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Abstract
Objective—To determine whether the acute anti-inflammatory influence of epinephrine (EPI)
extends to changes in heart rate variability (HRV) induced by the prototypical inflammatory
stimulus, endotoxin (LPS).

Summary Background Data—HRV reflects fluctuating cardiac autonomic inputs and is
acutely reduced during the systemic inflammation induced by LPS as well as during severe critical
illnesses such as sepsis and traumatic injury. While EPI may diminish proinflammatory cytokine
release it is unknown whether this net anti-inflammatory activity extends to HRV.

Methods—Healthy volunteers (n=17) were randomized to either saline+LPS (2ng/kg) or LPS +
antecedent EPI infusion (30ng/kg/min) from −3 to 6 hours relative to LPS. HRV and blood
samples were obtained prior to EPI and LPS as well as hourly afterwards. Plasma cytokines were
measured by ELISA. Statistical analysis was by repeated measures ANOVA. This study was
registered at Clinicaltrials.gov and is listed under the following ID number: NCT00753402

Results—LPS acutely influenced all measured parameters of HRV including SDANN, pNN50
and RMSSD, HF, LF, LF/HF and VLF (all p<0.01). EPI infusion reduced the inflammatory
cytokine response to LPS as measured by decreased TNFα, IL-6 and IL-8 (p<0.01). Relative to the
saline+LPS group, antecedent EPI infusion was associated with further reductions in parameters of
HRV measuring vagal/parasympathetic activity including, pNN50, RMSSD and HF (p<0.05).

Conclusion—Prior EPI exposure exerts anti-inflammatory influences but also may reduce vagus
nerve activity. Hence, acute EPI administration may be protective against early inflammatory
challenges but diminish vagal nerve responsiveness to subsequent stimuli.

Introduction
An acute stress response is observed following traumatic injury 1 and surgical intervention.2
Stressful events lead to pro-inflammatory mediator release (e.g., TNFα, IL-6)1, 3 from both
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immune cells and parenchymal tissues that result in a systemic inflammatory phenotype.
Localized inflammatory signals may further enhance immune activation that serve to control
infection or injury.4 Unremitting systemic inflammation, as observed during sepsis, is
associated with immune impairment 5 and adverse outcomes.6 Attempts have been made to
modulate several of the purported pro-inflammatory mediators of excessive systemic
inflammation or the inducible systemic and cellular reactions to severe infection. 7-9

However, there has been only limited success toward improving outcome10 with such anti-
inflammatory strategies based perhaps on variations in the extent or magnitude of existing
non-infectious stress influences. Clinical assessments of inflammatory risk, such as those
encompassed in vital signs and biochemical analysis, presently lack sufficient sensitivity and
specificity to direct therapeutic intervention and might be further improved by dynamic
quantification of host and organ systems functional capacity.

Measures of heart rate variability (HRV) are non-invasive assessments that may reflect real-
time alterations of physiologic status. 11-13 Under such normal circumstances, variability
parameters reflect homeostatic feedback between organ systems such as the central nervous
system and heart whereas decreased variability implies physiologic decomplexification14

manifested by diminished organ responsiveness to autonomic signaling.15 Decreases in
variability of some components of heart rate have been suggested to have prognostic value
for poor outcomes in patients with heart failure 16, myocardial infarction,17 diabetes,18

sepsis19 and traumatic injury.13

Catecholamines have both anti-inflammatory as well as vasoactive properties.20, 21 In vitro,
both norepinephrine 22, 23 and epinephrine (EPI) have been shown to inhibit immune cell
secretion of inflammatory cytokines such as TNFα24, IL-1β20, IL-825 and shown to
potentiate the secretion of IL-10,26 primarily through the action of β-2 receptors.27 We have
previously confirmed the in vivo activity of epinephrine by infusion of this catecholamine
prior to intravenous administration of LPS in healthy subjects and observed reduced levels
of several pro-inflammatory cytokines and blunted manifestations of the systemic
inflammatory response.20, 28

The acute systemic inflammatory condition mediated by endotoxin (LPS) administration in
healthy volunteers is also associated with a transient decrease in some HRV parameters. 29
30, 31 Given the acute sympathetic activation resulting from experimental endotoxemia and
the propensity for endotoxin induced inflammation to occur against a clinical background of
catecholamine inducing stressors, such as surgery or trauma28, we sought to assess whether
antecedent epinephrine would modulate the known alteration in HRV and autonomic
balance resulting from LPS.

