LA, as
these two models are very expensive to compute.
The Influence Computing. In the following, we compare the rela-
tions among the exact value of f LA

S→T , the upper bound GPR(S,T ),
and f IC

S→T . If f LA
S→T is also close to f IC

S→T , then LA is really similar
to IC model 8 and can be used to substitute for IC in real appli-
cations, since LA is much more efficient, which we will illustrate
later. We show our experimental results using the four datasets in
Table 2. For testing, we randomly select 100 influencer-sets with
their sizes ranging in [1,100]. For each selected S, we compute its
f LA
S→V, GPR(S,V), and f IC

S→V. The final results are shown in Fig. 3,
where “Influence_LA” indicates f LA

S→V, “GPR” means GPR(S,V)
and “Influence_IC” indicates f IC

S→V. Note the x axis is the index of
S. We have two observations: 1) Influence_LA and Influence_IC
almost overlap each other; 2) On each dataset, GPR is consistent-
ly compact to Influence_LA. To further test their quantitative re-
lations, we compute 1,000 groups of results and plot them as pair
(Influence_LA vs. Influence_IC) and (GPR vs. Influence_LA) in
the coordinates of Fig. 4. The similar results on web-NotreDame
and LiveJournal are omitted due to limitations of space. These plots
could be well fitted by linear function; and the slopes of these fit-
ting lines are 1.041 and 1.017 for (Influence_LA vs. Influence_IC),
1.220 and 1.220 for (GPR vs. Influence_LA), on Facebook and
ca-HepPh, respectively. These results imply that: 1) the influence
computation results by LA and IC are almost the same. In other
words, LA can be used to substitute for IC if efficiency is the main
concern; 2) Group-PageRank is a good estimation of the social in-
fluence under LA as a consistently compact upper bound.
Efficiency. The total computing time for f LA

S→V, GPR(S,V), and
f IC
S→V on the 100 randomly selected node sets are listed in Ta-

8Combining with the results (Fig. 2) that these two models’ influ-
ence vectors are similar.
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Figure 4: The fitting curves for (Influence_LA vs. Influ-
ence_IC) and (GPR vs. Influence_LA).

Table 3: Comparison of execution time (Sec.).
Facebook ca-HepPh web-NotreDame LiveJournal

f LA
S→V 2.63 2.01 20.17 526.07

GPR(S,V) 0.04 0.03 0.25 5.39
f IC
S→V 334.68 996.49 2700.56 12421.45

ble 3. LA is almost 100 times faster than IC. With the help of
Group-PageRank, the influence estimation GPR(S,V) can be fin-
ished much quicker, e.g., no more than 1 second for small networks.

5.2 Social Influence Maximization
In the following, we show that Linear and Bound are both ef-

fective and efficient for solving the social influence maximization
problem. To this end, we compare them with several (i.e., 6) state-
of-the art algorithms.
• CELF is the original greedy algorithm [24] with the CELF

optimization of [27], where the number of Monte-Carlo sim-
ulations under IC model is set to be 20,000.

• IRIE is a scalable algorithm that integrates the advantages of
influence ranking (IR) and influence estimation (IE) methods
for influence maximization [23].

• PMIA is the algorithm proposed in Ref. [9]. According to the
authors’ suggestions, we select the parameter with the best
performance from {1/10,1/20,1/40,1/80,1/160,1/320,1/1280}.

• PageRank (PR) algorithm [34], in which we selected top-K
nodes with the highest pagerank value.

• DegreeDiscountIC (DIC) [10] measures the degree discount
heuristic with a propagation probability of p = 0.01, which
is the same as that used in Ref. [10].

• Degree (Deg) algorithm captures the top-K nodes with the
highest degree.

Among these algorithms, Deg, DIC and PR are widely used for
baselines, and CELF, IRIE and PMIA are three of the outstanding
algorithms in terms of both effectiveness and efficiency.

