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ABSTRACT 

- ~ ----~-

Several measures of influence for logistic regression have been 

suggested. These measures have been developed for the purpose of identi

fying observations which are influential relative to the estimation of the 

regression coefficients vector and the deviance. We propose measures for 

detecting influence relative to the determination of probabilities and 

the classification of future observations. The relationships among mea

sures are indicated. 

Key Words: Logistic regression, influence, prediction, classification. 
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1.0 Introduction 

In this paper we derive and study statistics for detecting and 

characterizing influential observations in logistic r egression. Several 

of the statistics we consider have been discussed in great detail by 

Pregibon (1981). While his focus is on measuring the effects observat ions 

have on the estimation of the regression coefficients vector and on a 

particul ar goodness of fit measure, we focus on the effects observations 

have on the determination of probabilities and on the classification of 

future obser vations. This approach is reasonabl e since ultimately , the 

fitted l ogistic regression (LR) model must be employed with these goals 

in mind. In the process of developing n ew methods, and in considering 

existing methods from this alternative point of view, we are abl e to 

provide some new insight. In particular , we show that the Cook 

(1977) adaptation for detecting influence (discussed in Pr egibon (1981) 

and Cook and Weisberg (1982)) may be interpreted as an approximation 

to measures of inf luence relative to Pregibon ' s goals and ours as well. 

In most exampl es considered we find that the Cook adaptation 

is a " good" measure of detecting influence and that it i s useful for 

interpretive purposes to a point . However, any instrument employed 

simultaneou sly for many different purposes is necessarily "blunt". 

The additional measures suggested by Pregibon (1981) and the measures 

we provide, are thus useful for "fine tuning". For aesthetic reasons , 

we of course prefer our approach to influence, however since some of 

our measures can be more expensive to compute, we will recommend a 

middle road whereby observations are initially detected by selected 

"inexpensive" influence measures, after which other measures are 

calculated f or only the most influential cases . 
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Cook and Weisberg (1982} provide a general review of work on existing 

methods of detecting influential observations, including a review-of the 

methods of Pregibon (1981), which are adaptable to the generalized linear 

model c.f. Nelder and Wedderburn (1972). The work of Johnson and Geisser 

(1981, 1982, 1983) focuses on the detection of influencial cases relative 

------

to the goals of prediction and estimation in the normal theory linear model. 

Their methods are adaptable to much broader statistical paradigms and are 

adapted to some-extent in this paper. 
---~-·--···· 

In section 2 we define the LR model, discuss appropriate inferential 

goals and corresponding notions of influence after which we discuss some 

technical results necessary later on. In section 3 we focus on the 

definitions and interpretations of the various influence measures. In 

section 4 we consider examples and conclusions are provided in section 5. 

2.0 Preliminaries 

2.1 General Setting 

We begin by making basic definitions and by discussing results which 

will be needed in later sections. Related discussions may be found in 

Pregibon (1981) and Cook and Weisberg (1982). 

We assume a sample of observations on N individuals {(y
1

,~
1
), ••• ,(yN,xN)} 

·-

which have been independently observed. The x. 's are 1 x p vectors of 
""l. 

covariates (the first coordinate being a one when a constant is included) 

and they 's are assumed to be realizations of Binomial (n.,p.) random variables 
i 1 1 

where 

pi= p(~) = exp(~J_) / (1 + exp(~i~)) 

and ! is a p x 1 vector of unknown regression coefficients. This defines the 

logistic regression model. For future reference, we will denote the popula

tion corresponding to "successes" as n
1 

and that corresponding to "failures" 
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The log likelihood function for B may be expressed as -
N 

.e. (Xf3) = . I: 
1 

{ v . x . 13 - ln (1 + exp (x . f3' ) } • 
,v J = NJ-J"' ,vJJ;:'/ 

A 

The maximum likelihood estimate, t, may be obtained by solving the likelihood 

equations 

x--(:t., -i> = o 

,., 

Where y .. = (y
1

, ••• ,yN),x--=(~;, ••• ,~), y~= (y
1

, ••• ,yN) and y. =n.p. =n. p(~.B) 
,.., :.L . - J J J J :J-

for j = 1, ••• , N. Define the weights i. = n .p .. (1 - p.), and the diagonal matrix 
J J J J ,., 

W = diag{ w l' ••• , wN} • Then standard asymptotic maximum likelihood theory 

suggests that 

B ,.:,n ((3 (X .. WX)-1) 
,v p rv' 

where~ denotes "approximately distributed for large N" and n (•,•) denotes 
p 

p variate normal with corresponding mean vector and covariance matrix. We 

assume throughout that appropriate conditions are satisfied for the above 

statement to hold. 

In order to measure how well the LR model fits the data, Pregibon (1981) 

--------

employs the "chi square" statistic 

2 2 A A _.A-1 A 

X = X (XB) = ( y - y) W (y - y) 
r-.1 rv rv rvrv 

and the deviance 

D = D(Xi,) = 2{.f.(i,) -l(Xj)} 

A A A A -1 A -1 -1 
where a--=(8

1
, ••• ,eN), p(S.)=y.n., (e.=ln(y.n. /(1-y.n. ))) j=l, ••• ,N. 

rv · J JJ 1 JJ JJ 

It is natural to consider the x2 
statistic after "thinking binomial". The 

Deviance measures how much "worse" one does by fitting the LR model than by 

fitting each observation separately. "Large" values for/ and D indicate 

a poor fit. Asymptotically, x2 
and D will be x2 

(N - p) (chi square with N - p 
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degrees of freedom) random variables under standard assumptions. 

In the normal theory regression setting, uniquely defined residuals 

are employed to measure the fit of individual observations. It is clear 

from the above that there at least two natural ways to define residuals 

within the LR context. Define 

and 

,. ,. 1/2 
X. = (y. - y.) /w. 

J J J J 

d. =+ If {l.(0.) -l.(x.B)} 
J - J J J "'J"' 

where l.(8.) is the j th contribution to l(e) and plus or minus is determined 
J J ,v 

,. ,. 
by whether or not e. > x. a, (or equivalently according to whether or not 

J "'J,-., 
-1 

y .n. > p .) • The magnitudes of xi and di indicate how well case i fits 
J J J 

the data and the signs indicate whether there is an overfit or underfit. 

The residuals di and xi are discussed in Pregibon (1981), while these and 

one other definition are discussed in Cook and Weisberg (1982). 

For general definitions of residuals, see Cox and Snell (1968). 

It will be useful to consider Kullback-Leibler divergences, Kullback 

(1968) applied to Bernoulli distributions. Let Zi"'Bernoulli(qi), i=l,2. 

Then the directed divergence between the distributions for z
1 

and z2 is 

defined as 

which is non-negative definite, and is zero if and only if q
1 

= q
2

• It 

follows that the deviance may be expressed as 

N -1 ,. 
D= 2 .E

1
n. I(y.n. ,p.) 

J= l. J J J 
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and that 

r,;-- 1/2 -1 .... 
d. =+v2n. I (y-.n. ,p.). 

J - J J J J 

Thus the j
th 

contribution to the deviance d: is a measure of the discrepancy 
J 

between the observed proportion of successes and that estimated by the LR 

model. The deviance itself is a weighted sum of these discrepancies, and 

is small when observed proportions match estimated proportions, and is 

large otherwise. 

We now define the projection matrix 

and the residuals vector 

.... 
Pregibon (1981) has shown that Vx = 0 which implies that the column space 

of Vis orthogonal to the residuals vector. By analogy with the normal 

.... 

theory case, Pregibon suggests that large diagonals of V will correspond 

to extreme points in the design space, and hence are potentially influential. 

In the normal theory setting, Hoaglin and Welsch (1978) have called these 

"leverage" points and Johnson and Geisser (1983) have called them "distantly 

observed" points. Pregibon has also noted that pairs of observations with 

large values for l;ijl will imply large effects of each case on the fit of 

the other. (See (3.2.2) and (3.4.6) in conjunction with (3.3.2).) 

.... 

In order to get a clearer picture of the role of the matrix V, consider 

the scaled vectors z. =.;.:12
x. and the corresponding matrix z=w112x. 

- "'l. 1 l"'JJ.. 

