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ABSTRACT

The effect of Alfvén waves on the thermal instability of the Interstellar Medium (ISM) is investigated both analytically and numerically.
A stability analysis of a finite amplitude circularly polarized Alfvén wave propagating parallel to an ambient magnetic field in a thermally
unstable gas at thermal equilibrium is performed, leading to a dispersion relation that depends on 3 parameters, namely the square ratio of the
sonic and Alfvén velocities (β), the wave amplitude and the ratio between the wave temporal period and the cooling time. Depending on
the values of these 3 parameters, the Alfvén waves can stabilize the large-scale perturbations, destabilize those whose wavelength is a few times
the Alfvén wavelength λAW, or leave the growth rate of the short scales unchanged. To investigate the non-linear regime, two different numerical
experiments are performed in a slab geometry. The first one deals with the development of an initial density perturbation in a thermally unstable
gas in the presence of Alfvén waves. The second one addresses the influence of those waves on the thermal transition induced by a converging
flow. The numerical results confirm the trends inferred from the analytic calculations, i.e. the waves prevent the instability at scales larger
than λAW and trigger the growth of wavelengths close to λAW, therefore producing a very fragmented cold phase. The second numerical
experiments shows that i) the magnetic pressure prevents the merging of the CNM fragments therefore maintaining the complex structure of
the flow and organizing it into groups of clouds ii) these groups of CNM clouds have an Alfvénic internal velocity dispersion iii) strong density
fluctuations (≃10ρcnm) triggered by magnetic compression occur. We note that during this event there is no stiff variation of the longitudinal
velocity field. This is unlike the hydrodynamical case for which the clouds are uniform and do not contain significant internal motions except
after cloud collisions. In this situation a strong density fluctuation occurs, accompanied by a stationary velocity gradient through the cloud.
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1. Introduction

It is now well established that the atomic interstellar medium
is a thermally bistable gas which at a pressure of about
4000 K cm−3 can be in two different phases, namely the
Warm Neutral Medium (WNM) and the Cold Neutral Medium
(CNM), roughly in pressure equilibrium (Kulkarni & Heiles
1987; Field et al. 1969; Wolfire et al. 1995, 2003). It is also be-
lieved that the atomic gas is strongly magnetized with a mag-
netic intensity around 5 µG (Troland & Heiles 1986; Heiles
1987; Heiles & Troland 2005). Although the structure of the
magnetic field is poorly known, some observational evidences
seem to indicate that the fluctuating part is at least comparable
to the uniform one suggesting that magnetized waves may be of
great importance for the dynamics of the ISM. Another impor-
tant observational result is the absence of correlation between
the magnetic intensity and the density in the interstellar atomic
gas. Various works have investigated the effect of MHD waves
on the dynamics of a polytropic or nearly polytropic (non

thermally unstable) magnetized gas (Dewar 1970; Goldstein
1978; McKee & Zweibel 1993; Passot et al. 1995; Falle &
Hartquist 2002; Passot & Vázquez-Semadeni 2003).

It is thus of great interest to investigate the simultaneous
role of magnetic fields and of the bistable nature of the flow
on the physics of the ISM. Field (1965) considers the effect of
a transverse magnetic field on the thermal instability and gen-
eralizes the isobaric criterion. In the context of cooling flows,
Loewenstein (1990) studies the thermal instability in the pres-
ence of a static field. Hennebelle & Pérault (2000) investigates
the role of an initially uniform magnetic field, analytically and
numerically, when the thermal condensation is dynamically
triggered. They propose a mechanism based on magnetic ten-
sion to explain the thermal collapse in a magnetized flow and
argue that the magnetic intensity in the WNM and in the CNM
should not be very different. Piontek & Ostriker (2004, 2005)
study the magneto-rotational instability in a thermally unsta-
ble gas.

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20053510

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20053510


1084 P. Hennebelle and T. Passot: Influence of Alfvén waves on the thermal instability

Here we investigate the effect of a finite amplitude circu-
larly polarized Alfvén wave on the thermal instability, both an-
alytically and numerically. These Alfvén waves, which are ex-
act solutions of the MHD equations, are non dissipative and are
thus very likely to be present in a magnetized gas such as the
ISM. Similar waves, although at a smaller scale and in a regime
affected by dispersive effects, exist in the solar wind upstream
of the earth’s bow shock (Spangler et al. 1988). In-situ satellite
observations have clearly identified circularly polarized quasi-
monochromatic Alfvén wave packets, probably generated by
reflected protons.

In Sect. 2 we present a stability analysis of a circularly po-
larized Alfvén wave propagating in a thermally unstable gas at
thermal equilibrium and obtain a dispersion relation that gener-
alizes the relation obtained by Field (1965). We then solve this
equation numerically for various regimes and discuss the con-
sequences for the ISM. In Sect. 3, we perform various numeri-
cal experiments to confirm the analytic prediction and to inves-
tigate the non-linear regime. Section 4 concludes the paper.

2. Analysis

The equations governing, in the magnetohydrodynamic (MHD)
limit, the one-dimensional motion of a plasma permeated by a
uniform magnetic field B0 in a slab geometry read

∂ρ

∂t
+
∂(ρu)
∂x
= 0 (1)

∂u

∂t
+ u
∂u

∂x
= −1
ρ

∂

∂x

(
P +
|b|2
8π

)
(2)

∂v

∂t
+ u
∂v

∂x
=

Bx

4πρ
∂b

∂x
(3)

∂b

∂t
+
∂

∂x
(ub) = Bx

∂v

∂x
, (4)