For computing influence maximization, one algorithm will re-
turn a set S with K nodes, and the effectiveness of the algorithm is
justified by the influence spread (i.e., fS→V, the expected number of
nodes that will be influenced) of the chosen S; that is, the bigger the
fS→V the better the algorithm. Since IC model is the most widely
accepted influence computation model, we run Monte-Carlo simu-
lation under IC model to estimate and compare each fS→V. Specif-
ically, the simulation is done as follows (called Weighted Cascade
(WC) model [24]): The nodes in S are viewed as the ones activat-
ed at time t = 0; Each activated node can influence its neighbors
independently; If node i is activated at time t, then it will influ-
ence its not-yet-activated neighbor node j at time t + 1 (and only
time t + 1) with transition probability ti j on arc ( j, i). As given in
Section 5.1, we set the transition probability ti j equal to weight( j,i)

OutWeight( j)

which is widely adopted in the literature. The size K of S in our
tests ranges from 5 to 50. We report the best performance of each
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Figure 3: The influence spread for f LA

S→V (Influence_LA), GPR(S,V) (GPR), and f IC
S→V (Influence_IC).

Table 4: The Summary.
Linear Bound IRIE PMIA PR DIC Deg Win

Linear - 4 4 4 4 4 4 24
Bound 0 - 1 4 4 4 4 17
IRIE 0 1 - 4 4 4 4 17
PMIA 0 0 0 - 1 4 4 9
PR 0 0 0 1 - 4 4 9
DIC 0 0 0 0 0 - 3 3
Deg 0 0 0 0 0 0 - 0
Loss 0 5 5 13 13 20 23

algorithm listed by tuning its parameters. Meanwhile, for consis-
tency, we set the parameter d in PR, Linear and Bound (α in IRIE)
equals to 0.85, which is a widely used value in PR.
Effectiveness. Fig. 5 shows the influence spread, where we can
see that both Linear and Bound are effective, as the selected n-
ode sets are very influential. Since linear approach is similar to
IC model, the performance of Linear and CELF is also quite sim-
ilar (almost overlap each other on Facebook). For better illustra-
tion, some algorithms are plotted together if they output similar
influence spread values, e.g., Linear and CELF on ca-HepPh. Fur-
thermore, we summarize these results on 4 datasets into Table 4,
which means how many times an algorithm A (row) outperforms
(with a larger fS→V) an algorithm B (column) when K = 50. The
max value is 4 since we tested 4 datasets, and we do not count the
dataset if there is no obvious difference between two algorithms’
performance, e.g., Bound and IRIE on the ca-HepPh and LiveJour-
nal datasets. Thus, the sum of the values in two symmetric entries
of Table 4 is less than or equal to 4. In Table 4 the last column
shows the summarized number for an algorithm that outperforms
the others. Based on Fig. 5 and the numbers in the last column of
Table 4: Linear > Bound ≈ IRIE > PMIA > PR > DIC > Deg,
and thus Linear is the best. We do not show the results of CELF
in Table 4, because it only handles two of the small networks and
fails when testing web-NotreDame and LiveJournal (Fig. 5).
Efficiency. Fig. 6 shows the computing time, where we do not
present the computing time of DIC and Deg because they are al-
most 0. In terms of efficiency, the relative performance of the al-
gorithms is given by DIC ≈ Deg > PR ≈ Bound  Linear >
IRIE > PMIA  CELF. The computing time in Fig. 6 are shown
in log scale for better illustration. Unfortunately, this also makes
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Figure 6: The computational costs (in logs).
the difference among some algorithms, e.g., Linear, IRIE and PMI-
A, become less obvious (Actually, Linear is faster than IRIE, and
IRIE is faster than PMIA). Another observation is that the comput-
ing time of Bound is almost equal to PR which means that Bound
is a linear time algorithm for viral marketing, i.e., with O(|A|) time
for computing vector fPR. Bound is as scalable as PR for large s-
cale networks, and it is more effective (refer to Fig. 5 and Table 4):
PR may find the top-K most influential individuals. However, it
does not consider the “influence overlapping” among selected indi-
viduals. Therefore, the top-K most influential individuals selected
by PR may not lead to the maximization of influence spread. In
contrast, Bound tackles this issue by including a “discount” (i.e.,
Group-PageRank) for the mutual influences of the selected seed n-
odes. Thus, Bound outperforms PR for handling influence.