.... 1 -1 ,,. 
Since V = z (z z) z , it is possible to represent V in a way that leads to 

an interpretation of the diagonal components ('; . .) as "distances", and the 
JJ 
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off diagonal components (v .. ) as measures of relative orientation of the 
l.J 

- - Al/2- - N -scaled vectors z. and z .• Let x. = (1,x.), z. =w. x., z= .E,,e./N, 
""l.. -J -J -J -J J -J - J=.a.; J 

N - - 1 ,..,, -S= .I:
1 

(z. - z) (z. - z)/N, and Z= (z
1 
... , ••• ,zN_..) .... Then 

J= "'J - "'J ,..,, 

-1 : - - -l - - ... 
V = N (e e ... + (Z - e z) S (Z - e z) ) 

,..,,,..,, -- --
where e is an N x 1 vector of ones. In particular -
(2. 1.1) 

A -1 ,..,, - -1 ,._,, - _. 
vi. = N (1 + (z. - z) S (z. - z) ) • 

J "'J - "'J -

Cases with large v .. are "distantly observed" in the space spanned by the 
JJ 

weighted covariate vectors{~.}~ 
1

• It is to be noted that the weights 
r.J]_ J= 

- N -depend heavily on the vectors {x.}. 
1 

since a "distant" x. will imply a 
"'J J= -J 

A 

small weight w. (provided n. is small). When all weights are similar in 
J J 

magnitude, the components of v .. have the same interpretation as they 
J.J 

do in the normal theory setting. 

2.2 Influence 

The topic of influence has been frequently discussed, most often 

within the context of normal theory regression. The recent monograph of 

Cook and Weisberg (1982) summarizes much of the recent work, including 

settings other than the normal. 

Pregibon (1981) has discussed measures of influence which correspond 

to the effect an observation has on 

(i) the estimation oft 

(ii) the overall fit of the data to the LR model 

(iii) the maximized likelihood 

(iv) the fit of another observation (what he calls neighboring 

effects) 
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The particular quantities associated with these goals are 

" {i) f3, 
r,J 

(ii) D(Xa) and 2 " 
X (X!), 

r,J 

(iii) l(XS), 
r,J 

(iv) 
2 N 

{di}i=l· 

The standard method of determining influence relative to a specific 

goal is to measure the effect particular observations have on the corre-

sponding quantity of interest. If the goal is estimation, a is computed 
r,J 

" 
followed by computation of f(i)' the maximum likelihood estimate based on 

the full data set minus case i (subsequently referred to .as the estimate 

based on retained data). We require some measure of the discrepancy 

{possibly a metric) between the two vectors, say d(S,B{i)). Cases are then 

ordered according to the magnitudes of a-'(B,S(i}). The paradigm is the 

same for other quantities, hence influence will depend not only on one's 

goals but also on one's ·choice of discrepancy measure. Measures specific to 

these goals are discussed in section 3. 

We also consider measures of influence which correspond to the effect 

observations have on 

(iv) the determination of probabilities 

(v) the classification of observations into populations TI
1 

and TI
0 

(vi) each other relative to (iv) and (v) 

(vii) the number of correct classifications in the sample 

f f, f,, 
To fix notation let X = (x

1 
, ••• ,xm ) denote a set of covariates for 

·M individuals who have not yet been classified as TI
0 

or TI
1

• (We use the 

superscript f to denote "future" observations.) When the goal is the 

determination of probabilities, we focus on 

(iv) 
,..f f"' 
p E p(X f3) 
r,J r,J 

where we employ an obvious vector notation. When the goal is to classify 
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observations, we focus on the log odds ratio vector 

(v) 
f" ,..f ,..f 

X ! = ln p / ( 1 - p ) 
r,J ,..,, 

----------~---- ·-- -

. f ... f --f ,.. 
since uture j is classified as rr

0 
or rr

1 
according as ln p ./ (1 - p.) = x 13 

J J ivj-

is less than zero or greater than zero. We determine neighboring effects 

by focusing on the quantities 

(vi) 
"f "f" "f ,..f 
p . and xj 13 = ln p ./ (1 - p . ) , 

J -- J J 
j = 1, ••• ,M, 

i.e. we will measure the effect of say case ion the determination of 

"f ,_f ... f f f 
p. and ln p. / (1 - p.) • When X is unavailable, we select X = X to focus 

J J J 

on the effects observations have on probabilities and classifications for 

the observed sample. We will finally consider a measure of the effect on 

the number of correct classification in the sample by focusing on 

,. N " 
(vii) NCCl (X13) = . l:1 y. I (O ) (x. P.) 

- J= J ,00 J.;t::, 

and 

the estimated number of correct classifications into rr
1 

and rr
0 

respectively. 

2.3 One Step Approximations 

It is to be noted that all the quantities mentioned in section (2.2) 

" " 
depend on! and consequently it will always be necessary to compute i(i)' 

the estimate based on retained data. (The notation (i) will always imply 

that case i has been removed before calculation). Since it is necessary 

" 
to iterate to obtain estimates of l(i)' it can be expensive to provide 

appropriate diagnostics. This is not a problem in the normal theory 

" 
setting since i(i) may be simply obtained from standard regression output 

c.f. Cook (1977), Cook and Weisberg (1980, 1982). Pregibon (1981) considers 

,.. 
a "one step" approximation to i(i) which he employs to obtain approximate 
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" 
influence measures. Define l(X(i)f(i)), the maximized log likelihood based 

on retained data and corresponding vector of first partials l(X(i)!(i))(=,2,) 
.. ,. 

and matrix of second partials i(X(i)f(i)). Then by first order Taylor 

expansion about i, we obtain 

from which we obtain the one step approximation 

"l'· ,.. .. " -1 • ,.. 
t{i) = l - (-l(X{i)i)) l(X(i)~,) 

which has been shown by Cook and Weisberg (1982) to reduce to 

(2.3.1) 

Of course this approximation is best when the contours of the log likelihood 

are nearly elliptical, and can be very bad when this is not the case. 

We will require one step approximations to the estimated probability 

vector £{i) = f (X!(i)) = (p1 (i), ••• , pN (i)) ... , and to the vector of log odds 

vector xi,(i) = ln ,P,(i) / (1 -i(i)). Define the matrices 

" " 
A= (.A.) = (x. (6 - 6 (.))), 

l. J "'J "' "' l. 

1 1 " "'l 
A = (.A.) = (xj ( 6 - 6 (.))). 

l.J "'"' "'l. 

Then 

; . {i) = exp (x. B (.)) / (1 + exp (x. 6 (.))) 
J ~-]. ~-1 

= p . exp ( - . A • ) / ( 1 - p . ( 1 - exp ( - . A • ) ) ) , 
J 1 J J 1 J 

,.1 1 "l 
and pj(i) is defined by replacing iAj by iAj (equivalently define f(i) as 

,. "'l 
p(~(i))). The superscript "l" will always denote a one step approximation 

to the indicated quantity. We note for future reference that 

(2.3.2) 
1 "-1/2 ,. " 

.A. =w. x. vi./(1-v .. ) 
1 J J l. J l.l. 
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f f f,.., ,.., fl fl "'fl 
We similarly define A = (iAj) = xj (t - t(i)), A = (i Ai ) and !:(i) for 

the case of future observations. 

2.4 Calibration 

Observations will be ordered from least to most influential according 

to a number of different measures. Having identified the "most" influential 

observation according to some measure, it is of interest to determine the 

order of magnitude of influence relative to other observations. We will 

refer to this as the problem of calibration. It will not be possible to 

calibrate all measures. 

We follow a general procedure outlined by Cook (1977) and Cook and 

Weisberg (1982). Given an influence measure of the form d(,~,i(i)), we 

consider d(f,,@)• Employing asymptotic maximum likelihood theory in 

conjunction with the delta method, it will sometimes be possible to identify 
,.., ,.., 

the large sample distribution of d(S,B). It is then possible to equate the --
value aci,i(i)) to a percentage point of this distribution, and to use this 

for the purposes of comparison with other percentage points corresponding to 

other cases. For example if case i corresponds to the soth percentile and 

case j to the 90th percentile of the same distribution, we have a better 

idea about how much more influential case j is than case i. It is important 

to point out that it is not appropriate to use this procedure as a method of 

testing whether or not observations belong to the assumed model. 

3.0 Measures of influence 

3.1 Estimation oft 

Cook and Weisberg (1982) have defined a general measure of influence 

relative to the estimation oft· Define the log likelihood ratio 
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.. 

1, 

Then define the "likelihood distance" 

(3. 1. 1) LD . = L ( $ ,S ( . ) ) . 
l. "' "' l. 

We note that LDi ~ 0 with equality when xf = xf(i), hence i -,@,(i) need not 

equal O for LD. to be zero. The quantity LD. measures the effect that the 
"' l. l. 

i th case has on the maximized likelihood (insofar as it is affected by the 

change in 6), and may be calibrated by referring to the x2
{p) distribution. 

