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Abstract In this contribution, we study the depen-
dence of the bootstrapped success rate on the precision
of the GNSS carrier phase ambiguities. Integer boot-
strapping is, because of its ease of computation, a pop-
ular method for resolving the integer ambiguities. The
method is however known to be suboptimal, because it
only takes part of the information from the ambiguity
variance matrix into account. This raises the question in
what way the bootstrapped success rate is sensitive to
changes in precision of the ambiguities. We consider two
different cases. (1) The effect of improving the ambigu-
ity precision, and (2) the effect of using an approximate
ambiguity variance matrix. As a by-product, we also
prove that integer bootstrapping is optimal within the
restricted class of sequential integer estimators.

Keywords GNSS ambiguity resolution · Integer
bootstrapping · Ambiguity precision

1 Introduction

Global Navigation Satellite System (GNSS) ambiguity
resolution is the process of resolving the unknown cycle
ambiguities of double difference (DD) carrier phase
data as integers. Ambiguity resolution applies to a great
variety of GNSS models that are currently in use in navi-
gation, surveying, geodesy and geophysics. An overview
of these models, together with their applications, can be
found in textbooks such as Hofmann-Wellenhof et al.
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(1997), Leick (1995), Misra and Enge (2001), Parkin-
son and Spilker (1996), Strang and Borre (1997), and
Teunissen and Kleusberg (1998).

Any GNSS model can be cast in the following system
of linear(ized) observation equations

y = Aa + Bb + e (1)

where y is the given GNSS data vector of order m; a and
b are the unknown parameter vectors, respectively, of
order n and p; and where e is the noise vector. Matri-
ces A and B are assumed known. The data vector y will
usually consist of the ‘observed minus computed’ sin-
gle-, dual- or triple-frequency DD carrier phase and/or
pseudorange (code) observations accumulated over all
observation epochs. The entries of vector a are then
the DD carrier phase ambiguities, expressed in units of
cycles rather than range. They are known to be inte-
gers, a ∈ Zn. The entries of the vector b will con-
sist of the remaining unknown parameters, such as for
instance baseline components (coordinates) and possi-
bly atmospheric delay parameters (troposphere, iono-
sphere). They are known to be real-valued, b ∈ Rp.

The procedure which is usually followed for solving
the linear GNSS model (1), can be divided into three
steps. In the first step, one simply discards the integer
constraints a ∈ Zn on the ambiguities and performs
a standard least-squares adjustment. As a result, one
obtains the (real-valued) estimates of a and b, together
with their variance–covariance matrix
[

â
b̂

]
,
[

Qâ Qâb̂
Qb̂â Qb̂

]
(2)

This solution is referred to as the ‘float’ solution. In the
second step, the ‘float’ ambiguity estimate â is used to
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compute the corresponding integer ambiguity estimate

ǎS = S(â) (3)

with S : Rn �→ Zn a mapping from the n-dimensional
space of real numbers to the n-dimensional space of inte-
gers. Once the integer ambiguities are computed, they
are used in the third and final step to correct the ‘float’
estimate of b. As a result one obtains the ambiguity
resolved baseline solution

b̌S = b̂ − Qb̂âQ−1
â (â − ǎS) (4)

This solution is usually referred to as the ‘ambiguity
fixed’ baseline. The quality of the estimator b̌S depends
on the quality of the ‘float’ solution, â and b̂, and on
the quality of the integer estimator ǎS. Different choices
of the map S : Rn �→ Zn, will result in different inte-
ger estimators and will thus also produce differences
in the probability distribution of the ‘fixed’ baseline
(Teunissen 1999a).

In this contribution, we concentrate on the second
step and consider the principle of integer bootstrapping.
In particular, we study the dependence of its probability
of correct integer estimation on the variance matrix of
the ambiguity float solution. For that purpose, we first
give a brief review of the theory of integer bootstrap-
ping in Sect. 2. We also show in this section that the
bootstrapped estimator is a member from the class of
sequential integer estimators. This result enables us later
to determine an, albeit restricted, optimality property
of integer bootstrapping, somewhat similar to the opti-
mality of integer least-squares as proven in Teunissen
(1999b).

In Sect. 3, we study the effect of the ambiguity pre-
cision on the probability of correct integer estimation
from bootstrapping. Although the bootstrapped estima-
tor is very easy to compute, it does not take all the infor-
mation of the ambiguity variance matrix into account.
This raises the question whether it takes sufficient infor-
mation into account to profit from any possible precision
improvement of the ambiguities. We prove that this is
the case, i.e. that the probability of correct integer esti-
mation of bootstrapping will always get larger when the
precision of the ambiguity float solution improves.