In summary, for solving the social influence maximization prob-
lem in viral marketing, Linear and Bound perform consistently well
on each network. Specifically, the seed nodes returned by Linear
could exert the most influence spread, and in contrast, if the com-
pany wants to select a fast and also effective algorithm for a large
scale social network, then Bound will be a better choice. Note that,
implementing the algorithms on distributed architectures may fur-
ther help the companies in viral marketing.
Damping Factor d. Previously, we set d simply equals to 0.85,
and Fig. 2 also demonstrates that the output of linear approach is
the most similar to that of traditional IC and ST models when d
is near to 0.85. More specifically, in the following, we investigate
more details on the effect of tuning d in terms of both the running
time and the influence spread of the selected seeds (i.e., for social
influence maximization) of Linear and Bound. To this end, we set
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Figure 5: The influence spread on four datasets.
d ranging from 0.05 to 1, with step 0.05, and compute the corre-
sponding running time and influence spread with K=50.

The upper row of Fig. 7 shows the effectiveness of both Linear
and Bound with different d on four social networks respectively.
Here, the x axis is the d value, and the red dashed line is the re-
sult of CELF (As already mentioned, CELF is too expensive to run
on web-NotreDame and LiveJournal). From these figures, we ob-
tain the following observations: 1) The performances of Linear and
Bound increase at first and then decrease, following the same trend
in Fig. 2. For instance, the best results on Facebook and ca-HepPh
are reached when d is near to 0.9 and 0.8, respectively, which is
also close to the optimal d in Fig. 2; 2) When d locates in range
[0.6,0.9], the performance stays at a high level (almost better than
95% of CELF results for both Linear and Bound).

In Fig. 7, the bottom figures show the computing time of Linear
and Bound. The time cost of Linear increases while d increas-
es, and when d ≥ 0.9, the computing time increases significantly.
This is because the larger d the less information will be blocked by
each node, and therefore, the more nodes social influence will be
spread over. Thus, the linear approach converges slowly. However,
with the help of Group-PageRank heuristic, the computing time of
Bound keeps very little.

In summary, as is well known, it is hard to find a specific d which
performs the best for all the datasets [23]. However, in terms of
both effectiveness and efficiency, we suggest randomly choose a
value of d in [0.6, 0.9] for each data set, e.g., 0.85, which is widely
used in the research literature of ranking.

6. CONCLUSION
In this paper, we provided a bounded linear approach for effec-

tive and efficient influence computation and influence maximiza-
tion. Specifically, we first adopted a tractable linear approach for
describing the influence propagation in social networks. Then, to
further address the scalability issues of social influence comput-
ing for the social influence maximization problem, we proposed
a quantitative metric, named Group-PageRank. It is a tight upper
bound of the influence of any node set, and it can be computed
in near constant time. Next, we applied both the linear approach
and Group-PageRank for solving the social influence maximization
problem in viral marketing. Along this line, we proposed two lazy-
forward greedy algorithms, Linear and Bound, based on the linear
approach and Group-PageRank, respectively. Finally, the exten-
sive experimental results demonstrated that 1) the linear approach
is both flexible and efficient for social influence computing, and
Group-PageRank provides a good estimation of social influence
under the linear approach; 2) Both Linear and Bound algorithms
could quickly find a set of the influential nodes for viral marketing
campaign. For these two algorithms, Linear is more effective while
Bound is more efficient.
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