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Abstract

This paper deals with measuring the influence of observations on the results obtained
with classification trees. To define the influence of individuals on the analysis, we propose
criterions to measure the sensitivity of the Classification And Regression Trees (CART)
analysis. The proposals are based on predictions and use jackknife trees. The analysis is
extended to the pruned subtrees sequences of CART to produce specific notions of influence.
Using the framework of influence functions, distributional results are derived.
A real dataset relating the administrative classification of cities surrounding Paris, France,
to the characteristics of their tax revenues distribution, is analyzed using the new influence-
based tools.

Key Words: Data analysis, Influential individuals, Decision Trees.

1 Introduction

Classification And Regression Trees (CART; Breiman et al. (1984) [4]) have proven to be
very useful in various applied contexts mainly because models can include numerical as
well as nominal explanatory variables and because models can be easily represented (see
for example Zhang and Singer (2010) [26], or Bel et al. (2009) [2]). Because CART is a
nonparametric method as well as it provides data partitioning into distinct groups, such tree
models have several additional advantages over other techniques: for example input data do
not need to be normally distributed, predictor variables are not supposed to be independent,
and non linear relationships between predictor variables and observed data can be handled.
It is well known that CART appears to be sensitive to perturbations of the learning set.
This drawback is even a key property to make resampling and ensemble-based methods (as
bagging and boosting) effective (see Gey and Poggi (2006) [13]). To preserve interpretability
of the obtained model, it is important in many practical situations to try to restrict to a
single tree. The stability of decision trees is then clearly an important issue and then it is
important to be able to evaluate the sensitivity of the data on the results. Briand et al.
(2009) [5] proposed a similarity measure between trees to quantify it and use it from an
optimization perspective to build a less sensitive variant of CART. This view of instability
related to bootstrap ideas can be also examined from a local perspective. Following this
line, Bousquet and Elisseeff (2002) [3] studied the stability of a given method by replacing
one observation in the learning sample with another one coming from the same model.
Many authors derived asymptotic normality of the influence functions under weak assump-
tions. For example, discriminant analysis has been studied by Campbell (1978) [6], Critchley
and Vitiello (1991) [8] for the linear case and Croux and Joossens (2005) [9] for the quadratic
one. For linear discrimination influence functions on the error rate, or the prediction error
of binary classifiers, were considered in [10, 11]. Variance of the asymptotic normal distri-
bution is generally estimated through resampling techniques. Therefore these results could
be used to obtain a threshold to decide whether an observation is an outlier or not.
The aim of this paper is to focus on individual observations diagnosis issues rather than
model properties or variable selection problems. The use of an influence measure is a clas-
sical diagnostic method to measure the perturbation induced by a single element, in other
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terms we examine stability issue through jackknife. We use decision trees to perform diag-
nosis on observations.

2 CART classification trees

The data are considered as an independent sample of the random variables (X1, . . . , Xp, Y ),
where theXks are the explanatory variables and Y is the categorical variable to be explained.
CART is a rule-based method that generates a binary tree through recursive partitioning
that splits a subset (called a node) of the data set into two subsets (called sub-nodes) accord-
ing to the minimization of a heterogeneity criterion computed on the resulting sub-nodes.
Each split is based on a single variable. Let us consider a decision tree T . When Y is a
categorical variable a class label is assigned to each terminal node (or leaf) of T . Hence T

can be viewed as a mapping to assign a value Ŷi = T (X1
i , . . . , X

p
i ) to each observation.

Among all binary partitions of each set of values of the explanatory variables at a node t,
the principle of CART is to split t into two sub-nodes t− and t+ according to a threshold
on one of the variables (or a subset of the labels for categorical variables), such that the
reduction of heterogeneity between a node and the two sub-nodes is maximized. The growing
procedure is stopped when there is no more admissible splitting. Each leaf is assigned to the
most frequent class of its observations. Of course, such a maximal tree (denoted by Tmax)
generally overfits the training data and the associated prediction error R(Tmax), with

R(T ) = P(T (X1, . . . , Xp) 6= Y ), (1)

is typically large. Since the goal is to build from the available data a tree T whose prediction
error is as small as possible, in a second stage the tree Tmax is pruned to produce a subtree
T ′ whose expected performance is close to the minimum of R(T ′) over all binary subtrees T ′

of Tmax. The pruning is based on the penalized empirical risk R̂pen(T ) to balance optimistic
estimates of empirical risk by adding a complexity term that penalizes larger subtrees:

R̂pen(T ) =
1

n

n∑

i=1

1lT (X1
i
,...,X

p

i
) 6=Yi

+ α|T | (2)

where 1l is the indicator function, n the total number of observations, α a positive penalty
constant, |T | denotes the number of leaves of the tree T and Yi is the ith random realization
of Y .