In Sect. 4, we study what happens to the performance
of bootstrapping if an improper ambiguity variance
matrix is used. It is shown that, with one exception,
the probability of correct integer estimation always gets
smaller if either a too optimistic or a too pessimistic pre-
cision description is used (in the one exceptional case,
the probability remains the same).

2 Integer bootstrapping

2.1 The bootstrapped estimator

Integer bootstrapping is based on the principle of
sequential conditional least-squares estimation. In order
to describe the process of integer bootstrapping, we start
from the principle of conditional least-squares estima-
tion. We have the following result from standard adjust-
ment theory (Teunissen 2000).
Conditional least-squares Let the expectation and dis-
persion of âI = (â1, . . . , âi−1)

T ∈ Ri−1 and âi ∈ R be
given as

E
{[

âI
âi

]}
=
[

aI
ai

]
, D

{[
âI
âi

]}
=
[

QI QIi

QiI σ 2
i

]
(5)

Then the least-squares estimator of ai, when aI is con-
strained to the fixed vector zI , is given as

âi|I = âi − QiIQ−1
I (âI − zI) (6)

The estimator âi|I is referred to as the conditional least-
squares ambiguity estimator. It is conditioned on fixing
the previous ambiguities to the values zj, j = 1, . . . , (i −
1). Note that âi|I and âI are uncorrelated. This is an
important property that will be used repeatedly in the
following.

The above result can be used to derive a sequential
version of the conditional least-squares estimator. For
i = 2, we obtain the scalar version of (6) as

â2|1 = â2 − σ21σ
−2
1 (â1 − z1) (7)

in which â2|1 is uncorrelated with â1. For i = 3, the con-
ditional least-squares estimator â3|2,1 follows from fixing
the two ambiguities a1 and a2 to the values z1 and z2.
Note, however, because â3|2,1 is invariant to any regu-
lar transformation of â1, â2, that we may as well fix â1
and â2|1 to the values z1 and z2. This has the advantage
that matrix QI of (6) becomes diagonal. As a result, we
obtain

â3|2,1 = â3 − σ3,1σ
−2
1 (â1 − z1) − σ3,2|1σ−2

2|1 (â2|1 − z2) (8)

in which â3|2,1 is uncorrelated with both â1 and â2|1. It
will be clear that we may continue in this way to obtain
the corresponding expressions for the next and following
ambiguities as well. The result is summarized as follows.
Sequential conditional least-squares The conditional
least-squares estimator âi|I can be computed sequen-
tially as

âi|I = âi −
i−1∑
j=1

σi,j|Jσ−2
j|J (âj|J − zj), i = 1, . . . , n (9)
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where σi,j|J denotes the covariance between âi and âj|J ,
and σ 2

j|J is the variance of âj|J . For i = 1, âi|I is set equal
to â1.

We are now in a position to describe the integer boot-
strapping principle. In order to compute the sequential
conditional least-squares solutions, one needs to specify
the zj on which the conditioning takes place. In case of
bootstrapping, zj, for j = 1, . . . , n, is chosen as the near-
est integer of âj|J . Hence, for âi|I the conditioning takes
place on the nearest integers of all previous i − 1 condi-
tional estimates. The ith component of the bootstrapped
solution itself is then given as the nearest integer of âi|I .
We thus have the following definition.

Definition [Integer bootstrapping] Let â = (â1, . . . , ân)T

∈ Rn be the ambiguity float solution and let ǎB
= (ǎB,1, . . . , ǎB,n)T ∈ Zn denote the corresponding inte-
ger bootstrapped solution. The entries of the bootstrapped
ambiguity estimator are then defined as

ǎB,1 = [â1]
ǎB,2 = [â2|1] = [â2 − σ21σ

−2
1 (â1 − ǎB,1)

]
...

ǎB,n = [ân|N] = [ân −∑n−1
j=1 σn,j|Jσ−2

j|J (âj|J − ǎB,j)
]

(10)

where ‘[.]’ denotes the operation of rounding to the near-
est integer.

As this definition shows, the bootstrapped estima-
tor can be seen as a generalization of the method of
‘integer rounding’. If n ambiguities are available, one
starts with the first ambiguity â1 and rounds its value to
the nearest integer. Having obtained the integer value
of this first ambiguity, the real-valued estimates of all
remaining ambiguities are then corrected by virtue of
their correlation with the first ambiguity. Then the sec-
ond, but now corrected, real-valued ambiguity estimate
is rounded to its nearest integer. Having obtained the
integer value of the second ambiguity, the real-valued
estimates of all remaining n − 2 ambiguities are then
again corrected, but now by virtue of their correlation
with the second ambiguity. This process is continued
until all ambiguities are accommodated. Thus the boot-
strapped estimator reduces to ‘integer rounding’ in the
case that correlations are absent, i.e. in case the ambi-
guity variance matrix is diagonal.