"' 

A useful result is obtained by considering a second order expansion of 
A 

L(f,!{i)) about f. It follows that 

which is the natural adaptation of Cook's normal theory procedure referred 

to in section 1 c.f. Cook (1977, 1979). The approximate LD. is seen to 
l. 

measure the global effect that case i has on the estimation of S (relative 
"' 

A 

to the covariability in 8). A one step approximation can be made to the 
"' 

approximate LD.; 
l. 

(3.1.3) 
1 2 A A 2 

D. =x. v .. /(1-v .. ) , 
l. J. 1.1. l.l. 

by application of (2.3.1) to (3.1.2). We note that cases which exhibit 

"lack of fit" (as measured by x:) and "distance" (as measured by ; .. ) will 
l. l.l. 

be most influential relative to the goal of estimating a, according to 

n!. Appropriateness of the approximation, D~, depends heavily on the shape 

of the likelihood. For further discussion and other measures, see Pregibon 

(1981) and Cook and Weisberg (1982). 
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3.2 Goodness of Fit 

Assuming the goal is to measure the effect an observation has on the 

fit of the data to the LR model, we begin by noting that the likelihood 

distance may be interpreted as a goodness of fit diagnostic. Recalling 

the definition of i(i)' the likelihood distance may be expressed as 

(3.2.1) 
N -1 " -1 " 

LDi = .2 j=~l nj{I(yjnj , pj(i)) - I(yjnj , pj)} 

N 
_ E A d 

j=l i j 

2 
where dj(i) is defined in an obvious way. We note that Aidj measures the 

effect of the i th observation on the fit of the i
th 

observation. When 

Aidj is positive (negative) the fit for the j th observation is worse (better) 

after deletion. Pregibon (1981) obtained a one step approximation (after 

expansion) to A.d.; 
1 J 

(3.2.2) 
• " " 2 "2 ,.. 2 1 

A. d. = zx. xo vi./ (1 - v .. ) +xiv. . ./ (1 - v. •• ) = . D. 
1 J J -t.. J 1J 1J 1J 1 J 

He employs these to measure neighboring effects relative to fit. He also 

noted that 

(3.2.3) I: 
j/i 

l~o .D.-..::: , 
1 J 

which implies that the overall fit for the retained observations must get 

better while that for case i must get worse after deletion of case i. We 

assume these results hold for the exact A.d. as well, and conclude that 
1 J 

when LD. is "large" it is due to an "appreciably" worse fit to the data 
1 

after deletion, and most particularly, it will be due to a poor fit for 

case i. We may interpret LD. to be the "overall" improvement in fit after 
1 

deletion of case i since LD. ~ 0. 
1 
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.. · 
We define the one step approximations LD: and A

1
d: to LD. and A.d. 

]. J ]. ]. J 
. . .... 1 " . 

respectively by substituting pj (i) for pj, J = 1, ••• ,N. These approximations 

are made without expansion of LD. and A.d .• When the contours of the like-
l. l. J 

lihood are nearly elliptical, LD. ~ Ln: ~ D~ and A.d. ~A .d: · ~ .n:, while 
]. l. ]. l.J l.J l.J 

otherwise they may be appreciably different. We would expect that the 

approximations LD
1 

and A.d: to be better than n
1
i and in: since fewer 

i ]. J J 

approximations are involved. This is not generally the case however as 

will be seen in the examples. 

Pregibon (1981) considered the deviance effect measure 

which is asymptotically x2
(1) and thus is easily calibrated. This measure may 

be expressed as 

= d ~ - LDi + A. d. 
]. ]. l. 

and thus may be interpreted by (3.2.1) and (3.2.3) as the lack (or goodness) 

of fit of the 1th observation plus the overall improvement in fit of the 

retained data. 

(3.2.4) 

The second expression indicates the relationship between 

Pregibon obtains the one step approximation (after expansion) 

1 2 2 ~ " 
A.D = d. + X · • v . ./ (1 - v. i) 

]. l. l. l.l. l. 

which implies that the overall improvement in fit for retained data is 

approximately 

We close this section by noting another result of Pregibon (1981). 

He shows that 
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~--~- -- -- -----------------------

(3.2.5) 

after approximation. This is analogous to the squared studentized residual 

in regression c.f. Behnken and Praper (1972), and measures the effect of 

case ion the overall fit of the model to the data. Cases which are distant 

in the weighted design space are thus potentially more influential relative 

to fit. 

3.3 Determination of Probabilities 

Since the primary goal of any analysis of this sort is essentially 

prediction, it is of interest to measure the differential effects of 

observations on the determination of p and pf, a vector of probabilities 

associated with future or, as yet, unclassified individuals. It is even 

more compelling that we focus on these aspects in view of the fact that 

most influence measures considered in this paper already depend on the 

difference between i and i(i). 

We begin by supposing that interest is focused on the determination of 

~-- -~- ----
the pf= p(XfB). A somewhat naive measure of the influence that case i has - - -- - -- - "f 
on the entire vector p is the Euclidean distance between the vectors 

--:y- £~ - -- - --:f - -- f" -

p =p(X '3) and p(i) =p(X 8(.)), 
- - - - - -1 

(3.3.1) 

"f ,..f 
A problem with this measure is illustrated by supposing Pj = .001, Pj (ir .01, 

... f ... f . f h •th d kth 
and pk= .501, pk(i) = .51. Then the contribution to EDi from t e J an 

observations will be the same while it is clear that case i is much more 

influential in it's effect on the determination of p~ than it is on the 
J 

determination of p~. To alleviate this problem, we could consider a dif-

ferent inner product, say L = diag{ t
1

, ••• , Jim}• Then define ,& = CR,1 , • • ·, R.m) .. 

f,.. ... f ... f .. "f ... f 1/2 f" i 
and EDi (~) = {(J!_ - f,(i)) L(£, -£,(i))} • The proper choice o L s not 
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obvious, except for the fact that in general it must depend on the data, and 

" " 
that in examples like the one above, tj should be larger than\.· If 

we assume Y~-·Bin (mi,p~), the choice l=JB= (~,···,1\r)""results in the 

diagnos~c 

the Euclidean distance between the vectors of predictions based on full 

and retained data respectively. 

While it is not possible to calibrate EDi(l,), it is pos~ibl~ to calibrate 

f f f 
the individual effects measures .e. s p. - p. (.), j = 1, ••• ,M. Since 

]. J J J ]. 

"f f • ,-f ,_f ,-f 2 
p. -p.-n(O, m .. {p. (1-p.}}) 

J J JJ J J 

""f .... f f ,,,.. -1 f~~ -~-
where M = (m .. ) = (xi(X WX) x ... ) , it follows that 

l.J - ""J 
-

(3.3.2) ,_f f ,_f ½" " • ) 
(p. -p.)/(mj.) p. (1-p.),..,n(O,l, 

J J J J J 

and thus we may employ the one step diagnostic 

(3.3.3) 

as a standardized measure of the effect that case i has on the determination 

"f -fl 
of p .• We may refer .e. to the n(0,1) distribution for the purposes of 

J ]. J 
~----~-~~ 

calibration. Since (3.3.2) may be employed to obtain a large sample 

confidence interval for p., we can suggest that removal of case i will 
J 

result in an estimate of p. which is moved to the edge of a confidence 
J 

interval with confidence coefficient corresponding to the normal per-

"" cen tile for . e .• 
]. J 

-

As an alternative to Euclidean distance, we consider the symmetric 

Kullback-Leibler divergence, c.f. Kullback (1968), as a discrepancy measure 

between probabilities. In order to measure the effect case i in the sample 
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\ . 
> has on future case j, define 

Then to measure the collective effect case i has the entire future sample , 

define 

(3.3.4) 
f m f 

DIV . = . E
1 

. g .. 
l. J= l. J 

We note that the difficulty exhibited in the previous example has been 

lessened since i g1 = • 0023 and i g! = • 000036. We generalize the definition 

of influence here to include the possibili ty of further weighting of the 

A 

individual effects . Let Land£ be defined as above. Then 
rv 

and s imple calculation results in 

DIV~(i) 
l. rv 

m A Af Af Af Af -1 Af At - 1 
= . E

1 
£ . (p. - p(.)) lnp.(1 - p.) /p.(.)(1 - p (.)) 