Methods
Subjects

Healthy adult male and female subjects were recruited by public advertisement and screened
for normal health status under approved guidelines of the Institutional Review Board of the
Robert Wood Johnson Medical School. Inclusion criteria for the study were: good general
health as demonstrated by medical history and physical examination, complete blood count
and basic metabolic panel screening within normal lab limits. Exclusion criteria included a
history of any acute or chronic disease, arrhythmia, recent history of alcohol, drug or
medication ingestion, pregnancy or prior exposure to LPS in the experimental setting. Once
informed, written consent was obtained; all subjects received an initial recording of heart
rate and electrocardiogram (EKG) to screen for any arrhythmic patterns or irregular
heartbeats. Only subjects with a normal standard EKG were considered for admission to the
protocol.
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Study design and procedures
Upon accrual to the study, seventeen healthy male (n=12) and female (n=5) subjects
between 18 and 37 years of age were admitted to the Clinical Research Center (CRC) at
UMDNJ-Robert Wood Johnson Medical School the afternoon prior to the acute endotoxin
study. Upon admission, a repeat history and physical examination confirmed that no change
in health status had occurred since enrollment. Female subjects underwent a urine pregnancy
test upon admission.

Following admission, subjects were randomized to one of two study groups, those who
would receive a placebo infusion of physiologic saline prior to LPS administration (saline +
LPS n=10; males=7, females=3) and those who would receive an infusion of EPI, beginning
3 hours prior to endotoxin administration (EPI + LPS n=7; males=5, females=2). Patients
were fasted from midnight of the admission day and received an overnight intravenous fluid
infusion (5% dextrose and 0.45% sodium chloride-1.5ml/kg/hr) via a peripheral venous
catheter. Both investigators and subjects were blinded as to whether EPI or saline was being
administered prior to LPS. The unblinded research pharmacist who was not part of the
research team was responsible for preparing and labeling the study drug/placebo intravenous
bags. The treatment group received EPI (30ng/kg/min)24, administered intravenously by
continuous infusion for 9 hours beginning at 06:00 on day 1 of the study. As previously
described32, a radial arterial catheter was placed at 07:00 the morning of study day. The
arterial catheter was utilized to monitor heart rate and blood pressure as well as for periodic
blood sampling at defined time points before and after endotoxin administration. A rectal
thermometer was placed for continuous monitoring of core body temperature. As previously
described, a onetime dose of endotoxin (2ng/kg, CC-RE, Lot #2)31 was administered over a
one minute-period through a separate peripheral intravenous catheter at approximately 09:00
(time point 0) on study day 1.

Clinical monitoring
Vital signs, including heart rate and mean arterial blood pressure (MAP), were recorded
every 30 minutes from the arterial monitoring system for the first 6 hours post-LPS
(09:00-15:00 hours) and then periodically taken manually for up to 24 hours after LPS
administration. Core temperatures were recorded every 30 minutes for 6 hours post-LPS
(09:00-15:00 hours) via rectal thermometer, then orally for up to 24 hours after LPS
administration.

At 6 hours after LPS bolus, the arterial catheter and rectal thermometer were discontinued.
The peripheral intravenous catheter infusing saline solution (5% dextrose and 0.45% sodium
chloride-1.5ml/kg/hr) was removed once each subject tolerated a regular diet. Subjects
remained in the CRC overnight and were discharged to home the following morning after
blood samples and HRV measurements were obtained at 24 hours post LPS administration.