Note that the bootstrapped estimator is not unique.
Changing the order in which the ambiguities appear in
vector â will already produce a different bootstrapped
estimator. Although the principle of bootstrapping
remains the same, every choice of ambiguity parame-
trization has its own bootstrapped estimator.

2.2 The class of sequential integer estimators

The earlier bootstrapped estimator is member of a wider
class of sequential integer estimators. This class is
defined as follows.

Definition [Sequential integer estimation] Let â
= (â1, . . . , ân)T ∈ Rn be the ambiguity float solution.
Then ǎ = (ǎ1, . . . , ǎn)T ∈ Zn is a sequential integer esti-
mator if ǎi = [

âi +∑i−1
j=1 rij(âj − ǎj)

]
, i = 1, . . . , n, or, in

vector–matrix form, if

ǎ = [â + (R − In)(â − ǎ)] (11)

with R a unit lower triangular matrix and where ‘[.]’
denotes componentwise rounding to the nearest integer.

We now show that the bootstrapped estimator ǎB is
indeed a member of this class. We have the following
result.

Theorem 1 Let â ∈ Rn be the ambiguity float solution
and let the unit lower triangular decomposition of its var-
iance matrix be given as Qâ = LDLT. The entries of L
and D are then given as

(L)ij =
⎧⎨
⎩

0 for 1 ≤ i < j ≤ n
1 for i = j

σi,j|Jσ−2
j|J for 1 ≤ j < i ≤ n

and D = diag(. . . , σ 2
j|J , . . .)

(12)

and the bootstrapped estimator ǎB ∈ Zn of (10) can be
expressed as

ǎB = [â + (L−1 − In)(â − ǎB)
]

(13)

Proof From (9), it follows that the difference (âi − zi)

may be written in terms of the differences (âj|J − zj), j =
1, . . . , i, as (âi −zi) = (âi|I −zi)+∑i−1

j=1 σi,j|Jσ−2
j|J (âj|J −zj).

When written out in vector-matrix form, this gives⎡
⎢⎢⎢⎣

â1 − z1
â2 − z2

...
ân − zn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
l21 1
...

...
. . .

ln1 ln2 . . . 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

â1 − z1
â2|1 − z2

...
ân|N − zn

⎤
⎥⎥⎥⎦ (14)

with lij = σi,j|Jσ−2
j|J , for 1 ≤ j < i ≤ n. Since the sequen-

tial conditional least-squares ambiguities are mutually
uncorrelated, their variance matrix is diagonal. As a con-
sequence the variance matrix of the âi is given a trian-
gular decomposition when the error propagation law is
applied to (14). We therefore have the following relation
between â = (â1, . . . , ân)T, âc = (â1, â2|1, . . . , ân|N)T and
the unit lower triangular decomposition of the ambiguity
variance matrix: â−z = L(âc−z) and Qâ = LDLT. If we
rewrite â−z = L(âc−z) as âc = â+(L−1−In)(â−z) and
use z = [âc] = ǎB, the result ǎB = [â+(L−1−In)(â−ǎB)]
follows.
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With the bootstrapped estimator being a member of the
class of sequential integer estimators, one may wonder
how its performance compares with the performance
of other members from this class. In Sect. 4, it will be
shown that the bootstrapped estimator ǎB is the optimal
estimator of this class.

Note that the bootstrapped estimator is determined
by the triangular matrix L. Hence, the estimator takes
only part of the information of the ambiguity variance
matrix Qâ into account. The matrix D of conditional
variances does not play a role in the bootstrapped map-
ping. But as we will see in the next section, matrix D
contains all the information for determining the success
rate of bootstrapping.

Equation (13) provides an alternative way of comput-
ing the bootstrapped estimator, one which is particularly
useful when the unit upper triangular decomposition of
the inverse of Qâ is given. Let this decomposition be
given as Q−1

â = U�UT . Then Qâ = U−T�−1U−1 =
LDLT . From the uniqueness of the triangular decom-
position, it follows that L−1 = UT and D = �−1. Thus if
the unit upper triangular decomposition of the inverse
of the variance matrix is given, one can compute the
bootstrapped estimator using UT .

2.3 The probability mass function of the ambiguity
bootstrapped estimator

Let B denote the bootstrapped mapping. Then B : Rn �→
Zn, because the bootstrapped estimator maps the real-
valued float ambiguity vector â to the integer vector ǎB.
Since the bootstrapped estimator maps different real-
valued ambiguity vectors to the same integer vector, the
bootstrapped estimator is a many-to-one map. One can
therefore assign a subset Bz ⊂ Rn to each integer vector
z ∈ Zn as

Bz = {x ∈ Rn | z = B(x)
}

, z ∈ Zn (15)

The subset Bz contains all real-valued ambiguity vec-
tors that will be mapped by B to the same integer vector
z ∈ Zn. This subset is referred to as the bootstrapped
pull-in region of z (Jonkman 1998;Teunissen 1998). It is
the region from which all ambiguity float solutions are
pulled to the same fixed ambiguity vector z.