J= J J l. J J J l. j l. 

m A ( Af Af f 
= . El £ . p . - p . (. ) ) (. \ .) • 

J= J J J l. l. J 

We note that Div:(i) weights each difference in estimated probabilities with 
l. rv 

a log relative odds ra tio. The one step approximation Div:
1

ci ) is defined 
l. rv 

b b 
• • , fl d Afl f ,f d Af • 1 

y SU st1.tut1.ng , /\ . an P - c · ) or, /\. an P-c·) respective y. 
l. J J l. l. J J l. 

A A 

In the absence of a cle ar choice for £ , we will let R, = e, the vecto r 
rv rv rv 

of ones . However we keep the more general notation for comparative purposes . 

It is not possible to calib rate DIV:(i ) in general . Further , it i s not 
l. 

always possible to pre- specify Xf When this is t he case, it is reasonable 

f 
t o choose X = X and t o determine the effects cases have on p, the vector 
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' 
of probabilities corresponding to the observed sample. (See Johnson and 

Geisser (1983) for examles in the normal theory setting.) Measures are 
--------~ 

defined as above only with the superscript f deleted. In this case we 

obtain an interesting result if we let i.=n., j=l, ••• ,N. Define 
J J 

S.(a,S) =n.(p. -p.){x.(a"'"7-S)}, 
J - J J J -J - -

and expand about k,, to obtain 

and hence 

A e A A 2 
S.(S,S) =w.{x.(S-8)} 
J-- J-J--

• N " 2 
DIVi (n) = . I:1 w. (.A.) 

- J= J 1 J 

Recalling the approximation to the likelihood distance, we obtain 

,.. ""' " "' " N ....... 2 .---
LD. ~-(S-!(·))_..X ... WX(S-S(.)) = .r1 w.(.A.) =DIVi. 

1 - 1 1 J= J 1 J 

Thus, the divergence which weights each case with the ntnnber of individuals 

corresponding to that case, and the likelihood distance, may be approxi

mated by each other. Accordingly, we have a new interpretation for LD
1 

as 

an approximate measure of the discrepancy between probabilities estimated 

before and after deletion. This also provides a justification for cali

bration of DI~(n) by referring to the x2
(p) distribution. 

1-

We observe in passing that the weighted distance ED.(n
2

) may be similarly 
1-

approximated as 

2 ( N 2 2)½ 
EDi(n ) = .rl w. (iA.) 

- J= J J 

-~--· ---~-- 2 . 2~--~-2 - ... 

where E = (n
1

, •• • ,~) • 
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It is informative to take another look at LD. from a different 
l. 

perspective. We note that 

(3.3.5) 
N I A A 

exp{LD.)= .II
1 

p(Y.=y. x.,f3)/p(Y.=y.lx.,f3(.)) 
1 J = J J "'J "' J J "'J ,..., 1 

which is a likelihood ratio statistic. We may think of the probability 

functions p(Y. = y. Ix. ,B) and p(Y. = y. Ix. ,8(
1
. )) as predictive distributions 

J J J "' J J J "' 

and the ratio (3.3.4) as the relative odds of observing the data actually 

observed under repeated predictive trials from the two distributions 

above, for given X. The likelihood distance LD. may thus be interpreted 
1 

as a measure of the effect deletion of case i has on the classical joint 

predictive distribution (evaluated at observed data) 

A N A 

p(ylX,f3) a .n
1 

p(Y. = y. Ix. ,f3). 
"' "' J = J J "'J "' 

Johnson and Geisser (1983) determine the effects observations have on joint 

Bayesian predictive distributions in the normal theory setting. This 

approach is not so easily adapted here due to technical difficulties. 

We note however that if we employ the approximation based on retained 

data p(YIX,i(i)), then the Kullback-Leibler symmetric divergence between 

these two approximate joint predictive distributions is exactly DIV .• 
1 

Thus we have further justification for DIV., as well as LD., as measures 
1 1 

of the effect case i has on the prediction of observations or equivalently, 

on the determination of probabilities. 

We finally note that Larimore (1983) has discusses the likelihood ratio 

(3.3.5) and has essentially discussed a large sample version of the result 

(3.2.1) within the context of model selection. 
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3.4 Classification 

Of course the determination of probabilities and the classification 

of observations are highly related processes since observations are 

classified according to the magnitudes of corresponding probabilities. 

Observations which affect estimated probabilities should also be influential 

regarding classification of observations, and vice versa. However there 

is extra information to be gained by further characterizing influence 

according to the effects observations have on classification. 

We assume the same setup as in (3.3), and we suppose that cases will 

classified according to the rule 

(3.4.1) f" --f --f 
classify future case j as rr

1 
(JI

0
) if x. R = ln p ./(1-p .) >0 ( < 0). 

"'J,i:;:, J J 

f--
The quantity x.S is analogous to Fisher's discriminant function in the 

J"' 

normal theory case, and the rule above corresponds to equal losses for 

both types of classification error. 

In order to assess the effect that observations have on this rule, we 

define the log odds measure 

(3.4.2) 
f" M " --f --f -1 ,.f ,.f -1 

LO. ( R.) = • r
1 

R.. ln { p. (1 - p . ) /p. (.) (1 - p. (.)) } 
l. ,..., J= J J J J l. J l. 

M " f " " M " f 
= j~l R-/~/t - t(i))} = j~l R-//\j) 

1 A fl 
which has one step approximation 10.(i) where .A. has been substituted for 

l. ,..., l. J 

f 
.A .• Since effects may cancel one another, we also consider the absolute 
l. J 

log odds measure 

(3.4.3) 
f " M f 

ALO. ( i) = . r 
1 

i. I iA . I 
]. ,..., J= J J 
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d d . . . ALOf1 (") hi h an correspon ing one step approximation i ~, w c may not 

be calibrated. We determine individual effects by considering .A: which, 
i J 

on the other hand, may be calibrated due to the fact that 

f A ,_f 
x.(S-S)~n(O, m •• ). 

J JJ 

We define 

(3.4.4) 

which may be referred to a n(O,1) distribution. Removal of case i results 

in moving estimated log odds (~!) to the edge of a confidence interval 

,-.,fl 
with percent coverage determined by to the corresponding percentile for .A .• 

i J 

We may also calibrate LO~(~) = LO~ since 

M f A "f 
. i:

1 
x . ( S - S) ~ n ( 0, e ... M e) • 

J= "'J"' "' "' "' 

Define crf = (e"":tiel12 , and the standardized log odds measure (based on equal 
"' -

weights) 

(3.4.5) fl M "\ fl/,.f 
SLO. = . I:

1 
• /\. a 

i J= i J 

which may be referred to the n(O,l) distribution. This measure will 

not be very useful when effects on different cases cancel due to differences 

in signs. However when S10~ is "large" and positive (or negative), the 
i 

implication is that the future samples are more likely to be allocated to 

rr
0 

(rr
1

) after deletion of case i than before; i.e. deletion of case i results 

"'f 
in an overall decrease (increase) in the p., j = 1, ... ,m, ·.after deletion. 

J 

Of course when iA: is "large" and positive or negative, the same statement 
J -

- ~ ·- Af .-
applies top. alone. 

J 
In those cases where effects cancel, the measure ALO£ 

i 

may be employed as a "backup" measure. Individual effects may then be 

fl 
measured via iA.j • 

As before, when Xf is not available, we let Xf = X and make definitions 
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as above with the superscript "f" deleted. We note some of the comparisons 

among influence measures when Xf = X: 

LOi ~ E ~. ( • A . ) 
2 ~ DIV. , LO. = I: iA . , 

j Jl.J 1 1 j J 

I I 
. {... ... 2 2 

ALOi = I: • A. , ED. = I: p. (1 - p.)} (.A.) • 
j 1 J -- - _i _ j J J 1. . ~ -· -

(3.4.6) 

The approximate likelihood distance Di, the divergence DIVi, and the 

Euclidean distance EDi, may thus be interpreted as weighted measures ~~--
of the effect of case ion the squared log posterior odds. Recalling 

from (2.3.2) that the one step approximation to .A. may be expressed as 
]. J 

1 ... -1/2... ...1/2 ... 1/2 ... ... 1/2 ... 1/2 
. A. = x. (1 - v .. ) { v . .Iv. i v. . }{ v .. / (1 - v .. )} m .. 1 
1 J l. 11. l.J 1 l.J l.1 11 JJ 

we may further interpret one step approximations to the expressions in 

(3.4.6). It is convenient to note that 

-1 ... -1/2 ... ,..1/2 ... 1/2 ... "' 1/2 
i A. = X. (1 - v .. ) { v .. /v.. v. i } { v . ./ (1 - vi.)} 