(
∂T

∂t
+ u
∂T

∂x

)
= −(γ − 1)T

∂u

∂x
− 1

Cv
L + 1
ρCv
∂x(κ(T )∂xT ) (5)

where all fields only depend on the coordinate x and time t.
The ambient field B0 is assumed to be oriented in the x di-

rection. The velocity field V has a component u = Vx along the
x coordinate and two transverse components combined in the
complex number v = Vy+ iVz. Similarly, we write the magnetic
field as b = By + iBz, the component Bx = B0 remaining con-
stant. The mass density and thermal pressure are denoted by ρ
and P respectively and we assume a perfect gas law P =

RρT

µ

where R =
kB
mH

is the universal gas constant, kB the Boltzmann
constant and µ the mean molecular weight in units of the hy-
drogen mass mH. Heating and cooling processes are combined
in a single net cooling functionL. The parameter γ denotes the
ratio of the specific heats at constant pressure Cp and at con-
stant volume Cv. Note that Cv =

R
(γ−1)µ . Thermal diffusivity due

to neutrals is the dominant one. It is isotropic in spite of the
presence of the magnetic field and equal to κ(T ) = 5/3Cvη(T ),
where η(T ) = 5.7 × 10−5(T/1 K)1/2 g cm−1 s−1 (Lang 1974).

Throughout most of Sect. 2, thermal diffusivity will be ne-
glected for simplicity, leading to the assumption of a vanish-
ingly small Field length. Its effect will briefly be addressed in

Sect. 2.5 and it is explicitely taken into account in the numeri-
cal simulations of Sect. 3.

Two main non-dimensional numbers can be defined, the
sonic Mach number Ms = V0/cs ratio of a typical velocity V0

with the constant sound speed cs =

√
γkBT

µmH
and the Alfvénic

Mach number Ma = V0/ca, where ca = Bx/(4πρ0)1/2 is the
Alfvén speed of the unperturbed system. The plasma beta is

here defined by β = M2
a

M2
s
.

These equations have exact solutions in the form of cir-
cularly polarized plane Alfvén waves of arbitrary amplitude
(Ferraro 1955). They read b0 = B⊥ exp[−iσ(k0x − ω0t)] with
constant density ρ0 and temperature T0, and zero longitudinal
velocity u0 = 0. The transverse wave velocity is related to the
magnetic field perturbation by v0 = V⊥ exp[−iσ(k0x − ω0t)] =
− b0√

4πρ0

. The polarization of the wave is determined by the pa-

rameter σ, with σ = +1 (σ = −1) for a right-handed (left-
handed) wave. In the absence of dispersive effects we can, with-
out restriction, take σ = −1. Moreover, B⊥ can be taken real.
The dispersion relation reads ω2

0 = c2
ak2

0.

2.1. Ambipolar diffusion and wave steepening

Before considering the idealized configuration of single fluid
perfectly coupled to the magnetic field with a circularly po-
larized monochromatic Alfvén wave train of infinite length, it
is important to estimate the timescale of two important pro-
cesses which are not considered in this study. The first one is
the ambipolar diffusion that takes place in weakly ionized gas
and that induces energy dissipation due to the friction between
the neutrals and the ions. The second one is the steepening of
the MHD waves that takes place when the wave polarization is
not perfectly circular or when the wave packet is modulated.

2.1.1. Timescale of the ambipolar diffusion

The ambipolar diffusion time is given by (Shu 1992):

tda =
4πγdaρnρiL

2

B2
, (6)

where γda is the friction coefficient between ions of density ρi

and neutrals of density ρn, L is the typical scale to be considered
and B is the magnetic intensity.

In the case of a molecular cloud, it has been estimated to
3 × 1013 cm3 g−1 s−1 (Shu 1992). In the case of the atomic gas,
since the mass of the neutral and the ions are two times smaller,
γda is about three times larger, leading to

tda ≃ 5 × 1015

(
5 µG

B

)2
ξi

10−3

(
nn

100 cm−3

)2 ( L

1018 cm

)2
s, (7)

where ξi is the gas ionization and nn the particle density of the
neutrals.

In the CNM the ionization is about 4 × 10−4, therefore at
the scale of say 0.1 pc, the ambipolar diffusion time is about
2 × 1014 s or about 10 Myr. In the WNM, the density is about
1 cm−3, the ionization about 0.1, therefore at a scale of say 1 pc,
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the ambipolar diffusion time is 5 × 1014 s. In both cases, am-
bipolar diffusion operates on a rather long characteristic time
and can thus safely be neglected.

2.1.2. Timescale of the wave steepening

The equation governing the dynamics of parallel propagat-
ing Alfvén waves in the long wavelength, small amplitude
limit was derived by Cohen & Kuslrud (1974). A similar
equation was derived previously by Rogister (1971) from
the Vlasov-Maxwell system in the context of a collisionless
plasma, taking into account kinetic effects such as dispersion
and Landau damping. The main point is that the evolution of
the magnetic field components perpendicular to the ambient
field involves a nonlinearity of the form α∂x

(
|b|2b
)
, where α

is a coefficient depending on β. From this formula, one sees in
particular that circularly polarized Alfvén waves, for which |b|
is constant, do not steepen. In the case where the wave ampli-
tude is modulated, the characteristic time of steepening is given
by (using Eq. (40) in Cohen & Kulsrud 1974)

τ =
4
3

1 − β
cA

B2
0

∂x|b|2
· (8)

Denoting by λ the wavelength, by lc the typical length of the
amplitude modulation and by ωs the characteristic growth rate
associated with wave steepening, one gets

ωs

ω0
=

3
4(1 − β)

λ

lc

b2
0

B2
0

· (9)

The Cohen-Kulsrud equation is not valid for β close to unity, a
point where sound waves have the same phase speed as Alfvén
waves and have thus to be retained explicitly in the nonlinear
dynamics. In general however, we see that the ratio ωs/ω0 de-
pends quadratically on the wave amplitude and is inversely pro-
portional to the normalized scale of amplitude modulation. As
an example, for a wave train of amplitude b0/B0 = 0.5 and co-
herence length lc/λ = 5, with β = 0.5, one gets ωs/ω0 = 0.075,
a value about five times smaller than the typical growth rates
shown in Fig. 1. This process of wave steepening thus ap-
pears subdominant with respect to the combined thermal and
decay instabilities considered in this paper. Moreover, as will
be demonstrated by the numerical simulations, wave steepen-
ing does indeed occur but it does not affect our conclusions.