The bootstrapped pull-in regions are given as

Bz =
{
x∈Rn ||cT

i L−1(x−z) |≤ 1
2

, i=1,. . ., n
}

, ∀z∈Zn

(16)

where L is the unit lower triangular matrix of Qâ =
LDLT and ci denotes the ith canonical unit vector hav-
ing a 1 as its ith entry and zeros otherwise. To see this,

consider the relation âc − z = L−1(â − z). According to
(10), the integer vector z equals the bootstrapped solu-
tion when rounding to the nearest integer of each of the
components of âc − z gives zero, or similarly, when the
absolute values of these components are all less than or
equal to 1/2. Since this is equivalent to stating that the
absolute values of all the components of L−1(â − z) are
required to be less than or equal to 1/2, the result (16)
follows.

The bootstrapped pull-in regions are translated cop-
ies of each another (Bz = z + B0, ∀z ∈ Zn) and cover
the whole space without gaps and overlaps (∪z∈Zn Bz =
Rn and IntBz1 ∩ IntBz2 = ∅, ∀z1, z2 ∈ Zn, z1 
= z2).

The bootstrapped pull-in regions can be used to deter-
mine the distribution of the bootstrapped estimator.
Since ǎB = z ⇐⇒ â ∈ Bz and â ∼ N(a, Qâ), the proba-
bility mass function (PMF) of ǎB is given as

P(ǎB = z)=
∫

Bz

(2π)−
n
2

√
det Q−1

â

exp

{
−1

2
(x−a)TQ−1

â (x−a)

}
dx, ∀z∈Zn(17)

It is the integral of the multivariate normal distribu-
tion over the bootstrapped pull-in region Bz. As the
following theorem shows, the multivariate integral can
be expressed as a product of n univariate integrals.

Theorem 2 Let â be distributed as N(a, Qâ), a ∈ Zn, and
let ǎB be the corresponding integer bootstrapped estima-
tor. Then

P(ǎB = z) =
n∏

i=1

[
�

(
1 − 2lTi (a − z)

2σâi|I

)

+ �

(
1 + 2lTi (a − z)

2σâi|I

)
− 1

]
, ∀z ∈ Zn

(18)

with

�(x) =
x∫

−∞

1√
2π

exp

{
−1

2
v2
}

dv

and where li is the ith column vector of the unit upper
triangular matrix L−T and σ 2

âi|I is the variance of the ith

least- squares ambiguity obtained through a conditioning
on the previous I = {1, . . . , (i − 1)} ambiguities.

The proof is given in Teunissen (2001). Note that the
bootstrapped PMF is symmetric about the mean of â.
This implies that the bootstrapped estimator ǎB is an
unbiased estimator of a ∈ Zn. Also observe that the
shape of the bootstrapped PMF is completely governed
by the ambiguity variance matrix Qâ. The PMF follows
once the triangular factor L and the diagonal matrix D
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of the decomposition Qâ = LDLT are given. Finally
note that the PMF reaches its maximum at its point of
symmetry. Thus maxz P(ǎB = z) = P(ǎ = a). This is
a reassuring result, since it implies that the bootstrap
probability of correct integer estimation is largest of all
probability masses. This probability will be referred to
as the bootstrapped success rate.

3 The effect of improving the ambiguity precision

The goal of ambiguity resolution is to estimate the
unknown integer ambiguity vector a. We know that the
integer bootstrapped estimator is unbiased, i.e. E(ǎB) =
a. This is a nice result, since it implies that one can expect
the outcome of ǎB to be correct on the average. In order
to judge the performance of the integer estimator, how-
ever, the property of unbiasedness is too weak a prop-
erty to rely on. What we need is the frequency with which
one can expect to obtain correct results. This frequency
is provided by the probability of correct integer esti-
mation, the success rate P(ǎB = a). The bootstrapped
success rate follows from setting z = a in (18), as

P(ǎB = a) =
n∏

i=1

[
2�

(
1

2σâi|I

)
− 1

]
(19)

Note that it is completely driven by the sequential con-
ditional variances σ 2

âi|I , and thus by the entries of the
diagonal matrix D in the triangular decomposition Qâ =
LDLT.

As was mentioned earlier, the outcome of bootstrap-
ping depends on the chosen ambiguity parametrization.
Bootstrapping of DD ambiguities, for instance, will pro-
duce an integer solution that generally differs from the
integer solution obtained from bootstrapping of repara-
metrized ambiguities. Since this dependency also holds
true for the bootstrapped PMF, one has some important
degrees of freedom left for improving (19).