J l. ].]. l.J J J l. 11 1 

which is the product of the analogue to the Studentized residual referred 

1/2 ,.. 1/2 " 
to at (3.2.5), the estimated correlation, corr(w. x.S, wi x.S), and the 

1 "'l.r,., "']"' 

" ... 1/2 "distance" measure {v .. /(1-v .. )} • Hence lack of fit, "relative orienta-
11. ].]. 

tion", and "distance" (see the discussion following (2.1.1)) determine the 

magnitude and sign of i'r: and hence .A:, where orientation and distance 
J 1 J 

. ...1/2 ... 1/2 
refer to the weighted covariate vectors wi ~~ and w. x .• 

·-.1. J "'J 

We conclude this section by defining quantities for determining the 

approximate influence observations have on the number of correctly classified 

observations in the sample. Define 
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NCC\= 1 Y/\0,00) (;5ji,) - 1co,co,<xi(i))} 

NCCO. = i:(n. -y.){I( O)(x.a)-I( O)(x.$(.))}. 
1 j J J -00, "'J"' -00, "'J"' 1 

the differences in the number of correct classifications, into rr
1 

and rr
0 

respectively, before and after deletion of case i. We obtain one step 

. . NCC11 d NCC01 b b . . ~l a 'l Wh approximations 
1
. an . y su st1.tut1.ng x. µ (.) = x. µ - • A.. en 

1. "']"' 1 "'J"' 1. J 

NCCt! is>(<) O the implication is that fewer (more) observations from 

ITR. are correctly classified after deletion of case i than before, R. = O, 1. 

4. Examples 

4.1 Leukemia Data 

Feigel and Zelen (1965) analyzed a data set consisting of 33 observa

tions on the survival of individuals diagnosed with leukemia (see figure 1). 

Observed covariates were WBC = white blood cell count and the variable AG 

which indicates the presence or absense of a certain morphologic charac

teristic in the white cells. Cook and Weisberg (1982) also analyzed this 

data set from the point of view of detecting influential observations. They 

define a "success" to correspond to patient survival in excess of 52 weeks, 

and "failure" otherwise. Note that there are 30 cases due to three multi-

plicities at (AG= 1, WBC = 100,000) and two at (AG= 0, WBC = 100,000). Since 

it is expected that individuals with high WBC are at high risk, it is clear 

that case 15 will be very influential since one of the five individuals 

with WBC= 100,000 apparently survived at least 52 weeks from diagnosis. It 

is to be noted that all 16 of the remaining individuals with WBC larger 

than 15,000 died within 52 weeks. 
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The top 5 influential cases and corresponding influence statistics 

are listed in Table 1. Case 15 stands out as most influential according to 

all measures, except for those related to the number of correct classifi

cations. It is clear though that removal of case 15 will affect all infer

ential goals considered in this paper. Note that n: is a better approximation 
]. 

to LD. than LD: is for this data set and that both approximations are best 
]. ]. 

when LD. is small. 
]. 

-r- ~ ~ ---~---~~---
The approximation AiD is very good for small to moderate 

A
1

D, however it is not as good for A15n. 

The large positive value for s10
15 

(may be referred to the sith percen

tile .of the standard normal distribution) indicates that removal of case 15 

will result in lower probabilities of success on the average and consequently 

an increased number of individuals will be allocated as failures. Careful 

consideration of figures 1 and 2 makes this fact clear. From figure 1 it 

can be seen that future individuals in the regions (WBC < 12,000 or WBC > 30,000, 

-

and AG= 1 or 0) and (AG= 0, 11,000 < WBC < 28,000) will be given the same allo-

cation according to the discriminants !1i and !1f(lS)' while those individuals 

in (AG= 1, 12,000<WBC < 30,000) will be allocated as failures by !1i(lS) and 
--f,.. 

successes by x.~. Since only case 8 falls into the latter region, it follows 
"'],t;:, 

that Ncco
15 

= 1, NCC1
15 

= 0, and hence the approximation NCCOis = 0 has failed 

in this instance.. The index plots for A. in figure 2 indicate that removal 
15 J 

of case 15 results in a relatively large decrease in posterior odds (or 

equivalently a relatively large increase in probability of failure) for 

cases 12, 13, 14, 15, 29 and 30 and moderate decreases for case 24, 25, 26, 

27 and 28. 

We turn to a comparison of measures of the neighboring effects of case 

15 on the determination of probabilities. 
,...,1 

We may compare the measures 
15

Aj' 

,...,1 1 

15e., and 
15

g. by consideration of figure 2. It is to be noted that while 
_J J 

,...,1 ,...,1 

i
eJ. and.:\. are asymptotically equivalent, they can be considerably different. ]. J 
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It is also to be noted that 
15

g~ indicates relatively diminished effects 

for some cases. For example, the effect of case 15 on case 30 is large 

according to 
1

s1'
30 

(2.66), moderate according to 
15

e~
0 

(.56) {both may be 

referred to the standard normal distribution) and small according to 

1 1 ~ 

15
g

30 
(.05) (when compared to max 

15
gj = .65). In fact since p

30
= .0112 

and p
3
0(l

5
) = .0001 {pJO(l

5
) =0.0000), one's choice of measure will depend 

upon the emphasis one wishes to place on this type of discrepancy. In any 

event, all three measures agree that case 15 affects the determination of 

probabilities for cases 12, 13, 14 and 15 (all cases have high WBC and 

AG= l; pj -pj(lS) = .26, .28, .28, .10, respectively). 

We finally discuss the effects case 15 has on the fit of other 

cases. Figure 3 contains index plots of 
15

n~/nj and A
15

d~/nj. Recall 

that A
15

d~ measures how much better or worse case j fits the model after 

1 f . d h Dl . . i A dl remova o case i, an tat 
15 

j is an approximat on to 
15 

j (see (3.2.1), 

(3.2.2) and (3.2.3)). Case 15 has the greatest effect on itself, fitting 

much worse after deletion than before, while cases 12, 13, 14, 16 and 17 fit 

better. The approximations are very similar. As a quick check on accuracy 

1 1 
we note that A

15
d

15
/3=5.61, A

15
d

15
/3=3.09 and 

15
n
15

/3=4.48. Pregibon 

(1981) has discussed the accuracy of .n: and found it to be quite good 
1 J 

for the Finney data discussed in 4.2. 

Removal of case 15 results in virtually no influential observations 

(see table 1). The accuracy of the approximations is again to be noted. 

For this data set, the approximation n: is to be preferred to LD~. 
1 1 

4.2 Finney data 

Finney (1947) studied the relationship between rate and volume of air 

inspired on a transient vaso-constriction of the skin of the digits. He 

defined a "success" to be the occurrence, and a "failure", the nonoccurrence 

of vaso-constriction. The data consists of thirty nine observations on three 
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individuals and is plotted in figure 4. Pregibon (1981) has carefully 

studied this data set from the point of view of detecting influential obser

vations. 

Influence statistics for this data are listed in table 2. Cases 4 

and 18 are most influential according to the likelihood distance, diver

gence, absolute log odds, ~.x2
, and ~.D. Case 32 on the other hand is most 

l. l. 

influential according to Euclidean distance, standardized log odds, and has 

the greatest change in the number of correctly classified observations. 

Figure 4 contains plots of discriminant lines for models based on full 

and retained data (models based on data without cases 4 and 32, 

respectively). These lines are fairly ~imilar. (Lines corresponding to 
---~--~- ~-~ 

deletion of 18, and the pair (4,18) are not drawn since they are virtually 

identical to the one computed without case 4.) Deletion of cases 4, 18, or 

32 results in a modest clockwise shift of the discriminant line. When case 

32 is deleted, three more failures are classified as successes than would be 

if the full data set was employed (note that Ncco!
2 

= -3). When cases 4, 

18 or 32 are deleted, standardized log odds statistics are relatively small 

due to a cancellation of effects. Deletion of case 4 or 18 does result in 

a slightly increased propensity to allocate cases as failures, and deletion 

of case 32 results in the increased propensity to allocate cases as successes, 

on the average. These phenomena are better understood after careful 

scrutiny of figure 4. 
,,.,---

Allocation of future cases in the region between lines will be affected 

by one's choice of model. When lines -move perpendicularly after deletion, 

the cancellation of effects does not occur, and this is indicated by the 

fact that ALO. and LO. are similar in magnitude. Since ALO. appears large 
l. l. l. 

relative to LO. for cases 4, 18, and 32, it will be necessary to consider 
l. 
,..., 

the measures .A. (see figure 5) in order to determine the effects these 
l. J 

cases have on other cases. 
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ALO. and LO. are similar in magnitude. Since ALO. appears large relative 

l l l 

t o LO. for cases 4 , 18 and 32, it will be necessary t o consider t he measures 
l 

.r . (see figure 5) in order to de t e rmine the effects these cases have on 
l J 

other cases. 