Another process is at play in real three-dimensional sit-
uations, namely turbulent cascade, which occurs mainly in
transverse directions as a result of nonlinear interaction be-
tween counter-propagating wave packets. The nonlinear eddy
turnover time is expected to be smaller than the other pro-
cesses mentioned above for high enough amplitude and sit-
uations where Alfvén waves propagate in both directions in
roughly equal amounts. When waves propagate in a privi-
leged direction, as in the solar wind, the turbulent cascade is
much less efficient, leaving enough time for the other insta-
bilities to develop. The interaction between waves and turbu-
lence in compressible MHD is still a very debated topic (see
e.g. Cho & Lazarian 2003). Three-dimensional simulations will
have to be performed to address the competition between these
phenomena.

Fig. 1. Growth rate as a function of the wave number. The first panel is
for the adiabatic case, second, third and fourth panels display results
for various values of ωc/ω0. The solid line corresponds to the case
A = 0, dotted line to β = 0.9, A = 0.5, short dashed line to β = 0.5,
A = 0.5, dot-dashed line to β = 0.5, A = 1, double dot-dashed line to
β = 0.1, A = 0.5 and long dashed line to β = 0.1, A = 1.

2.2. Derivation of the dispersion relation

We shall now consider perturbations about the exact solution
described above, namely a circularly polarized Alfvén wave
propagating in a uniform gas at thermal equilibrium and deter-
mine the dispersion relation for normal modes. Such an analy-
sis has been performed by Goldstein (1978) for an isothermal
gas and by Lou (1996) for a self-gravitating gas. Let us write
the perturbations as

ρ = ρ0 + δρ, T = T0 + δT, v = v0 + δv, b = b0 + δb, u = δu.

The linearized equations are, denoting by a star the complex
conjugate,

∂tδρ + ρ0∂xδu = 0,

ρ0∂tδu = −∂xδP −
1

8π
∂x(b0δb

∗ + b∗0δb),

ρ0∂tδv + δρ∂tv0 + ρ0δu∂xv0 =
1

4π
Bx∂xδb, (10)

∂tδb + δu∂xb0 + b0∂xδu − Bx∂xδv = 0,

Cv(∂tδT + (γ − 1)T0∂xδu) = −
⎛⎜⎜⎜⎜⎝
(
∂L
∂ρ

)

T

δρ +

(
∂L
∂T

)

ρ

δT

⎞⎟⎟⎟⎟⎠ .
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Taking perturbations in the form

δρ = δ̂ρ exp(−iωt + ikx) + c.c.,

δT = δ̂T exp(−iωt + ikx) + c.c.,

δu = δ̂u exp(−iωt + ikx) + c.c.,

δv = δ̂v
+

exp(−i(ω + ω0)t + i(k + k0)x) (11)

+(δ̂v
−
)∗ exp(i(ω − ω0)t − i(k − k0)x),

δb = δ̂b
+

exp(−i(ω + ω0)t + i(k + k0)x)

+(δ̂b
−
)∗ exp(i(ω − ω0)t − i(k − k0)x),

we obtain the following equations

−ωδ̂ρ + kρ0δ̂u = 0,

−ρ0(ω + ω0)δ̂v
+
+
(
−ω0δ̂ρ + k0ρ0δ̂u

)
V⊥ =

Bx

4π
(k + k0)δ̂b

+
,

−ρ0(ω − ω0)δ̂v
−
+
(
ω0δ̂ρ − k0ρ0δ̂u

)
V⊥ =

Bx

4π
(k − k0)δ̂b

−
,

−ωρ0δ̂u + k
kB

µmH
(ρ0δ̂T + T0δ̂ρ) +

B⊥
8π

k

(
δ̂b
+
+ δ̂b

−)
= 0, (12)

−(ω + ω0)δ̂b
+
+ B⊥(k + k0)δ̂u − Bx(k + k0)δ̂v

+
= 0,

−(ω − ω0)δ̂b
−
+ B⊥(k − k0)δ̂u − Bx(k − k0)δ̂v

−
= 0,

iCv
(
−ωδ̂T + (γ − 1)T0kδ̂u

)
= −
(
∂ρLδ̂ρ + ∂TLδ̂T

)
.

The fluctuations δ̂T , δ̂ρ, and δ̂b
±

can easily be obtained as a
function of δ̂u in the form

ωδ̂ρ = kρ0δ̂u,

δ̂T =
δ̂u

−∂TL + iCvω

(
ikCv(γ − 1)T0 +

k

ω
ρ0∂ρL

)
, (13)

δ̂b
±
=

δ̂u

ω2
± − c2

ak2
±

B⊥k±
ω2

0k

ωk0

(
ω±
ω0

ω

ω0

k0

k
± ω
ω0

k0

k
− ±1

)
.