In order to improve the bootstrapped success rate,
one should work with decorrelated ambiguities instead
of with the original ambiguities. The method of boot-
strapping performs relatively poorly, for instance, when
applied to the DD ambiguities. This is due to the usu-
ally high correlation between the DD ambiguities. Boot-
strapping should therefore be used in combination with
a volume preserving decorrelating Z-transformation.
Such a transformation reduces the sequential condi-
tional variances and therefore enlarges the bootstrapped
success rate. Thus if â is the DD float solution, a larger
success rate is possible if bootstrapping is applied to
ẑ = Zâ. In case of multi-frequency GNSS, an example
of such a Z-transformation is provided by the transfor-
mation to widelane ambiguities. This has been demon-

strated analytically in Teunissen (1997). However, one
can even do better than this by using the decorrelating
Z-transformation of the LAMBDA method. This trans-
formation decorrelates the ambiguities further and
thereby achieves a further reduction of the values of
the sequential conditional variances. For more informa-
tion on the LAMBDA method, the reader is referred
to Teunissen (1993, 1995) and de Jonge and Tiberius
(1996a) or to the textbooks Hofmann-Wellenhof et al.
(1997), Strang and Borre (1997), Teunissen and Kleus-
berg (1998), Misra and Enge (2001). Practical results
obtained with it and suggested improvements, can be
found, for example, in Boon and Ambrosius (1997),
Boon et al. (1997), Chang et al. (2005), Cox and Brading
(1999), Dai et al. (2005), de Jonge and Tiberius (1996b),
de Jonge et al. (1996), Han (1995), Jonkman (1998),
Moenikes et al. (2005), Peng et al. (1999), Svendsen
(2005), Tiberius and de Jonge (1995), Tiberius et al.
(1997).

The above method of improving the success rate
makes use of the lack of invariance of the bootstrapped
estimator for ambiguity reparametrizations. It is not
based on a change of the strength of the underlying
model. It seems reasonable however to ask of an inte-
ger estimator that it has the property that its success
rate increases when the precision of its input gets better.
This property is yet to be proven for the bootstrapped
estimator.

Before stating our result, we first specify what we
mean by ‘better precision’. Let Q1 and Q2 be the var-
iance matrices of two float solutions âQ1 and âQ2 . The
precision of âQ1 is then said to be better than the preci-
sion of âQ2 , when the variance of every linear function
of âQ1 is smaller than the variance of the same func-
tion of âQ2 . Thus f TQ1f < f TQ2f must hold for every
f ∈ Rn \ {0}. This is equivalent to stating that Q2 > Q1,
or that matrix Q2 − Q1 is positive definite. We have the
following result.

Theorem 3 Let âQ ∼ N(a, Q), with a ∈ Zn, and let ǎQ
B

be the corresponding integer bootstrapped estimator of
a. Then

P
(

ǎQ1
B = a

)
> P

(
ǎQ2

B = a
)

if Q2 > Q1 (20)

Proof Let the triangular decompositions of Q1 and Q2
be given as Q1 = L1D1LT

1 and Q2 = L2D2LT
2 , respec-

tively. Furthermore, define f = L−T
2 g, the unit lower

triangular matrix L = L−1
2 L1 and the canonical unit

vector ci = (. . . , 0, 1, 0, . . .)T having a one as its ith entry
and zeros otherwise. Then
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Q2 > Q1

⇔ f TQ2f > f TQ1f , ∀f ∈ Rn \ {0}
⇔ f TL2D2LT

2 f > f TL1D1LT
1 f , ∀f ∈ Rn \ {0}

⇔ gTD2g > gTLD1LTg, ∀g ∈ Rn \ {0}
⇒ cT

i D2ci > cT
i LD1LTci, i = 1, . . . , n

⇔ (D2)ii > (D1)ii +
∑i−1

j=1
(L)2

ij(D1)jj, i = 1, . . . , n

⇔ (D2)ii > (D1)ii, i = 1, . . . , n

This shows that Q2 > Q1 implies that the sequential
conditional variances of Q2 are always strictly larger
than their counterparts of Q1. This proves (20). Note
that the converse is not true. That is, P

(
ǎQ1

B = a
)

>

P
(
ǎQ2

B = a
)

does not imply that Q2 > Q1.

The above result states that the bootstrapped success
rate always gets larger when the precision of the float
solution improves. Thus every precision improvement
that one can realize in the underlying model (e.g. by
including more data or more precise data) will directly
benefit the bootstrapped ambiguity resolution. The
above result also implies that in case the inverse vari-
ance matrix of the observations is used as weight matrix,
the least-squares method is the best method for comput-
ing the float solution. Such a least-squares estimator is
namely known to be a best linear unbiased estimator. It
is the estimator which has the best precision of all linear
unbiased estimators.