The e ffect on the determination of probabilities is measured by the 

likelihood distance, divergen ce , and Euclidean distance . The approximations 

Dl d l bl d d D1 . . . LD1 
. an LD. are reasona y goo , an . is again an improvement over .• 
l l l l 

1 1 1 2 
The values for LDi, Di ' LDi, and DIVi may. all be referred to the x (3) 

distribution for calibration. None of the cases appear to be exceedingly 

influential in this regard. 

Index plots for 
4
rj and 

32
rj are given in figure 5. These indicate 

that cases 4 and 18 affect the determination of probabilities (or l og 

,...., 
odds) for many cases i n a modest way (many values for 

4
Aj are near 1 which 

may be referred to th e s t anda rd normal distribution). Most probabilities 

are decreased af ter deletion of cas e 4 or 18, while deletion of case 32 

has less o f an effect on the determination of nearly all pr obabilities. 

We note that the plot for 
18

rj is nearly identical to that for 
4
rj and 

the plots for 4~j and 32~j are nearl y identical to those for 4rj and 

,...., 

32
Aj respectively, so they are not given. 

Most cases are not greatly affected by cases 4, 18 or 32 according to 

1 
the measure .8 .• 

l J 
The l a rges t effect is that wh ich case 32 has on itself 

1 A 

(
32

g
32 

= .18). We find that p
32 

~ . 42 and p;2 (32) ~ · 63 (p32(32) ~ · 64 ) . 

Regarding the e ffe cts of cases 4 and 18 , 
1 1 

note that 
4

g
4 

= . 04 = 
18

g
4 

and 

1 1 A 

4
g
18 

= . 05 = 
18

g
18

. We find tha t p
4 
~ .07, 

Al Al • 
p4 (4 ) = p4 (l8) = .03, and that 

Al Al 
P18 = · 08 , P18(l8) = P18(4) = · 03 · 

As was the case with the leukemia data , 

1 rvl 
the measure .g. does not generally emphasize the same cases as . A . • 

l J l J 

Effects on fit are indicated by ~.D. Cases 4 and 18 are clearly very 
l 

influential in this regard. Individual effects are measured by .D~ and 
l J 

~.d~. Cases 4 and 18 may still be treated symmetrically . The f it of most 
l J 
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cases is not affected much by cases 4 or 18 according to these measures. 

However the magnitude of the effect cases 4 and 18 have on each other 

ranges from 1. 75 to 2.05. Cases 4 and 18 are both "successes" and esti

mated probabilities decrease by .04 and .05 respectively, indicating the 

worse fit after deletion. 

Removal of cases 4 and 18 simultaneously results in several very 

influential observations among those remaining (see table 2). The reason 

appears to be that after deletion, successes and failures are nearly 

,., 

perfectly divided by the line ~(
4

,
18

) = 0, and influential cases are 

those that fall on or nearly on that line. In fact, removal of case 39, 

a success just barely to the left of the line, results in the failure of 

the convergence algorithm for the maximum likelihood estimates. 

4.3 Population data 

Population change data were collected from census records for the 

fifty states of the U.S. by Press and Wilson (1978). The percent increase 

in total population of each state was noted and the median increase for 

all states determined. States were allocated as "successes" and "failures" 

according as their percent increase was above or below the median, respec

tively. Observed covariates were per capita income (INC), birth rate (BR), 

death rate (DR), urbanization of population (UR) and presence or absence 

of coastline (CO). See Press and Wilson (1978) for more details. 

The determination of influential observations depends on the model 

which is selected. A standard LR analysis based on the full data set 

would result in the deletion of UR due to a small value for the asymptotic 

test statistic. However it is possible that an influential data point 

could be responsible for this small value. In fact, deletion of case 35 

- 28 -



... 
.- i 

(Florida) results in an appreciable increase in the test statistic for 

inclusion of UR. We choose, however, to proceed with UR deleted from 

the model since deletion of the "most" influential case (Louisiana) does 

not effect an appreciable change in the test statistic. It can be seen 

from table 3 that Louisiana (case 12) is very influential according to 

all measures except A.D, both when UR is included and when it is deleted. 
l. 

Other states are decidedly less influential. 

Louisiana has a relatively large likelihood distance (LD
12 

= 5. 46) 

which may be referred to a x2
(S) distribution. (Note that the approxima

tions Dis and LDis are too large in this instance, and that LDis is an 

improvement over Di
2
). Louisiana is thus very influential in its effect 

on the determination of probabilities, the estimation of B, and is poten-
rv 

tially influential regarding the classification of future observations. 

1 
These conclusions are further supported by the fact that values for DIV

12 
1 l" 

(5.43), SLo
12 

(.91) and ALo
12 

(34.29) are relatively large. And since 

SLoi
2 

is positive, the discriminant hyperplane will be moved, after deletion 

of Louisiana, in such a way that proportionately more future cases may be 

allocated as "failures." This possibility is supported by the data since 

NCCo
12

=2, and NCC1
12

=-2 (NCCOi
2

=1, NCCliz=-2), which indicates that 

four additional cases will be classified as failures after deletion. 

The effect of removing Louisiana on the determination of probabilities 

and log odds for other states (neighboring effects) can be noted by 

looking at figures 6 and 7. Louisiana has a large effect on many states 

including itself. The measures 
12

ij and 
12

~j are nearly identical for most 

cases (cases 12, 23, 30, and 32 are the exceptions). The remarkable 

" difference for case 32 can be explained by the fact that p
32 

= • 99 and· 
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p

32
(
12

)= .77 which results in a relatively large numerator and a small 
-----------

denominator for 
12

;.
32 

(see (3. 3~3) ).- Cases with small or large probabili-

ties before deletion are weighted more heavily by_;__ than by .r. (see 
1 J 1 J 

(3.3.3) and (3.4.4)). Figure 7 gives the actual (one step) differences 

in probabilities. With the exception of case 32, the information ob

tained from figures 5 and 6 appears to be qualitatively the same for 

this data set. 

The most influential case relative to fit is New York (A
37

n = 4.64). 

This case is not very influential relative to any other criterion, and so 

we proceed to determine effects for Louisiana (A
12

D= 3.29). We note that 

Louisiana has a large effect on the fit of itself (A
12

di
2 

= 8 .16), and a 

moderate effect on the fit of New York (A
12

d!
7 

= -.87) and Wisconsin 

( 
1 " • --1 • 

A
12

d
39

=-.89). Since p
12

= .55, p
12

(l
2

) = .01 and Louisiana's population 

increase was above the median, Louisiana clearly fits much worse after 

deletion. Similarly note that p
39 

~ ;30, p
39 

(l
2

) ~ • 47, p
37 

~ • 85 and 

p
37

(
12

)~ .77, and that Wisconsin's population increase was above, and 

New York's was below the median increase, which indicates the fact that 

these states fit sc-mewhat better after deletion. 

Deletion of Louisiana results in accepting a model without a constant 

and without the variable UR. It can be seen from table 3 that there are 

no observations which are particularly influential under these circum-

stances. 
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4.4 Diagnosis data 

As a final example, we briefly consider a data set consisting of only 

21 observations on differential diagnoses of Cushing's syndrome. The data 

is studied in Aitchison and Dunsmore (1975, p. 212). There are three types 

of syndrome; adenoma, bilaterai hyperplasia, and carcinoma. We combine ade

noma and bilateral hyperplasia into one group which will be referred to 

as "failures", and individuals with carcinoma will be termed "successes". 

Covaria:tes are taken to be the natural logs of urinary excretion rates 

of two steroid metabolites which we identify as ln T and ln P. The data is 

plotted in figure 8, and influence statistics are given in table 4. 

It is clear from table 4 that one step approximations to LD. are not 
1 

adequate for this data. Cases 12 and 19 are extremely influential in that 

their removal results in perfect separation of "successes" and "failures" 

(see figure 8), and consequently in a nearly perfect fit of the data to 

the model. Case 19 is detected as most influential according to ALO. and 
1 

SLO i. However, since ALo
19 

~Lo
19 

> 0, the implication is that nearly all 

cases have lower probability of success after deletion. This is not the 

case since the probabilities for failures are decreased (to zero) those 

for successes are increased (to one) after deletion. These measures have 

also not detected case 12. Cases 12 and 19 are detected, however, as most 

1 
influential according to ~iD and ~iD, the change in deviance measures, as 

-- - ---~---- 2 
well as the measure ~j.X_· The one step approximations are better here 

than for other measures. 