Assessment of heart rate variability parameters
Base-line determinations of parameters of HRV were obtained at the time of admission as
well as hourly from 0 to +6 hours following LPS challenge and at +9 and +24 hours after
LPS challenge. Each recording interval consisted of two consecutive 5-minute epochs.
During such determinations, heart rate and respiration were monitored using a continuous
electrocardiography (EKG) technique with three standard limb leads, a respiratory belt, and
CardioPro® 2.0 software with one Infiniti and one Procomp Plus encoder (Thought
Technology, Ltd., Montreal, P.Q., Canada). HRV parameters and inter-beat intervals were
collected using EKG data at a rate of 256 samples/second. The respiration channel collected
respiratory data at a rate of 32 samples/second. However, because movement artifact
occasionally influenced computer-detected respiration rates, this measure was also scored by
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hand. Minor fluctuations in the tracing, due either to movement or to changes in inhalation
patterns during individual breaths were not counted in tallying respiration rate.

Parameters of HRV were analyzed for both time domain and frequency domain measures.
Time domain measures included, 1) the standard deviation of the average beat to beat
intervals over a 5 minute period (SDANN), a measure of total heart rate variability and
overall system adaptability, 2) the square root of the mean squared differences of successive
interbeat intervals (RMSSD), that is considered to be influenced predominantly by the vagus
nerve system, and the percentage of interval differences of successive interbeat intervals
greater than 50 ms (pNN50), that is generally associated with respiratory sinus arrhythmia
and therefore, vagus nerve activity. Frequency domain measures included, 1) high frequency
variability (HF)[0.15-0.4Hz] that correlates with parasympathetic and vagal tone, 2) low
frequency variability (LF)[0.05-0.15Hz], a measure associated with both parasympathetic
and sympathetic activation, 3) very low frequency variability (VLF) [0.005-0.05 Hz] that is
associated with thermoregulatory function and sympathetic contribution to vascular
regulation, and 4) the LF/HF ratio, that is hypothesized to be associated with
sympathetic:parasympathetic balance.14, 33, 34

In a continuous EKG record, each QRS complex was detected and the “normal-to-normal”
(NN) intervals (all intervals between adjacent QRS complexes resulting from sinus node
depolarization) were tabulated, thus providing a record of instantaneous heart rate.33 For
each epoch, noise artifact and irregular heartbeats were manually edited by visual inspection
and interpolation prior to calculation of interbeat intervals using CardioPro software. We
analyzed each epoch as previously described 31 and excluded complete measurement epochs
where events such as extra systolic heartbeats, skipped beats, and other arrhythmias
comprised greater than 10% of the total epoch. The power spectral density then was
calculated using a Fast Fourier transformation algorithm.33, 35 All signals were exported in
standard ASCII format to Excel and EAS 9.0 for analysis and graphics.

Analysis of Blood Samples
Blood samples were collected at time points −24, 0, 0.5, 1, 1.5, 2, 3, 4, 6, and 24 hours in
relation to endotoxin administration. Blood-derived plasma was then analyzed by ELISA for
measurement of soluble inflammatory markers (TNFα, IL-6 and IL-8).36

Statistical Analysis
Analysis of vital signs and metabolites—We computed descriptive statistics and
analyzed vital signs and soluble inflammatory mediator measures by two-way analysis of
variance with repeated measures on time using Statistica version 6.1 (StatSoft, Inc., Tulsa,
OK).37 P-values less than 0.05 were considered to be statistically significant. The group
(EPI+LPS vs. saline+LPS) versus time interactions are reported below for assessment of an
effect of EPI on the response to LPS.