4 The effect of using an approximate ambiguity
variance matrix

Apart from knowing the relation between the success
rate and the actual ambiguity precision, it is also of
importance to know the relation between the success
rate and a presumed ambiguity precision. In other words,
what happens to the success rate if the computed
bootstrapped estimator is based on a too optimistic
description of the ambiguity precision or on a too pessi-
mistic description of the ambiguity precision? In either
case, one would want the success rate not to increase.
This property is yet to be proven for the bootstrapped
estimator. The proof is given by the following theorem.

Theorem 4 Let â ∼ N(a, Q), with a ∈ Zn, and let ǎQ
B be

the corresponding integer bootstrapped estimator of a.
Furthermore let ǎ�

B be the integer bootstrapped estimator
constructed on the basis of the positive definite matrix �

instead of Q. Then

P
(
ǎ�

B = a
) ≤ P

(
ǎQ

B = a
)

(21)

with strict inequality if the unit triangular factors of �

and Q differ.

Proof Let the triangular decompositions of � and Q be
given as � = L�D�LT

� and Q = LQDQLT
Q, respec-

tively. Then

P
(
ǎ�

B = a
) = 1

(2π)n/2

∫
B�,a

1
(detDQ)1/2

× exp

{
−1

2
(x − a)T(LQDQLT

Q)−1(x − a)

}
dx

P
(
ǎQ

B = a
) = 1

(2π)n/2

∫
BQ,a

1
(detDQ)1/2

× exp

{
−1

2
(x − a)T(LQDQLT

Q)−1(x − a)

}
dx

with pull-in regions

B�,a = {x ∈ Rn | |cT
i L−1

� (x − a)| ≤ 1
2

, i = 1, . . . , n
}

BQ,a = {x ∈ Rn | |cT
i L−1

Q (x − a)| ≤ 1
2

, i = 1, . . . , n
}

Note that the above two integrals only differ in their
region of integration. Using the change of variables for-
mula for integrals, we now apply the transformation T :
x = LQy + a to both integrals. This gives,

P
(
ǎ�

B = a
) = 1

(2π)n/2

∫

T−1(B�,a)

1
(detDQ)1/2

× exp

{
−1

2
yTD−1

Q y
}

dy

P
(
ǎQ

B = a
) = 1

(2π)n/2

∫

T−1(BQ,a)

1
(detDQ)1/2

× exp

{
−1

2
yTD−1

Q y
}

dy

where

T−1(B�,a) = {y ∈ Rn | |cT
i Ly| ≤ 1

2
, i = 1, . . . , n}

T−1(BQ,a) = {y ∈ Rn | |cT
i y| ≤ 1

2
, i = 1, . . . , n}

with the unit lower triangular matrix L = L−1
� LQ. Note

that the two integrals have identical outcomes if L = In,
that is, if L� = LQ. In all other cases, their outcomes
will differ. For these cases we now show that P

(
ǎ�

B =
a
)

< P
(
ǎQ

B = a
)
. With DQ = diag

(
σ 2

1 , σ 2
2|1, . . . , σ 2

n|N
)

and (L)ij = lij, we may write the multivariate integral of
P
(
ǎ�

B = a
)

as a string of nested univariate integrals,
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P
(
ǎ�

B = a
) =

∫
i1

exp

{
− 1

2
y2

1
σ 2

1

}

σ1
√

2π

⎛
⎜⎜⎝. . .

⎛
⎜⎜⎝
∫

in−1

exp

{
− 1

2
y2

n−1
σ 2

n−1|N−1

}

σn−1|N−1
√

2π

⎛
⎜⎜⎝
∫
in

exp

{
− 1

2
y2

n
σ 2

n|N

}

σn|N
√

2π
dyn

⎞
⎟⎟⎠dyn−1

⎞
⎟⎟⎠ . . .

⎞
⎟⎟⎠dy1

with the n intervals

i1 : |y1| ≤ 1/2
i2 : |l21y1 + y2| ≤ 1/2
...