The R package rpart provides both the sequence of subtrees pruned from a deep maximal
tree and a final tree selected from this sequence by using the 1-SE rule (see [4]). The
penalized criterion used in the pruning of rpart is R̂pen defined by (2). The cost complexity
parameter denoted by cp corresponds to the temperature α used in the original penalized
criterion (2) divided by the misclassification rate of the root of the tree. The pruning step
leads to a sequence {T1; . . . ;TK} of nested subtrees (where TK is reduced to the root of
the tree) associated with a nondecreasing sequence of temperatures {cp1; . . . ; cpK}. Then,
a tree is chosen among this sequence by cross-validation.

3 Influence measures for CART

Let X = (X1, . . . , Xp) ∈ X be the vector of the explanatory variables, and consider that the
data are independent realizations L = {(x1, y1); . . . ; (xn, yn)} of (X,Y ) ∈ X × {1; . . . ; J}.
The dependent variable Y is assumed to be a categorical variable with J unordered cat-
egories. Influence measures quantify discrepancy between T , the tree computed with the
complete sample L and T−i, the jackknife tree computed with L−i, the whole sample minus
the observation (xi, yi).

Let T (xk) (resp. T
−i(xk)) be the the class prediction of xk based on T (resp. T−i).
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3.0.1 Influence on predictions

The first natural idea is to focus on class predictions. In this case, influence measure is
directly related to 1lT (xk) 6=T (−i)(xk):

I1(xi) =
1

n− 1

n∑

k=1;k 6=i

1lT (xk) 6=T (−i)(xk), (3)

I2(xi) = 1lT (xi) 6=T (−i)(xi) (4)

I1(xi) is the proportion of observations for which the predicted label changes using the
jackknife tree T (−i) instead of the reference tree T . It is closely related to the resubstitution
estimate of the prediction error.
I2(xi) indicates if xi is classified in a different way by T and T (−i) and is closely related to
the leave-one-out estimate of the prediction error.

3.0.2 Influence based on subtrees sequences

Another way to look at the data is to consider the complexity cost constant, penalizing
bigger trees in the pruning step of the CART tree design, as a tuning parameter. It allows
to scan the data and sort them with respect to their influence on the CART tree.
Let us consider on the one hand the sequence of subtrees based on the complete dataset,
denoted by Tcpj

, and on the other hand the n jackknife sequences of subtrees based on

the jackknife subsamples L−i, denoted by T
(−i)
cpj . Suppose that the sequence Tcpj

contains

KT elements, and that each sequence T
(−i)
cpj contains KT (−i) elements (i = 1, . . . , n). This

leads to a total of Ncp 6 KT +
∑

16i6n KT (−i) distinct values {cp1; . . . ; cpNcp
} of the cost

complexity parameter in increasing order from cp1 to cpNcp
= max16j6Ncp

cpj .

Then, for each value cpj of the complexity and each observation xi, we compute the binary
variable 1l

Tcpj
(xi) 6=T

(−i)
cpj

(xi)
that tells us if the reference and jackknife subtrees corresponding

to the same complexity cpj provide different predicted labels for the removed observation
xi. Thus we define influence measures I3 and I4 as the number of complexities for which
these predicted labels differ: for i = 1, . . . , n

I3(xi) =
1

(n− 1)Ncp

n∑

k=1;k 6=i

Ncp∑

j=1

1l
Tcpj

(xk) 6=T
(−i)
cpj

(xk)
(5)

I4(xi) =
1

Ncp

Ncp∑

j=1

1l
Tcpj

(xi) 6=T
(−i)
cpj

(xi)
(6)

3.1 Distributional results

Let I be any of the resubstitution indices (I1, I3), and Î be the estimate of I computed as
defined in equations (3) and (5).

Proposition 1. If σ̂2 is the jackknife estimate of the variance of I, we obtain the following
confidence interval for I > 0: [

Î − ǫασ̂ ; Î + ǫασ̂
]

(7)

where ǫα is the value of a standard gaussian variable that has the probability α
2 to be exceeded.

Using the property of jackknife estimate (see [19]), an unbiased estimate of σ̂ is given by

the variance of the values
(
Î(xi)

)
16i6n

.

4 Exploring Paris Tax Revenues data

4.1 Dataset and reference tree

We apply the tools presented in the previous section on tax revenues of households in 2007
from the 143 cities surrounding Paris. Cities are grouped into four counties (corresponding
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to the french administrative “département”). The PATARE data (PAris TAx REvenues) are
freely available on http://www.data-publica.com/data. For confidentiality reason we do
not have access to the tax revenues of the individual households but we have characteristics
of the distribution of the tax revenues per city. For each city, we have the first and the 9th
deciles (named respectively D1 and D9 ), the quartiles (named respectively Q1, Q2 and Q3 ),
the mean, and the percentage of the tax revenues coming from the salaries and treatments
(named PtSal).
Basically we tried to predict the county of the city with the characteristics of the tax rev-
enues distribution.