One then gets the dispersion relation
(
− ω2 + k2 kB

µmH
T0 + k2 kB

µmH

(
iCv(γ − 1)T0ω + ρ0∂ρL
−∂TL + iCvω

) )

×
(
ω

ω0
− k

k0

) ⎛⎜⎜⎜⎜⎜⎝
(
ω

ω0
+

k

k0

)2
− 4

⎞⎟⎟⎟⎟⎟⎠ =

− ω2
0

(
B⊥
Bx

)2 (
k

k0

)2 ⎛⎜⎜⎜⎜⎜⎝
(
ω

ω0

)3
+

k

k0

(
ω

ω0

)2
− 3
ω

ω0
+

k

k0

⎞⎟⎟⎟⎟⎟⎠ , (14)

which can be rewritten

ω̃2 − β̃k2 ω̃ + iω̃b

ω̃ + iω̃c
= k̃2A2 ω̃

3 + k̃ω̃2 − 3ω̃ + k̃

(ω̃ − k̃)((ω̃ + k̃)2 − 4)
, (15)

where ω̃c =
ωc
ω0
=
∂TL
Cvω0

, ω̃b =
ωb
ω0
=

T0∂TL−ρ0∂ρL
γCvT0ω0

= 1
γCvω0

(
∂L
∂T

)
P
,

ω̃ = ω/ω0, k̃ = k/k0 and A = B⊥/Bx.
Note that in the limit A = 0, Eq. (15) becomes identical

to the dispersion relation obtained by Field (1965) whereas
if L = 0, it reduces to the dispersion relation obtained by
Goldstein (1978).

2.3. Asymptotic behaviors

Before numerically solving Eq. (15), we consider various
asymptotic limits.

2.3.1. Static magnetic field

It is possible to recover the dispersion relation in the absence of
waves for a situation where the ambient field is oblique, making
an angle θ with the x-axis. In this case Bx = B0 cos θ and one
must take the limit ω0 → 0 with ω0

k0
= cA =

B0√
4πρ0

cos θ and

A = tan θ. It follows that

ω2 − k2c2
s
ω + iωb

ω + iωc
=

k2ω2v2A sin2 θ

ω2 − k2v2A cos2 θ
, (16)

where we denote v2A =
B2

0

4πρ0
.

In the case θ = π/2 and close to the threshold (ω ≃ 0 ≪
kcs), we have

ω ≃ −i
v2Aωc + c2

sωb

v2A + c2
s
· (17)

Since the magnetic field is purely transverse, the magnetic ten-
sion vanishes and the magnetic pressure adds up to the thermal
pressure, making the gas more stable. The criterion for thermal
instability is simply v2Aωc + c2

sωb ≤ 0 which was first obtained
by Field (1965). It shows that a purely transverse magnetic field
can suppress the thermal instability. This is because, in this ge-
ometry, the magnetic pressure is proportional to the square of
the density and therefore ∂ρPtot can be positive even if ∂ρPtherm

is negative.

2.3.2. Instability thresholds

This section addresses the neighborhood of the instability, a
situation where ℑ(ω)→ 0.

We shall first discuss the case ℜ(ω) = 0, corresponding
to the so-called condensation or entropy mode. In the situation
where |ω̃b| and |ω̃c| are smaller than k̃, the characteristic cooling
time is longer than the Alfvén crossing time and the dispersion
relation reduces to

ω̃ ≃ −i
β
(
4 − k̃2

)
ω̃b + A2ω̃c

β
(
4 − k̃2

)
+ A2

· (18)

When β is not too small, sound waves have time to restore pres-
sure equilibrium while the gas cools and one expects that the
growth rate will be close to the isobaric one. In the opposite
case, where β is very small, the growth rate should be close to
the isochoric one since Alfvén waves are not accompanied by
pressure or density perturbations. These conclusions are eas-
ily recovered form Eq. (18) which for very small amplitude
(A2/β(4 − k̃2) ≪ 1) gives

ω̃ ≃ −i

⎛⎜⎜⎜⎜⎝ω̃b +
A2

β(4 − k̃2)

(
ω̃c − ω̃b

)
⎞⎟⎟⎟⎟⎠ , (19)

while, in the case where β(4 − k̃2)/A2 ≪ 1 it rewrites

ω̃ ≃ −i

⎛⎜⎜⎜⎜⎝ω̃c +
β(4 − k̃2)

A2

(
ω̃b − ω̃c

)
⎞⎟⎟⎟⎟⎠ . (20)

In the case where A2/β ≪ 1, more likely to be met in the
ISM, the effect of the Alfvén wave depends both on the sign
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of ω̃c − ω̃b and of that of k̃ − 2. In a typical region of the ISM
with T ≃ 1000 K, ω̃c−ω̃b ≥ 0 and therefore the waves stabilize
(destabilize) the gas if k̃ < 2, (respectively k̃ ≥ 2).

In the limit k̃ ≫ 1 and/or for A = 0, one recovers the iso-
baric growth rate, the destabilizing effect of the Alfvén waves
becoming asymptotically small as k̃ increases.

If ω̃b ≪ k̃ ≪ 1, we find a growth rate similar to that given
by Eq. (17) except for the factor 2 that divides v2A. This is due
to the magnetic tension that tends to unbend the magnetic field
lines, making the stabilization of the magnetic pressure less ef-
ficient.

Two different limits are obtained when k̃ ≪ ω̃b. When the
isochoric criterion is not verified and ω̃/̃k ≡ α remains finite, a
situation where the growth rate vanishes with k̃, one gets

(1 − α)

(
α2 − βω̃b

ω̃c

)
= (1 − 3α)

A2

4
· (21)

In the absence of waves, the growth rate asymptotically ap-
proaches ω̃ = ±β 1

2 k̃(ω̃b/ω̃c)
1
2 (Meerson 1996). Equation (21)

shows in general, assuming α and A small and thus
α2 ≈ βω̃b/ω̃c + A2/4, that the Alfvén waves have a stabilizing
effect.

When ω̃c < 0, the growth rate for k̃ ≪ |ω̃c| remains finite,
equal to ω̃ = −iω̃c, independently of the presence of Alfvén
waves.