...
in : |ln1y1 + ln2y2 + · · · + ln,n−1yn−1 + yn| ≤ 1/2

For the innermost integral we have the inequality

∫
in

exp

{
− 1

2
y2

n
σ 2

n|N

}

σn|N
√

2π
dyn

<

∫
|yn|≤1/2

exp

{
− 1

2
y2

n
σ 2

n|N

}

σn|N
√

2π
dyn =

(
2�

(
1

2σn|N

)
−1
)

since the interval |yn| ≤ 1/2 is symmetric with respect to
the origin, whereas the interval in, which has the same
length as |yn| ≤ 1/2, is not symmetric with respect to the
origin. Proceeding in this fashion from the innermost
integral to the outer integral, we obtain the inequality

P
(
ǎ�

B = a
)

<

n∏
i=1

(
2�

(
1

2σi|I

)
− 1
)

= P
(
ǎQ

B = a
)

This theorem shows that, with one exception, the use
of an improper ambiguity variance matrix (too optimis-
tic or too pessimistic) will always result in a smaller
bootstrapped success rate. The exception occurs when
the variance matrix Q and its approximation � have the
same triangular factor. This case, however, is not likely
to occur in practice. The conclusion reads therefore that
also in case of integer bootstrapping it directly pays off
to improve upon the approximation of the underlying
mathematical model. For GNSS, the functional model
(observation equations) is sufficiently known and well
documented. The same cannot yet be said however of
the precision description of the GNSS data. Of course, a
systematic study of the stochastic model is far from triv-
ial. Not only do the noise characteristics depend on the
mechanization of the measurement process and there-
fore on the make and type of the receiver used, but the
random residual terms such as environmental effects,
will also have their influence. Fortunately the interest
in the topic of improved stochastic modelling is gaining

ground in GNSS research and will have a positive effect
on the bootstrapped success rate.

It was shown that the bootstrapped estimator is a
member of the class of sequential integer estimators.
With the above result, we have as a direct by-product
that the bootstrapped estimator is the optimal estimator
within this restricted class.

Corollary Let â ∼ N(a, Q), with a ∈ Zn, and let ǎQ
B be

the corresponding integer bootstrapped estimator of a.
Then

P
(
ǎQ

B = a
) ≥ P(ǎ = a)

for any sequential integer estimator ǎ = [â+ (R− In)(â−
ǎ)], where R is a unit lower triangular matrix.

Note, when R is chosen as R = In, that the sequen-
tial integer estimator reduces to ǎ = [â], i.e. the integer
estimator based on componentwise rounding. Hence, as
another by-product, we have that P

(
ǎQ

B = a
) ≥ P([â] =

a). Thus the success rate of componentwise rounding
will never be larger than the bootstrapped success rate.

5 Concluding remarks

Integer ambiguity bootstrapping is, because of its ease of
computation, a popular method for resolving the integer
GNSS carrier phase ambiguities. The method is, how-
ever, suboptimal, since it only takes part of the informa-
tion from the ambiguity variance matrix into account.
It is therefore of importance to know how the success
rate (i.e. the probability of correct integer estimation)
of integer bootstrapping relates to the precision of the
‘float’ ambiguities. The following two cases were con-
sidered in this contribution: (1) the effect of improving
the ambiguity precision, and (2) the effect of using an
incorrect, or approximate, ambiguity variance matrix.

It was shown that the bootstrapped success rate
always gets larger, if the precision of the ‘float’ ambigui-
ties improves. This is a reassuring result, since it implies
that integer bootstrapping will always benefit from a
strengthening of the underlying GNSS model. The result
also implies, since properly weighted least-squares esti-
mators have the property of minimum variance (BLUE),
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that one should use the principle of least-squares for
computing the ‘float’ solution.

We also investigated what happens to the success rate
of integer bootstrapping, if an incorrect ambiguity var-
iance matrix is used (either too optimistic or too pes-
simistic) for computing the bootstrapped solution. It
was shown that the success rate of integer bootstrap-
ping based on an incorrect ambiguity variance matrix is
always less than or equal to the success rate of integer
bootstrapping based on the correct ambiguity variance
matrix. There is a strict inequality between the two suc-
cess rates, if the unit triangular factor of the incorrect
ambiguity variance matrix differs from the unit triangu-
lar factor of the correct ambiguity variance matrix.

The ease with which integer bootstrapping can be
computed stems from its sequential character. That is,
in contrast with, for instance, integer least-squares, no
integer search needs to be performed for integer boot-
strapping. We defined the class of integer sequential
estimators and showed that integer bootstrapping is a
member of this class. Although integer bootstrapping is
suboptimal in the class of integer estimators, we have
shown that it is optimal within the more restricted class
of integer sequential estimators. Hence, just like integer
least-squares has the largest possible success rate of all
integer estimators, integer bootstrapping has the largest
possible success rate of all integer sequential estimators.