Analysis of HRV parameters—For respiration and HRV measures, we used mixed
model analyses with repeated measures using Proc Mixed program from the SAS system (v.
9.1) as previously described. 31 The variance-covariance structure for repeated measures,
determined by the Akaike’s Information Criterion (AIC) 38 was modeled with the auto-
regressive model (order of one) that assumes stronger correlations for measurements closer
in time. Analysis involved data measured upon admission, the evening prior to EPI and/or
LPS exposure, as well as 0, 1, 2, 3, 4, 6, 9 and 24 hours relative to LPS exposure. A log
transformation was applied to provide more normally/symmetrically distributed data. A
linear contrast was constructed to examine the differences from time-point 0 to 3 hours for
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the placebo (saline+LPS). A separate model including 0 and 24 hour was used to assess the
difference for each variable. Significance was assessed at 0.05.

Because respiratory sinus arrhythmia (RSA) may be affected by respiration rate
independently of vagus nerve traffic 39 we used a recommended40 statistical control for
respiration rate in all HRV analyses. Notable, however was that none of the subjects
exceeded 24 breaths per minute during the study period, so that HF could be analyzed as
reflecting respiratory sinus arrhythmia, as is usually the case.

Results
Vital Signs

Antecedent EPI infusion resulted in a differential temperature response to LPS over time
(p<0.001), however the clinical relevance is unclear given a similar trend towards baseline at
9hrs. EPI infusion (+LPS) also was associated with a significantly higher heart rate over
time vs. saline + LPS (p<0.05) (Figure 1).

Inflammatory Markers
There was a significant EPI related diminution of the proinflammatory cytokine response to
LPS. TNFα was significantly higher in the saline+LPS group (peak concentration of 427 ±
336 pg/ml) versus the EPI+LPS group (peak concentration of 98 ± 66 pg/ml) (p<0.001,
group × time effect). IL-8 levels were also significantly higher in the saline+LPS group
(peak concentration of 294 ± 148 pg/ml) versus the EPI+LPS group (peak concentration of
64 ± 75 pg/ml) (p<0.001). IL-6 exhibited a more rapid rise to peak concentration at 1.5
hours in the EPI+LPS group and return to baseline levels at 4 hours post LPS vs. the saline
+LPS group, which reached peak concentration at 2 hours and returned to baseline at 6
hours post LPS (p<0.001, group × time effect). All of the above inflammatory mediators
were undetectable by 24 hours after LPS challenge (Figure 2).

HRV
None of the HRV parameters varied between groups at baseline determinations on the
evening prior to acute EPI and/or LPS exposure. In both groups the greatest changes in HRV
occurred between time-points zero and +3hr. Studying the immediate effects of LPS alone
on HRV in the placebo group, using a post hoc analysis from time-point zero to time-point
+3hr, we observed that LPS acutely influenced all time domain parameters of HRV
measured in this study including SDANN, pNN50 and RMSSD (p<0.01) as well as
frequency domain parameters of HRV including LF, HF, LF/HF and VLF (p<0.01) (Figure
3) (Figure 4).

In measuring HRV from baseline to +24 hours relative to the saline+LPS group, antecedent
EPI infusion significantly reduced the time domain HRV parameters of vagal/
parasympathetic activity, RMSSD (p< 0.005) and pNN50 (p<0.01), as well as the frequency
domain parameter HF HRV (p<0.05). There were no significant differences between groups
for the other HRV parameters SDANN, LF/HF, VLF and LF when measured over the entire
study period (Figure 3) (Figure 4).

Discussion
Injury and critical illness propagate both pro- and anti-inflammatory mediator cascades41,
alter adrenergic responses to systemic inflammation 42 as well as induce acute changes in
some parameters of HRV.11 It is currently unknown to what extent a sterile injury
background might influence subsequent responses to infectious ligands. In order to further
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our understanding of these complex fluctuations, we examined the relationship between the
known anti-inflammatory effects of the sympathomimetic agent EPI 24 and parameters of
HRV manifested in response to endotoxin-induced systemic inflammation29, 31 in healthy,
subjects. As determined for example by reduced SDANN after LPS, we confirmed previous
reports that endotoxin challenge mediates an acute reduction of time domain measures of
HRV.29, 31 In addition, we observed an endotoxin mediated diminution of measured
parameters of HRV reflecting parasympathetic/vagal activity, including pNN50, RMSSD
and HF. Importantly, a brief period of antecedent EPI excess also appears to exert a
vagolytic effect that may limit vagally mediated anti-inflammatory pathways.43