The reference tree shows that the extreme quantiles are sufficient to separate richest from
poorest counties while more global predictors are useful to further discriminate between
intermediate cities.
Surprisingly, the predictions given by the reference tree are generally correct (the resubsti-
tution misclassification rate calculated from the confusion matrix is equal to 24.3%). Since
the cities within each county are very heterogeneous, we look for the cities which perturb
the reference tree.

4.2 Influential observations

4.2.1 Presentation

The threshold given by the critical value of the unilateral test at level 95% for I1 high-
lights ten cities, which are in descending order of influence: Villemomble, Neuilly-Plaisance,
Chevilly-Larue, Vitry-sur-Seine, Villejuif, Creteil, Choisy-le-Roi, Champigny-sur-Marne,
Arcueil and Noisy-le-Grand. Let us note that only three of them are highlighted by index I2.

There are 29 different values of complexities in the reference and jackknife trees sequences.
Index I3 selects nine cities using the threshold given by the critical value of the unilateral
test at level 97.5% : roughly the same except that Neuilly-Plaisance and Noisy-le-Grand are
not selected while Bonneuil-sur-Marne is selected.

The influential cities, according to index I4 at level 95% et 97.5%, are in descending
order of influence the 5 following cities: Paris 13eme, Villemomble, Asnieres-sur-Seine,
Rueil Malmaison and Bry-sur-Marne.
So, influence indices I1 and I3 deliver similar conclusions while I4 highlights a different
subset of observations.

4.2.2 Interpretation

Index I4 highlights cities for which two parts of the city can be distinguished: a popular one
with a low social level and a rich one of high social level. They are located in the right part of
the reference tree (for the higher values of I4: Asnieres sur Seine, Villemomble, Paris 13eme,
Bry-sur-Marne and Rueil-Malmaison) as well as in the left part (for moderate values of I4:
Chatenay-Malabry, Clamart, Fontenay aux Roses, Gagny, Livry-Gargan, Vanves, Chevilly-
Larue, Gentilly, Le Perreux sur Marne, Le Pre-Saint-Gervais, Maisons-Alfort, Villeneuve-
le-Roi, Vincennes and the particularly interesting city Villemomble (see Figure 1).
To explore the converse, we inspect now the list of the 51 cities associated with lowest values
of I4 which can be considered as the less influential, the more stable. It can be easily seen
that it corresponds to the 16 rich district of Paris downtown (Paris 1er to 12eme and Paris
14eme to Paris 16eme) and mainly cities near Paris or directly connected by the RER line
transportation.

In addition, one may notice that influential observations for PCA (Principal Component
analysis) are not related to influential cities detected using I4 index (see Figure 2). To end
this study, the map in Figure 2 shows that Paris is stable, and that each surrounding county
contains a stable area: the richest or the poorest cities. These areas are clustered.
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|
D9>=7.45e+04

D1< 1.054e+04

D1< 1.578e+04

D9>=9.014e+04

PtSal>=70.23

Q3< 3.804e+04

PtSal>=71.03

PtSal>=78.28

D1< 7637

Mean< 3.078e+04

Paris            

17/0/0/0

Haut de Seine    

0/17/1/3

Haut de Seine    

0/10/0/5

Val de Marne     

0/0/0/7

Val de Marne     

0/2/2/9

Seine Saint Denis

0/1/16/0

Haut de Seine    

0/3/3/1

Paris            

3/0/1/3

Seine Saint Denis

0/0/6/3

Val de Marne     

0/3/5/15

Seine Saint Denis

0/0/6/2

Paris	  13eme	  

Rueil-‐Malmaison	  

Asnieres	  sur	  Seine	  

Chatenay	  Malabry	  

Clamart,	  Vanves,	  

Fontenay	  aux	  	  roses	  

	  

Bry	  sur	  Marne,	  	  

Le	  Perreux	  sur	  Marne,	  

Vincennes	  

Le	  Pre	  Saint	  Gervais	  

Chevilly	  Larue	  

GenBlly,	  	  

Maisons	  Alfort	  

Villeneuve	  le	  Roi	  

Villemomble,	  Gagny	  

Livry-‐Gargan	  

Figure 1: Influential cities located on the CART reference tree.
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Figure 2: Left: Plane of the two first principal components: Cities are represented by symbols
proportional to influence index I4. Right: The 143 cities are represented by a circle proportional
to the influence index I4 and a spatial interpolation is performed using 4 grey levels
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