References

Boon F, Ambrosius B (1997) Results of real-time applications
of the LAMBDA method in GPS based aircraft landings. In:
Proceedings KIS97, pp. 339–345

Boon F, de Jonge PJ, Tiberius CCJM (1997) Precise aircraft posi-
tioning by fast ambiguity resolution using improved tropo-
sphere modelling. In: Proceedings ION GPS-97, vol 2, pp
1877–1884

Chang XW, Yang X, Zhou T (2005) MLAMBDA: a modified
LAMBDA method for integer ambiguity determination. In:
Proceedings ION GNSS2005, Long Beach, CA, USA

Cox DB, Brading JDW (1999) Integration of LAMBDA ambi-
guity resolution with Kalman filter for relative navigation of
spacecraft. In: Proceedings ION NTM 99, pp 739–745

Dai L, Nagarajan N, Hu G, Ling K (2005) Real-time attitude deter-
mination for micro satellites by LAMBDA method combined
with Kalman filtering. In: AIAA proceedings 22nd ICSSC,
Monterey, CA, USA

de Jonge PJ, Tiberius CCJM (1996a) The LAMBDA method for
integer ambiguity estimation: implementation aspects. Publi-
cations of the Delft Computing Centre, LGR-Series No. 12

de Jonge PJ, Tiberius CCJM (1996b) Integer estimation with
the LAMBDA method. In: Beutler G et al. (eds) Proceed-
ings IAG Symposium No. 115, GPS trends in terrestrial, air-
borne and spaceborne applications. Springer, Berlin Heidel-
berg New York, pp 280–284

de Jonge PJ, Tiberius CCJM, Teunissen PJG (1996)
Computational aspects of the LAMBDA method for GPS
ambiguity resolution. In: Proceedings ION GPS-96, pp 935–
944

Han S (1995) Ambiguity resolution techniques using integer least-
squares estimation for rapid static or kinematic position-
ing. Symposium Satellite Navigation Technology: 1995 and
beyond, Brisbane, 10 pp

Hofmann-Wellenhof B, Lichtenegger H, Collins J (1997) Global
positioning system: theory and practice, 4th edn. Springer,
Berlin Heidelberg New York

Jonkman NF (1998) Integer ambiguity estimation without the
receiver-satellite geometry. Publications of the Delft Geodetic
computing centre, LGR-Series, No. 18

Leick A (1995) GPS satellite surveying, 2nd edn. Wiley, New York
Misra P, Enge P (2001) Global positioning system: signals, mea-

surements, and performance. Ganga-Jamuna Press
Moenikes R, Wendel J, Trommer GF (2005) A modified

LAMBDA method for ambiguity resolution in the presence of
position domain constraints. In: Proceedings ION GNSS2005,
Long Beach, CA, USA

Parkinson B, Spilker JJ (eds) (1996) GPS: theory and applications.
vols 1 and 2, AIAA, Washington DC

Peng HM, Chang FR, Wang LS (1999) Attitude determination
using GPS carrier phase and compass data. In: Proceedings
ION NTM 99, pp 727–732

Strang G, Borre K (1997) Linear algebra, geodesy, and GPS.
Wellesley-Cambridge Press

Svendsen JGG (2005) Some properties of decorrelation tech-
niques in the ambiguity space. GPS Solutions. DOI 10.1007/
s10291-005-0004-6

Teunissen PJG (1993) Least-squares estimation of the integer GPS
ambiguities. Invited lecture, Section IV theory and methodol-
ogy, IAG general meeting, Beijing, China, August 1993. Also
in: LGR Series, No. 6, Delft Geodetic computing centre

Teunissen PJG (1995) The least-squares ambiguity decorrelation
adjustment: a method for fast GPS integer ambiguity estima-
tion. J Geodesy 70:65–82

Teunissen PJG (1997) On the GPS widelane and its decorrelating
property. J Geodesy 71:577–587

Teunissen PJG (1998) On the integer normal distribution of the
GPS ambiguities. Artif Satellites 33(2):49–64

Teunissen PJG (1999a) The probability distribution of the GPS
baseline for a class of integer ambiguity estimators. J Geodesy
73:275–284

Teunissen PJG (1999b) An optimality property of the integer
least-squares estimator. J Geodesy 73:587–593

Teunissen PJG (2000) Adjustment theory. Delft University Press,
Delft, The Netherlands

Teunissen PJG (2001) The probability distribution of the ambigu-
ity bootstrapped GNSS baseline. J Geodesy 75:267–275

Teunissen PJG, Kleusberg A (eds) (1998) GPS for geodesy. 2nd
enlarged edn. Springer, Berlin Heidelberg New York

Tiberius CCJM, de Jonge PJ (1995) Fast positioning using the
LAMBDA method. In: Proceedings DSNS-95, paper 30, 8 pp

Tiberius CCJM, Teunissen PJG, de Jonge PJ (1997) Kinematic
GPS: performance and quality control. In: Proceedings KIS97,
pp 289–299


	Abstract 
	Introduction
	Integer bootstrapping
	The bootstrapped estimator
	The class of sequential integer estimators
	The probability mass function of the ambiguity bootstrapped estimator
	The effect of improving the ambiguity precision
	The effect of using an approximate ambiguity variance matrix
	Concluding remarks