A problem with this data is that it takes 19 iterations to get conver- '. 

gence of the maximum likelihood algorithm when cases 12 or 19 are removed 

and only 8 iterations when case 1 is removed. Thus one step approximations 

may be too far away from the fully iterated values to be appropriate. 

- 31 -



... 

In any event, it is clear that removal of cases which result in better 

separation of the data are potentially very influential regarding the deter

mination of probabilities, and consequently, the classification of observations, 

as well as the fit of the model. It is also clear that these cases can be 

difficult to detect, especially as the dimension p increases, unless proper 

care is taken. 

5.0 Concluding Remarks 

In this paper we have discussed some existing measures of influence, 

and have proposed and discussed some new measures. We must conclude that 

measures which detect influence relative to the determination of probabili

ties are the most relevant and useful. The magnitudes of all measures 

discussed are highly dependent upon the effect observations have on p. ,..., 

Of course it could be argued that it is really the influence on B that 

should be focused on since it is the effect on~ that determines the effect 

on p. However it seems much more appealing to focus on probabilities for 
,..., 

individuals rather than arti~icially constructed regression coefficients 

vectors, and it is easier to compare the components of the vectors 

i and £(i) than it is to compare components of! and !(i)' since probabilities 

are more easily interpreted and since they are restricted to the unit inter

val. 

1 
For detecting influence, we prefer the measure DIV. because of it's 

l. 

justification as a measure of the effect on the joint estimative predictive 

distribution for a future sample with the same covariates. However it has 

been noted that DIV~~ D~ ~ LD: ~x2 
when n

1 
= n

2 
= ••• = n... = 1, and that D

1
1
. 

l. l. l. (p), N 

appears to be a better approximation to LD. than LD~ is. When the n.'s are 
l. l. l. 

not all ones, DIV~ and D~ will differ due to the differential weighting of 

1 
cases for Di. 

1 
In any case, D. may still be interpreted as a weighted mea

l. 
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sure of the effect cases have on the determination of probabilities, and 

1 
since it is less expensive to compute than DIV., some may prefer to use it. 

]. 

We note, however, that for the samples considered in this paper, the 

difference in expense was not great. 

Measures relative to the fit of observations and the classification 

of observations are useful for detecting influence. However, once it is 

known that a case affects p, it is also essentially known that the fit will 
--

be affected and that classifications will be affected. The summary measures 

1 1 1 1 
LOi, ALOi, SLOi' NCCli, NCCOi and AiD are thus reconnnended as secondary 

measures for the purpose of characterizing the influence of observations 

1 1 
that have already been detected by DIV. (or D.). 

]. ]. 

For the purpose of further characterizing influence, we reconnnend 

-1 -1 1 1 1 1 
calculation of .A., .e., .e., .g., and Aid. (or .D.) (or some subset chosen 

l.J l.J l.J l.J J l.J 

according to preferance), for cases already identified as influential. In 

this way, one can determine precisely the influence exerted on the sample by 

the identified observation. 

As a final remark, we caution that where deletion of cases results in 

"near" separation of the data by a hyperplane, one step approximations may 

fail to adequately detect influence. 

Acknowledgement: I would like to thank Shen-Yen Lin for computational 

assistance. 
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Table 1. Influence measures for leukemia data 

Case n 1 D1 
i I LD! LDi orv

1 I ED
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i i 

15 

17 

16 

9 

5 

9 

5 

8 

16 

7 

9.94 4.85 10. 72 2.67 

.51 .45 - 71 .41 

.50 .45 .68 .41 

.21 .21 .24 .20 

.21 .21 .22 .19 

.52 .47 .67 .44 

.47 .43 ,57 .41 

.16 .14 .13 .18 

.12 .11 .16 .10 

.12 .12 .12 .12 

* A '1 
Aix = xi/(1-vii) 

/ 
/ 

--~------, 

/ 
/ 

/ 

/ 
/ 

/ 

9 5 7 / 8 

XXX XHX "/ • 

.59 

.22 

.22 

.20 

.20 

.25 

,25 

.16 

.10 

.15 

LOl 
1 I SLO~ I AL0

1 I A x* i i 

16.27 1.13 28.07 2.32 

7.50 .52 8.42 2.13 

7.58 .53 8.40 2.17 

-2.77 -.19 4.75 -1.54 

-2.77 -.19 4.65 -1.53 

5.79 .12 17.57 -2.17 

3.09 .06 14.42 -2.04 

-16.78 -.35 16.91 -.67 

16.17 .21 18.33 1.66 

7.22 .15 7.22 .87 

• 

I '\D1 I AID ~CCO~NCCl: v I Data 
ii set 

4. 74 8.14 0 0 .65 l"' 
ID 

3.70 3.77 0 0 .10 t 
3.77 3.84 0 0 .10 ~ 
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n n l"' 

3.79 3.85 0 0 .11 
0 lb ID 
::, Ill C: 
Ill ID;,;" 

3.54 3.59 0 0 .11 
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~ t: a 
.69 .68 0 0 .34 "~ Cl .._, 

-= --
2.69 2.71 0 0 .19 

.... s: 
" .... :,"rt 
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i 15 

29 

0 Ice. fflili I. . .. - I I II iu I I I I I I I I 
30 

10.000 20,000 30,000 40,000 so.ooo 60,000 70,000 80,000 90,000 100,000 

WBC 

Figure l 

Leukemia Data: (X) indicates "success" and(•) indicates failure. The lines (-) and 
A Ac Ac 

(---) satisfy ~=0 and .!.A(ls)=O where A(l5) is the regression coefficients vector 

determined without case 15 and without a constant. Values below the respective lines 

are allocated a "failures". 

3 

2 

1 

0 

-lt~ ~ LA/ case I . 
v 

10 1S 20 25 30 3S 

-2 

Figure 2. 
-1 

Index plots for leukemia data c~rresponding to: (15Aj} (solid 
... 1 1 

line), {
15

ej} (dotted line) and (
15

gj} (dashed line), 
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Figure 3. 

1 
Index plots for leuke~ia datn corresponding to: {A

15
dj} 

(solid line) and {
15

oj/nj} (dashed line). 

25 

Table 2. Influence statistics for Finney's data. 

:¼-
Case I 

30 

Dl 
i 

LD
1 
i 

LD
1 

DIV
1 EDl 

i 
LOl 

i 
SL0

1 
i 

Al0
1 
i AtX _ _I ~/I 6iD INCCO~ INCCl~ I ;ii I ~net; 

1.05 .86 1.59 .79 .30 4.95 .27 28.90 3.88 6.40 6.70 0 0 ,07 .., 
,91 .76 1.47 .69 .28 5.29 .29 26.58 3,58 5.96 6.19 0 0 ,07 i 
.55 .55 .58 .54 • 33 -7.06 -,39 12.25 -1.04 1.45 1.45 -3 0 .33 

n, 
'< 

.49 .45 .59 .44 .27 -5.29 -.29 10.04 -1.59 2.68 2.71 -1 0 .16 -;;; 
C: 

.20 .20 .22 .20 .19 -3.30 -.18 8.31 -1.03 1.45 1.64 -1 0 ,16 .... 
~ 

3.59 2.70 8.17 2.34 .55 -39.84 -1.21 100. 74 -2.00 4.15 4.97 0 0 .47 
n .., 

= !," 
1.68 1.69 1.97 1.62 .58 -15.39 -.47 28.45 -1.14 1.64 1.68 -1 0 .56 

n,:, 
Ill ll) 

'< 
"'" 1.30 .90 * .17 .27 8.03 .24 163.82 2.66 4.98 * 0 0 ,16 
gj 

.18 .19 .18 .20 .20 13.38 .41 34.05 .87 1.10 1.09 0 0 .19 0. rt 

.16 .17 .16 .18 .19 12.16 • 37 40.96 .73 .81 .10 0 0 .23 
...,g' 
00 C: 
...... rt 

* indicates that estimates would not converge. 
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Table 3. Influence statistics for population data. 
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Table 1. Influence measures for leukemia data 

D~ 
1 

9~94 

.51 

.50 

.21 

.21 

.52 

.47 

.16 

.12 

.12 

LD~ 
1 

4.85 

.45 

.45 

.21 

.21 

.47 

.43 

.14 

.11 

.12 

LD. 
1 

10. 72 

.71 

.68 

.24 

.22 

.67 

.57 

.13 

.16 

.12 

* " ½ ~.x=x./(1-v .. ) 
l. l. l.l. 