The present study models an acute sterile stress condition that may modulate innate immune
system activation 28 and result in altered inflammatory mediator release.44 These pro-
inflammatory mediators are counter-regulated by several endogenous mechanisms
including, anti-inflammatory molecules such as soluble cytokine receptors 45, as well as
components of the autonomic nervous system and the pituitary-adrenal axis.46, 47 Following
sterile tissue injury in animals, there is an increased susceptibility to infectious challenge
that is mediated, in part by decreased release of inflammatory mediators (TNFα, IL-6) and
reduced neutrophil chemotaxis.48In a murine model of initial sterile injury, there is
substantial gene expression homology in mice subjected to surgical instrumentation only and
between both those subjected to instrumentation and later hemorrhagic shock. 49 During
persistent systemic inflammation, subsequent insults have been associated with exaggerated
inflammatory profiles as have been observed in traumatically injured patients who then
require surgical intervention.3 This enhanced response was observable despite the relatively
short time course between injury and surgery. In addition, pneumonia following surgical
intervention has been associated with increased mortality50 further demonstrating the
influence of additional inflammatory stimuli. Thus, sentinel sterile stressors, including
surgery and traumatic injury likely lead to activation of pathways that share similar
inflammatory profiles as well as influence outcomes from later infectious challenge.51

Recent data supports the role of efferent, vagus nerve activity as a modulator of systemic
responses to inflammation and infection.52 As an effector arm of the parasympathetic
nervous system, vagal activity may regulate inflammation through several mechanisms. The
vagus nerve has sensory components and afferent impulses may develop in response to
peripheral stimuli including, inflammatory ligands and cytokines.52 Vagal sensory afferent
activity mediates HPA axis activation, and the increased secretion of soluble mediators, such
as cortisol. 53 Vagus nerve efferent signals have been shown to reduce production of the pro
inflammatory cytokine TNFα via the interaction of acetylcholine (Ach) with nicotinic
receptors containing α-7 subunits on mononuclear phagocytes of the reticulo-endothelial
system 43, 52, 54. Vagotomy has been demonstrated to enhance inflammatory mediator
release, including TNFα, IL-1β and IL-6, in a murine model of intraperitoneal sepsis.55

Pharmacologic activation of nicotinic receptors has also been shown to reduce TNFα release
from alveolar macrophages exposed to LPS.56 We have recently confirmed that antecedent
transcutaneous administration of the known α-7 agonist, nicotine, reduced systemic
phenotypic and pro-inflammatory mediator responses to endotoxin in humans.32

In healthy individuals, HRV is predominantly modulated by parasympathetic/vagus nerve
activity12 and recent data has demonstrated an inverse relationship between HRV
determined parasympathetic activity and ex-vivo LPS stimulated TNFα and IL-6 production
by circulating immune cells.57 In animal models, the predominant source of TNFα
production appears to be the spleen where resident immune cells are modulated by vagal
nerve activity.58 Hence the apparent modulation of circulating immune cell mediator
responses by parasympathetic/vagal activity in humans suggests that centrally mediated
neural inflammatory control may extend beyond tissue-fixed immune cells.
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Parameters of HRV may also serve as a surrogate for the interactions between reflex
mechanisms accompanying autonomic and respiratory changes and also reflect cardiac
responsiveness to underlying parasympathetic and sympathetic activity.14, 33 HRV has been
adapted as a bedside assessment in both pediatric 59 and adult patients.60 In response to
initial traumatic injury, Norris and colleagues have observed an increased mortality in
trauma patients with decreased time domain measures of HRV that may be evident within
hours of admission.11, 61 Similarly, Proctor and colleagues have observed an association
between confirmed traumatic brain injury and reduction in HRV parameters including
SDNN and RMSSD.60 In addition, decreased sympathetic outflow as measured by altered
HRV was associated with head injury severity in pediatric trauma patients. 59 Among
patients with infection-induced inflammation, altered parameters of HRV have also been
observed in both pediatric and adult patients following the onset of severe sepsis. 19, 62