For completeness, we now consider the case of adiabatic
perturbations, corresponding to a wave mode with ℜ(ω) � 0.
For this purpose, we restrict ourselves to the case of low am-
plitude waves, i.e. A ≪ 1 and we set ω̃ = ω̃r + iω̃i. We there-
fore have ω̃r ≫ ω̃i. Moreover, it is assumed that ω̃c ≪ 1 and
ω̃b ≪ 1 so that they can be neglected when multiplied by ω̃i.
With these assumptions, one finds that to the first order

ω̃ = β
1
2 k̃ +

i
2

(ω̃b − ω̃c)

+
A2

2β

⎛⎜⎜⎜⎜⎝
β

1
2 k̃ + iω̃c

β
1
2 − 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

(β
3
2 + β)̃k2 + 1 − 3β

1
2

(1 + β
1
2 )2̃k2 − 4

⎞⎟⎟⎟⎟⎠ · (22)

The real part, ωr ≃ Csk simply corresponds to a sonic wave.
When A = 0, one finds that the conditions for thermal sta-

bility of a sonic wave is w̃c−w̃b ≥ 0, a criterion already obtained
by Field (1965).

When A � 0, the stability criterion is modified according
to Eq. (22), showing that the effect of the waves depends in a
complex way on β and k̃.

2.4. Growth rate and physical discussion

We now numerically solve Eq. (15) which can be rewritten as
a sixth order polynomial containing 4 parameters to be spec-
ified, namely β and A (characterizing the Alfvén wave) and
ω̃b and ω̃c (function of the thermal processes). The value of
ω̃c = ωc/ω0 represents the ratio of the temporal period of the
Alfvén wave divided by the cooling time and can be arbitrarily
chosen. However, once ω̃c is specified, ω̃b depends on the ther-
mal function. In order to estimate this parameter we use the
standard cooling function of the neutral atomic ISM (Wolfire
et al. 1995, 2003) which is used in Audit & Hennebelle (2005)

in the thermally unstable regime (n = 3 cm−3 and T ≃ 500 K).
To obtain the dispersion relation we integrate Eq. (14) for k/k0

between 0.01 and 100 using logarithmic spacing. The roots of
the polynomials are obtained using the zroots subroutine (Press
et al. 1992). Here, we restrict our attention to the unstable
branch only. In order to verify our method, we have reproduced
the dispersion relation for the decay instability of an isothermal
gas presented in Goldstein (1978).

Figure 1 displays the results of the numerical integration
of Eq. (14). First panel shows the adiabatic case for β = 0.9,
A = 0.5 (dotted line), β = 0.5, A = 0.5 (short dashed line),
β = 0.5, A = 1 (dot-dashed line), β = 0.1, A = 0.5 (double dot-
dashed line), β = 0.1, A = 1 (long dashed line). As expected the
circularly polarized Alfvén wave is unstable (decay instability)
in a range of k extending to a few times k0. Both the growth
rate and the largest unstable value of k increase with β−1 and A.

The second panel shows results for ω̃c = ωc/ω0 = 1. The
full line corresponds to the hydrodynamical case whereas the
others correspond to the same values of β and A as in the first
panel. Various interesting features can be seen. i) When k → 0
the effect of the Alfvén wave is to decrease the growth rate
and therefore to stabilize these modes with respect to thermal
instability. For β = 0.5, A = 1 and for β = 0.1, the modes whose
wavenumber is smaller than k ≃ 1 are perfectly stable. ii) The
intermediate modes (i.e. k ≃ k0) are more unstable when β is
smaller and A is higher. This is due to the decay instability that
the wave undergoes for these values of k. iii) When k → ∞,
the growth rate is independent of β and A. These features are in
good agreement with the asymptotic limit ω ≃ 0 studied in the
previous section. Cases with a larger β, namely 1 and 1.5, have
also been explored but are not described here since they are not
directly relevant for the regions of the ISM we consider in this
paper. Although the decay instability disappears for β ≥ 1 (for
small enough amplitude), we find no qualitative difference with
the cases β ≤ 1. In particular the intermediate wavelengths are
still destabilized by the waves. This is in good agreement with
the analytical study of the instability threshold (see Eq. (18)).

The third panel shows results for ω̃c = 0.1. In this case the
cooling time is 10 times larger than the period of the Alfvén
waves. The dispersion relation is qualitatively similar to the
previous case. Quantitatively, however, the intermediate wave-
lengths are much more unstable than the small wavelengths.
This is due to the fact that in this range of parameters, the cool-
ing time being larger than the dynamical time of the waves,
the fastest growing instability is the decay instability. Note that
sinceω0 is 10 times larger in this case than in the case displayed
in panel 2, the value of ω/ω0 in the hydrodynamical case (full
line) is 10 times lower.

The fourth panel shows results for ω̃c = 10. In this case,
the growth rate of the thermal instability is much lower than the
growth rate of the decay instability. Therefore, the only effect
of the Alfvén wave is to stabilize the gas with respect to thermal
instability. This effect increases when β decreases and when A

increases.
These results suggest that the presence of non-linear circu-

larly polarized Alfvén waves in a thermally unstable medium
like the neutral interstellar atomic gas can have two main ef-
fects. If the cooling time is short with respect to the temporal
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Fig. 2. Growth rate as a function of the wave number when the effect
of the thermal diffusivity is taken into account. The curve styles are
associated with the same values of β and A as in Fig. 1.

period of the waves, then the waves stabilize the gas. Therefore
the gas can survive longer in the thermally unstable domain
possibly leading in the ISM to a larger fraction of thermally un-
stable gas. Since the short wavelengths are the most unstable,
the trend is that the CNM is fragmented into several clouds. If
the cooling time is larger than the wave period, then the decay
instability makes the intermediate modes (k ≃ k0) more unsta-
ble. In that case, the fraction of thermally unstable gas is not
necessarily larger (depending on β and A) but the CNM should
be fragmented in structures having a size of about 1/(k0 × ξ),
where ξ is the density ratio between the CNM and the WNM.