DIV~ EDl 
l. i 

2.67 .59 

.41 .22 

.41 .22 

.20 .20 

.19 .20 

.44 .25 

.41 .25 

.18 .16 

.10 .10 

.12 .15 

LO~ 
l. 

16.27 

7 .50 

7.58 

-2. 77 

-2. 77 

5.79 

3.09 

-16.78 

16.17 

7.22 

1.13 28.07 2.32 

.52 8.42 2.13 

.53 8.40 2.17 

-.19 4.75 -1.54 

-.19 4.65 -1.53 

.12 17 .57 -2.17 

.06 14.42 -2.04 

-.35 16.91 -.67 

.21 18.33 1.66 

.15 7.22 • 87 

-.. 

" Data 
vii set 

4.74 8.14 0 0 .65 ~ 
(1) 

3.70 3. 77 0 0 .• 10 ~ 
(1) 

3. 77 3.84 0 0 .• 10 ~-
Sl> 

2.51 2.52 -2 0 .08 -1-rj 

c:: 
2.48 2.49 -2 0 .08 I--' 

I--' 
'-' 

n n ~ 

3.79 3.85 0 0 .11 
0 Pl (1) 

::s Cl) c:: 
Cl) (1) ~ 

3.54 3.59 0 0 
rt (1) 

:.11 P> ...., a 
::s V, I-'• 

.69 .68 0 .• 34 
rt .. Pl 

0 '-' ~-
2.69 2. 71 0 0 . :.19 

I-'•~ 
'rt. I-'• 
::r rt 

1.10 1.10 0 0 .15 
0. ::r 
c:: 0 
rt c:: 

rt 
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Table 2. Influence statistics for Finney's data. : . 

Case II o: LD: LD. DIV
1 

ED: 
1 

I s10: AlOi I ~Xi I •\Dl/l "in/ INccoi INCCl~ I ;ii I Data 
LO. 

set 1 1 1 I 1 1 1 

4 1..05 .86 1.59 .79 .30 4.95 .27 28.90 3.88 6.40 6.70 0 0 .07 
t'rj 

18 .91 .76 1.47 .69 .28 5.29 .29 26.58 3.58 5.96 6.19 0 0 .07 I-'• 

5 
32 .55 .55 .58 .54 .33 -7.06 -.39 12.25 -1.04 1.45 1.45 -3 0 .33 

(D 

'< 

13 .49 .45 .59 .44 .27 -5.29 -.29 10.04 -1.59 2.68 2.71 -1 0 .16' -t'%j 

C: 

12 .20 .20 .22 .20 .19 -3.30 -.18 8.31 -1. 03 1.45 1.64 -1 0 .16 
...., 
...., 
._, 

13 3.59 2.70 8.17 2.34 .55 -39.84 -1.21 100.74 -2.00 4.15 4.97 0 0 .47 
n t'rj 
'1> I-'• 
Cl) ::s 

32 1.68 1.69 1.97 1.62 .58 -15.39 -.47 28.45 -1.14 1.64 1.68 -1 0 .56 
(D ::s 
Cl) (D 

39 1.30 .90 * • 77 .27 8.03 .24 163.82 2.66 4.98 * 0 0 .16 
.i:-- '< -

35 .18 .19 .18 .20 .20 13.38 .41 34. 05 .87 1.10 1.09 0 0 .19 ! ~-
P..n-

34 .16 .17 .16 .18 .19 12.16 .37 40.96 .73 .81 .10 0 0 .23 
...., 6 
00 C: 

'-'" 

* indicates that estimates would not converge. 



Table 3. Influence statistics for population data. 

I 1 I 1 I I 1 1 1 I 1 I 1 I L I / 11 11 ,. I Data Case II D. LD. LD. DIV EDi LO. SLO. AlO. A
1
• XI t:,,. • D / t:,,.. D/ NCCO. NCCl. v. . t 

1 1 1 1 1 1 I 1 , 1 1 1 11 se 

12 7~56 6.41 5.61 5.54 .84 17.63 .93 33.14 1.53 2.68 2.63 1 -3 .76 ~ 
0 

35 1.17 -1.03 1.44 .97 .39 8.56 .45 23.61 2.57 4.77 4.90 1 -1 .15 ';;;] 
C I-' 

47 1.25 1~11 1.45 1.05 .42 2.67 -.14 21.71 -2.11 3.98 4.08 -1 0 .22 ~ ~ - ..... 
37 1.10 .97 1.41 .91 .37 -9.16 -.48 21.38 -2.83 5.13 5.27 0 0 .12 § 

9 .43 .40 .51 .38 .23 6.86 .36 16.02 2.62 4.43 4.47 0 -2 .06 

12 8.06 6.27 5.46 5.48 .83 17.10 ··.91 34.29 1.·73 3.38 3.29 1 -2 .73 ~ 
..... ~ 

47 1.26 1.13 1.46 1.07 .43 3.36 -.18 21.58 -2.07 3.91 3.99 -1 1 .23 g. .g 
O C 

3 5 • 4 3 • 4 0 • 4 5 • 39 • 2 6 6. 7 4 • 3 6 13 • 13 1. 84 3 • 16 3 .18 1 0 .11 ~ ~ 
rt 

9 .42 .39 .48 .37 .22 6.76 .36 15.76 2.71 4.55 4.59 0 0 .05 ~ b. 
~::, 

37 .89 .81 1.07 .77 .34 16.86 -.44 16.86 -2.53 4.56 4.64 0 0 .12 

47 1.03 .90 1.33 .84 .36 -3.43 -.18 18.68 -2.11 3.90 4.03 -1 3 .11 g ~ '( 
ti} Q) ..... ~ 

2 4 
ro::irto 

3 7 • 7 3 • 66 • 9 0 • 6 3 • 3 0 -6 . 77 - • 3 5 17 • 3 0 -2 • 31 4 • 1 • 2 0 0 0 .12 . rt l:l" ~ 
·)-1... O C 

35 .57 .52 .66 .so .28 9.15 .47 15.96 2.22 3.89 3.94 1 0 .11 ~ ~ ~ ~ 
:;Cl rt 

9 .45 .41 .54 .40 .23 8.40 .44 17.68 2.85 4.76 4.80 1 0 .05 ... 8 b. 
0 i:s ::, 

24 .34 .33 .36 .32 .22 -6.03 -.31 10.06 -1.61 2.68 2.70 Q O .09 Ii I 



Table 4. Influence statistics for diagnosis data. 

• 

Dl LD~ nrv1 ED~ LO~ SLO~ Al0
1 1 I 

NCCO~ NCCli 
Data 

II AiX1 Ai~I 

,. 
Case LD. A.D V • • set i l. l. l. l. l. i l. I l. j l. 

1 10.13 12.17 5.59 11.58 1.19 -36.78 -.55 53. 72 -1.49 2.49 2.03 -1 -1 .82 

12 1.86 1.46 240.54 1.32 .42 2.94 .04 28.64 -1.95 3.79 7 .30 0 0 .62 
t:::, 

r-,. 1-1• 
ttj P> 

19 1.38 .98 135.22 .84 .32 61.41 .92 61.70 1.97 3.73 7 .30 0 0 .46 
~ OQ 

P::S 
~o 

16 .17 .21 .12 .23 .17 -23.19 -.35 24.03 -.52 .40 .40 0 0 .40 
'-" Cl) 

1-1• 
Cl) 

17 .12 .13 .10 .13 .14 -7.92 -.12 13.48 .61 .58 .57 0 0 .24 



AG 

1 

o._ ____ ..,. _____ ._ ____ .., ____ .-.ij,_ ____ .... ____ ---1t-------------------... -----
10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 

Figure 1 

Leukemia Data: (X) indicate~. "success" and (•) indicates failure. The lines (-) and 
~ . AC AC 

(--) satisfy ~ = 0 and ~i(lS) = 0 where i(lS) is the regression coefficients vector 

determined without case 15 and without a constant. Values below the respective lines 

are allocated a "failures". 
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Figure 2. 
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Index plots for leukemia data corresponding to: {15A.} (solid 

line), US e~} (dotted line) and {1sY!} (dashed line/ 
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Figure 3. 

Index plots for leukemia data corresponding to: {a
15

d~} 

(solid line) and {
15

a~/nj} (de-tteu--iine). 
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Figure 5. 

Index plots for Finney's data corresponding to {
4
1'.} (solid line) and 

~ J 
{

32
Aj} (dashed line). 
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