Interestingly, in critically ill trauma patients with presumptive adrenal insufficiency,
restoration of HRV measures was associated with increased survival after exogenous
glucocorticoid administration.63

In comparison to saline+LPS control subjects, we observed a tendency towards decreased
vagal parasympathetic signaling (pNN50, HF and RMSSD) resulting from a brief, three-
hour period of antecedent EPI infusion prior to LPS exposure. A relative reduction of vagal
tone would be expected given the sympathomimetic properties of EPI.64 The dose of EPI
(30ng/kg/min) administered in this trial was based on earlier studies wherein this EPI
infusion dose resulted in significant systemic anti-inflammatory and anticoagulant effects.20,
21, 24 Despite diminished pro-inflammatory mediator levels and decreased systemic
manifestations of endotoxin induced inflammation, overall adaptability as assessed by
SDANN was not significantly altered by EPI infusion prior to and following LPS exposure.
It was also notable, that imputed parameters of sympathetic activity reflected by VLF, LF
and the LF/HF ratio were not significantly different between groups. This is consistent with
our recent observations with steroid administration prior to LPS.31

In addition to HRV, other measures have been suggested to quantify the physiologic
complexity between organ systems including multiscale entropy (MSE)65. Entropy measures
the disorderliness within datasets and thus increases with greater variability between values
and decreases with decreased variability or increased regularity between values. HRV and
MSE both quantify the complexity of interactions between organ systems and not
surprisingly generate equivalent results when evaluating similar populations. For example,
HRV decreases with age in healthy human subjects66 and similarly, decreased MSE is also
associated increased age in healthy humans65, 67. The concordance between HRV and MSE
extends beyond healthy subjects as both measures predict mortality in ICU11, 68 and trauma
patients 61, 69. Specifically, MSE has been shown to correlate with SDANN in predicting
mortality 68. In this study we did not calculate MSE since we were interested in studying not
only organ system uncoupling but also the influence of EPI on vagus nerve activity in the
setting of acute systemic inflammation. Given that SDANN was not significantly different
between groups it is unlikely that MSE analysis would be further revealing. In future studies
however, we plan to integrate MSE analysis to better understand the influence of
interventions on physiologic complexity.

We have previously observed that the anti-inflammatory influence of EPI is of limited
duration24 and may represent a dynamic cellular adaptation to catecholamine stress. In the
initial hours, during EPI infusion, an anti-inflammatory EPI effect mediated by β-2
receptors27 appears to dominate. Over a longer time period24, the vagolytic influence of EPI
may dampen the peripheral capability of cholinergic anti-inflammatory pathways. A
persistent EPI induced vagolytic effect would potentially heighten pro-inflammatory activity
as β-2 receptor activity decreases70 and may permit an exaggerated immune response to
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additional inflammatory stimuli. A longer EPI infusion may be revealing since it is yet
unknown whether the vagolytic effect of EPI persists or attenuates over time. These results
also underscore the complexity of interpreting the role of vagal nerve signaling during
conditions of ongoing stress.

The limitations of this study include the infusion of a single hormonal modulator of the LPS
response. While it is recognized that the infusion of an adrenergic agent, such as
epinephrine, does not replicate the full spectrum of stress induced neuro-endocrine
activators, the present model does provide opportunity to dissect individual hormone
influences.28 The relatively brief infusion period of EPI may also limit the scope of our
results as our previous reports have demonstrated that the anti-inflammatory effect of EPI
diminishes over a 24 hour infusion period prior to LPS administration.24 Despite the
relatively young age of our study group, there may also be age related inflammatory
responses71 that might strictly limit our observations to a younger population. Although age
does influence parameters of HRV72 and endocrine responsiveness,73 older subjects appear
to maintain innate immune activity.71 Hence we propose that the observations of acute
catecholamine influences reported herein may also apply to older populations.