2.5. Effect of thermal diffusivity

Here we briefly consider the effect of thermal diffusivity. When
this term is taken into account, the dispersion relation (15) be-
comes:

ω̃2 − β̃k2 ω̃ + i(ω̃b + κ̃bk̃2)

ω̃ + i(ω̃c + κ̃ck̃2)
= k̃2A2 ω̃

3 + k̃ω̃2 − 3ω̃ + k̃

(ω̃ − k̃)((ω̃ + k̃)2 − 4)
, (23)

where κ̃c = κ(T0)ω0β/(Cvρ0C2
s ) and κ̃b = κ̃c/γ.

Figure 2 displays the growth rate obtained from Eq. (23) us-
ing the fiducial value of κ(T0) given at the beginning of Sect. 2
and for ωc = 0.3, 1, 3. The different curves are associated with
the same values of β and A as in Fig. 1. For small and interme-
diate values of k̃ the shape and the values of w̃ are very simi-
lar to the case of vanishing thermal conductivity. As expected
however, thermal conduction introduces a cut-off at small

scales (Field 1965). The value of k̃ for which ω̃ vanishes de-
pends on β and increases (by a factor of 2 to 3 for the values
considered here) when β decreases, confirming the trends in-
ferred previously, i.e. the CNM should be more fragmented
in the presence of Alfvén waves leading to smaller CNM
structures.

3. Numerical study

In order to test the analytic results presented in the previous
section and to investigate the non-linear regime, numerical sim-
ulations are performed in a slab geometry.

For this purpose we use the 1D adaptive mesh refine-
ment (AMR) code presented in Hennebelle & Pérault (1999,
2000). The AMR technique is very helpful to simultaneously
resolve the sharp thermal fronts (≃10−3 pc) and the larger scale
(≥10 pc) involved in the problem. The code has been exten-
sively tested and the results in the hydrodynamical case have
been closely compared with high resolution simulations using
a second order Godunov scheme. The growth rates for the para-
metric instability of an Alfvén wave in an adiabatic gas have
been calculated and shown to match, within an accuracy of a
few percent, the results of the first panel of Fig. 1.

Two numerical experiments are carried out. First, we con-
sider a situation for which the gas is initially thermally unstable
and we study the development of the thermal instability in the
presence of Alfvén waves. Although these initial conditions are
somewhat artificial, they are simple and close to the assumption
of the analytic analysis, making comparison easier. Second, we
set up more realistic initial conditions corresponding to a con-
verging flow of thermally stable WNM. In this case the ram
pressure of the flow drives the thermal collapse dynamically.

3.1. Case of initially thermally unstable gas

In order to study the effect of the circularly polarized Alfvén
waves on the development of the thermal instability, we start
the simulation with thermally unstable gas (n = 3 cm−3 and
T ≃ 500 K) with density fluctuations of amplitude 0.5. The
cooling function is described in Audit & Hennebelle (2005).
The computational domain, which initially contains 5000 pix-
els, has periodic boundary conditions and a length of 3 ×
1019 cm, corresponding to 20 wavelengths of the initial Alfvén
wave.

Figure 3 shows three snapshots of the density field in a
purely hydrodynamic run (no MHD wave is present). The ini-
tial perturbation grows as a result of the thermal instability. At
time t = 2.55 Myr the density is about three times its initial
value. At time t = 3.64 Myr a cloud of CNM having a size of
about 0.3 pc has formed.

Figure 4 displays the density and the y-component of the
magnetic field for 3 snapshots showing the development of the
thermal instability in the presence of Alfvén waves of ampli-
tude B⊥ = 1 µG and for Bx = 5 µG. In this situation the value
of ωc/ω0 is about 0.03, A = 0.2 and β = 0.17. The peak den-
sity at time t = 1.82 Myr is about 4.9 whereas the initial peak
density is 4.5. In the hydrodynamic case the peak density at
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Fig. 3. Density field for 3 snapshots illustrating the development of
the thermal instability in the hydrodynamical case. The density of the
perturbation increases until the gas reaches thermal equilibrium.

the same time is about 6.2 showing that the waves have signifi-
cantly slowed down the growth of the perturbation, by a factor
of about (6.2−4.5)/(4.9−4.5) ≃ 4. This factor is significantly
larger than what is predicted by the linear theory which pre-
dicts a difference of about 10% (in the case of a perturbation
having an initial amplitude of 10−2 we verified that the growth
agrees with the linear theory). After the central density has in-
creased by a factor of about 2 (panel 2), the waves drastically
change the structure of the gas and create significant density
contrasts (≃10%). The resulting cloud (panel 3) contains den-
sity fluctuations of about ≃50% of its maximum value, and
is therefore very different from the uniform cloud formed in
the hydrodynamical case. These large fluctuations are due to
magnetic pressure variations. Due to the contraction, the waves
inside the growing perturbation (panel 2 and 3) have a larger
amplitude and a shorter wavelength than the waves in the sur-
rounding medium. According to the analysis of the preceeding
sections, this effect tends to increase the influence of the waves.

Figure 5 shows results for B⊥ = 2.5 µG and for Bx = 5 µG.
The waves strongly influence the gas evolution. The initial
perturbation is stabilized by the waves and does not develop
(second panel). On the contrary, the waves trigger the forma-
tion of structures having a wave number k ≃ k0 (first and
second panels). These structures keep condensing (panel 3)
and finally about 12 CNM clouds form. Their size is about

Fig. 4. Density and y-component of the magnetic field for 3 snapshots
illustrating the development of the thermal instability in the presence
of Alfvén waves of amplitude B⊥ = 1µG and a longitudinal magnetic
field Bx = 5µG.
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Fig. 5. Same as Fig. 4 for B⊥ = 2.5 µG and Bx = 5 µG.

0.03 pc and therefore about 10 times smaller than the size of
the cloud that forms in the hydrodynamical case. The forma-
tion of these clouds is significantly (50%−100%) faster than in

the two previous cases. Therefore, in this range of parameters,
the waves destabilize the gas and accelerate the formation of
CNM structures.