Conclusion
Increased catecholamine secretion accompanies even modest injury and infection. EPI has
been shown to have anti-inflammatory properties as evidenced by reduced proinflammatory
mediator production during systemic inflammatory responses inducible by LPS. 24, 26 It was
previously unknown what influence EPI infusion might have on the LPS induced decrease in
HRV. EPI exerts anti-inflammatory effects as well as potentially pro-inflammatory effects
by reducing vagus nerve activity. Hence, acute EPI administration can be protective against
inflammatory stimuli whereas prolonged exposure may lead to exaggerated immune
reactions to subsequent inflammatory stimuli possibly by diminishing vagal anti-
inflammatory responses.
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Figure 1 (a,b).
Legend: Temperature (a) and heart rate (b) as a function of time after intravenous LPS
administration, given at time-point zero, in human subjects that received either a placebo
infusion of physiologic saline (n=10) or those that received an infusion of epinephrine (n=7)
(30 ng/kg per min) for 3 hours prior to LPS administration and was continued until +6hr.
Results are expressed as mean ± SE. In the EPI+LPS group; temperature (a) more rapidly
peaked and returned to baseline after LPS (p<0.001) and heart rate (b) was significantly
greater (p<0.05) compared to the saline+LPS group over time. BL-baseline
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Figure 2 (a,b,c).
Legend: TNFα (a), IL-6 (b) and IL-8 (c) as a function of time after intravenous LPS
administration, given at time-point zero, in human subjects that received either a placebo
infusion of physiologic saline (n=10) or those that received an infusion of epinephrine (n=7)
(30 ng/kg per min) for 3 hours prior to LPS administration and was continued until +6hr.
Results are expressed as mean ± SE. LPS induced inflammatory mediator release as
observed by elevated TNF (a), IL-6 (b) and IL-8 (c) in the placebo group. EPI infusion
attenuated the release of both TNFα (p<0.001) (a) and IL-8 (p<0.001) (c) and mediated a
more rapid peak and return to baseline of IL-6 (p<0.001) (b). All of the above inflammatory
mediators were undetectable by +24 hours. BL-baseline
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Figure 3 (a,b,c).
Legend: Time domain measures of HRV, SDANN (a), RMSSD (b), pNN50 (c) as a function
of time after intravenous LPS administration, given at time-point zero, in human subjects
that received either a placebo infusion of physiologic saline (n=10) or those that received an
infusion of epinephrine (n=7) (30 ng/kg per min) for 3 hours prior to LPS administration and
was continued until +6hr. Results are expressed as mean ± SE. In the saline+LPS group
from time-point 0hr to +3hr, LPS mediated a decrease in SDANN (p<0.01) (a), RMSSD
(p<0.01) (b), and pNN50 (p<0.01) (c). From BL to +24hr, compared to saline+LPS, EPI
mediated a decrease in RMSSD (p< 0.005) (b) and pNN50 (c) (p<0.01), while SDANN (a)
was not significantly different between groups. BL-baseline
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Figure 4 (a,b,c,d).
Legend: Frequency domain measures of HRV, HF (a), LF (b), LF/HF (c) and VLF (d) as a
function of time after intravenous LPS administration, given at time-point zero, in human
subjects that received either a placebo infusion of physiologic saline (n=10) or those that
received an infusion of epinephrine (n=7) (30 ng/kg per min) for 3 hours prior to LPS
administration and was continued until +6hr. Results are expressed as mean ± SE. In the
saline+LPS group from time-point 0hr to +3hr, LPS mediated an increase in LF/HF (p<0.01)
(c) and also mediated a decrease in HF (p<0.01) (a), LF (p<0.01) (b) and VLF (p<0.01) (d).
From BL to +24hr, compared to saline+LPS, EPI mediated a decrease in HF (p<0.05) (a)
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while LF (b), LF/HF (c) and VLF (d) were not significantly different between groups. BL-
baseline
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