Figure 6 shows results for B⊥ = 2.5 µG and for Bx =

2.5 µG. In this situation the value of ωc/ω0 is about 0.06,
A = 1 and β = 0.34. As can be seen in the first panel, the
initial perturbation does not grow (the peak density is smaller
at time t = 1.82 Myr than the initial value). Unlike the previ-
ous case, the Alfvén waves do not efficiently trigger the for-
mation of structures at k ≃ k0 (see first panel). However since
the waves are unable to stabilize small wavelengths, the initial
perturbation breaks down in several structures that finally de-
velop (panel 2). This nevertheless occurs after a significant de-
lay showing that in this situation, the gas spent a longer amount
of time in the thermally unstable state. At time t = 5.41 Myr
about 6 small structures of size ≃ 0.03 pc and one larger struc-
ture of size ≃ 0.3 pc have formed.

3.2. Case of dynamically induced thermal

condensation

We now consider a converging flow of WNM (Hennebelle &
Pérault 1999) in a simulation box of length 150 pc. The peak
velocities are 2.2 Cwnm and −2 Cwnm and the peak to peak dis-
tance is about 60 pc. Two simulations are performed. The first
one is purely hydrodynamical, while the second one starts with
an Alfvén wave of amplitude 2.5 µG with 100 spatial periods
in the integration domain. The total magnetic intensity is 5 µG
and the longitudinal one Bx ≃ 4 µG. An initial resolution of
25 000 pixels is used to ensure an accurate description of the
Alfvén wave (it corresponds to 250 pixels per period).

Figure 7 shows the hydrodynamical result. At time t =

6.09 Myr, two clouds with a size of about 0.1 pc have formed.
They present weak density gradients and have no significant
internal velocity. The two clouds have a relative velocity of
about 0.15 km s−1 and undergo a collision at time t = 6.3 Myr.
A shock-compressed layer forms with a density of about
≃700 cm−3 and a length ≃ 0.02 pc. During the time of the col-
lision, the structure presents a stiff velocity gradient.

Figure 8 displays four snapshots of the longitudinal ve-
locity field, the density and the y-component of the magnetic
field in the MHD case. The results displayed in the first panel
confirm the trends observed in the numerical experiments of
Sect. 3.1. The gas fragments into few small CNM structures
having a physical length as small as a few 0.01 pc (note that
due to the AMR scheme, these structures are well described).
This situation is very different from the hydrodynamical case
for which the structures are much larger and uniform. A com-
parison between the two times displayed in first panel of Fig. 8
reveals that all the structures do not form at the same time.
The structure of the magnetic field varies very rapidly in the
new condensations (x = 242 cm and x = 243 cm), therefore
compressing them. It varies less steeply near older structures
(x ≃ 244 cm) since the field lines have time to unbend. Between
the clouds, the magnetic field is much more uniform. This is a
consequence of the fact that the Alfvén speed is about 10 times
larger in the WNM than in the CNM. It is also clear that the
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Fig. 6. Same as Fig. 4 for B⊥ = 2.5µG and Bx = 2.5 µG.

intercloud magnetic pressure plays an important role in pre-
venting the merging of the CNM structures therefore maintain-
ing the complexity of the flow and organizing it into groups

Fig. 7. Spatial zoom showing the thermal condensations induced by
the large scale converging flow in the hydrodynamical case. Two snap-
shots are displayed.

of structures rather than into a single cloud. In these groups of
structures the longitudinal velocity dispersion is not negligible,
unlike in the hydrodynamical case. It is about 0.1−0.2 km s−1,
i.e. a few times the sound speed or the Alfvén speed of the
CNM. This velocity dispersion is due to the transfer of mag-
netic energy into longitudinal motions because of the magnetic
pressure fluctuations. Observing such group of structures with
a low spatial resolution (≃0.2 pc) may lead to a rather different
picture, namely a broad, uniform and turbulent (having a Mach
number M ≃ 1−2) CNM structure.

The second panel of Fig. 8 shows two later snapshots of the
same numerical experiment. The group of structures seen in the
first panel is now located at x ≃ 251.5 pc. Large fluctuations
(≃100%) of density and magnetic field are still present as well
as a longitudinal velocity dispersion of about 0.1−0.2 km s−1.
Another smaller group of structures (x ≃ 253.5 pc) has formed.
At time t = 9.11 Myr (dotted line), the first cloud undergoes
a large density fluctuation (nmax ≃ 600 cm−3) on a scale of
about 0.01 pc. At the same time the cloud is compressed, be-
cause of the (magnetic) interaction with the other cloud, so that
its length is divided by a factor ≃2. An interpretation based
on the previous analytic results is that since the amplitude and
wavenumber of the Alfvén wave in the cloud increases as a re-
sult of the compression, the decay instability is triggered lead-
ing to a larger density fluctuations. Interestingly, in contrast to
the large fluctuations undergone by By, the longitudinal veloc-
ity field remains relatively smooth.

4. Discussion and conclusion

The analysis presented in Sect. 2 as well as the numerical ex-
periments discussed in the previous section show that even
modest amplitude Alfvén waves may have a strong impact on
the structure of the multiphase ISM. This study focused on cir-
cularly polarized parallel propagating Alfvén waves, mainly
to allow analytic calculations. These waves, which are exact
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Fig. 8. Same as Fig. 7 in the presence of circularly polarized Alfvén
waves (see text for detail). Four snapshots are displayed.

solutions of the MHD equations, are very weakly dissipative
and are therefore very likely to be present in the ISM.

Their effects depend on β, ω̃c and A, respectively the square
ratio of the sound to the Alfvén speeds, the ratio between the
wave temporal period and the cooling time and the wave am-
plitude. Depending on the values of these parameters, these
waves may: i) stabilize the wavelengths larger than that of

the Alfvén wave, λAW, that would otherwise be thermally un-
stable, therefore enhancing the fraction of thermally unstable
gas in the ISM; ii) destabilize the wavelengths comparable to
λAW and thus fragment the CNM into several spatially corre-
lated small clouds; iii) induce strong density fluctuations within
preexisting CNM structures (up to 10 times the mean den-
sity); iv) maintain an Alfvénic velocity dispersion within the
CNM structures by pumping their energy into longitudinal mo-
tions. Finally magnetic pressure tends to prevent the merging
between CNM clouds.

These effects are not observed in one-dimensional purely
hydrodynamical simulations leading to larger and almost uni-
form structures with weak internal motions. In two dimensions
(Koyama & Inutsuka 2002; Audit & Hennebelle 2005) the sit-
uation is more complex due to the role of turbulence, with the
coexistence of thermally unstable gas and small-scale struc-
tures, but the latter are still relatively uniform and do not con-
tain a significant velocity dispersion. According to the present
analysis, MHD waves may enhance the thermal fragmenta-
tion found in these simulations, maintain an Alfvénic velocity
dispersion and generate large density fluctuations within the
CNM structures.

Recent observational progress has revealed the presence
of interesting features, and of a large quantity of thermally
unstable gas (e.g. Heiles 2001; Heiles & Troland 2003;
Miville-Deschênes et al. 2003). Heiles (1997) summarizes and
discusses observations of tiny small-scale structures and more
recently Braun & Kanekar (2004, 2005) and Staminorovic &
Heiles (2005) report the detection of very low column density
CNM clouds.

Qualitatively, the present study as well as the 2D simula-
tions of Koyama & Inutsuka (2002) and Audit & Hennebelle
(2005) show similar features including thermally unstable gas
(also observed by Gazol et al. 2001 in simulations at larger
scale), low column density structures (down to and even
smaller than 1018 cm−2) and large density fluctuations at small
scale (up to 103 cm−3). Small-scale structures and large density
fluctuations appear to be a natural outcome of the two-phase
nature of the flow. In the absence of turbulence or a magnetic
field, CNM structures have a typical length of about 0.1 pc (or
a column density of ≃1019 cm−2) (Audit & Hennebelle 2005).
In the presence of waves or turbulence, a growing structure can
however fragment into smaller pieces. Moreover, since both the
sound and the Alfvén speed change by a factor≃10 between the
WNM and the CNM, with a transition occurring over a short
distance of the order of a Field length, supersonic or super-
alfvénic CNM motions are expected to be more frequent.

No systematic and quantitative study attempting to closely
compare simulations and observations has been carried out yet.
This is clearly a major challenge for the future.

Acknowledgements. This work has received partial financial support
from the French national program PCMI.

References

Audit, E., & Hennebelle, P. 2005, A&A, 1, 433
Braun, R., & Kanekar, N. 2004, in the IMF at 50, ed. E. Corbelli, F.

Palla, & H. Zinnecker (Kluwer) [arXiv:astro-ph/0409427]



P. Hennebelle and T. Passot: Influence of Alfvén waves on the thermal instability 1093

Braun, R., & Kanekar, N. 2005, A&A, 436, L53
Cho, J., & Lazarian, A. 2003, Mon. Not. R. Astron. Soc., 345, 325
Cohen, R. H., & Kulsrud, R. M. 1974, Phys. Fluid, 17, 2215
Dewar, R. L. 1970, Phys. Fluid, 13, 2710
Falle, S. A., & Hartquist, T. W. 2002, MNRAS, 329, 195
Ferraro, V. C. A. 1955, Proc. R. Soc. London, Ser. A, 223, 310
Field, G. 1965, ApJ, 142, 531
Field, G., Goldsmith, D., & Habing, H. 1969, ApJ Lett., 155, 149
Gazol, A., Vázquez-Semadeni, E., Sánchez-Salcedo, F., & Scalo, J.

2001, ApJ, 557, L124
Goldstein, M. 1978, ApJ, 219, 700
Heiles, C. 1987, Interstellar processes, ed. D. Hollenbach, & H.

Thronson (Reidel)
Heiles, C. 1997, ApJ, 481, 193
Heiles, C. 2001, ApJ, 551, 105
Heiles, C., & Troland, T. 2003, ApJ, 586, 1067
Heiles, C., & Troland, T. 2005, ApJ, in press

[arXiv:astro-ph/0501482]
Hennebelle, P., & Pérault, M. 1999, A&A, 351, 309
Hennebelle, P., & Pérault, M. 2000, A&A, 359, 1124
Koyoma, H., & Inutsuka, S. 2002, ApJ, 564, L97
Kulkarni, S. R., & Heiles, C. 1987, Interstellar processes, ed. D.

Hollenbach, & H. Thronson (Reidel)

Loewenstein, M. 1990, ApJ, 349, 471
Lou, Y. Q. 1996, MNRAS, 279, L67
McKee, C. F., & Zweibel, E. G. 1995, ApJ, 440, 686
Meerson, B. 1996, Rev. Mod. Phys., 68, 215
Miville-Deschênes, M.-A., Joncas, G., Falgarone, E., & Boulanger, F.

2003, A&A, 411, 109
Passot, T., Vázquez-Semadeni, E., & Pouquet, A. 1995, ApJ, 441,

702
Passot, T., & Vázquez-Semadeni, E. 2003, A&A, 398, 845
Piontek, R. A., & Ostriker, E. C. 2004, ApJ, 601, 905
Piontek, R. A., & Ostriker, E. C. 2005, ApJ, in press

[arXiv:astro-ph/0504669]
Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. 1994,

Numerical Recipies (Cambridge University Press)
Rogister, A. 1971, Phys. Fluids, 12, 2733
Shu, F. 1992, Gas Dymamics (Mill Valley CA: University Science

Books)
Spangler, S., Fuselier, S., Fey, A., & Anderson, G. 1988, J. Geophys.

Res., 93(A2), 845-857, 10.1029/88JA01034
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