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The effects of an anisotropic Navier slip-length boundary condition on turbulent channel flow are
investigated parametrically by direct numerical simulations. The slip-length boundary condition is
made direction dependent by specifying the value of the slip length independently for the stream-
wise and spanwise direction. The change in drag is mapped versus a wide range of streamwise
and spanwise slip-length combinations at two different friction Reynolds numbers, Reτ0 = 180 and
Reτ0 = 360. For moderate slip lengths both drag-reducing and drag-increasing slip-length combi-
nations are found. The percentage drag increase saturates at approximately 60% for high spanwise
slip. Once a threshold value for the streamwise slip length is exceeded, drag is reduced in all cases
irrespective of the value of the spanwise slip length. The Reynolds number appears to have only
little influence on the change in drag for the moderate Reynolds numbers studied here. A de-
tailed comparison with the implicit theoretical formula of Fukagata et al. [Phys. Fluids 18, 051703
(2006)], which relates the change in drag with the streamwise and spanwise slip length, has been
made. In general, this formula gives a fair representation of the change in drag; a modified version
of this relation is presented, which improves the prediction for the change in drag for small slip
length values and reduces the number of free parameters contained in the model. The effects of
the slip-length boundary condition on the flow are further investigated using mean flow and tur-
bulence statistics. For drag-neutral slip-length combinations the level of turbulent fluctuations is
approximately unchanged. The presence of a slip-length boundary condition affects both the level
of wall-shear stress fluctuations and the degree of intermittency of the wall-shear stress probability
density function. The correlation statistics of the velocity field show that a high spanwise slip length
causes a disruption of the near-wall streaks, while high streamwise slip favours an increasing streak
regularity.

I. INTRODUCTION

Superhydrophobic surfaces have been the subject of intense research in recent years due to their potential
to decrease skin-friction drag and their self-cleaning properties. A superhydrophobic surface combines a
hydrophobic surface chemistry with structuring on micro- or nanoscales, resulting in very high contact
angles typically in excess of 150 degrees1. If a superhydrophobic surface is immersed in water an air-layer
or air bubbles can be maintained on the surface1,2. Due to a lower shear stress at an air-water interface
compared to a solid-water interface, superhydrophobic surfaces can influence the friction drag on a wall.
The drag reducing properties of superhydrophobic surfaces have been demonstrated for both laminar and
turbulent flow configurations (see for example Ref. 3).
The effect of a superhydrophobic surface on a flow is usually parametrised by a slip length in the form

of a Navier slip-length boundary condition2 us = L∂u
∂z





wall
, where us is the slip velocity on the wall, L the

slip length and z the wall normal direction. In recent years increasing slip length values up to the order
of 100µm have been measured4. Although the application of superhydrophobic surfaces for drag reduction
is still confined to microfluidic devices, this is a promising trend and superhydrophobic surfaces have the
potential to reduce the drag at macroscopic scales in the future.
By structuring superhydrophobic surfaces the slip can be made direction dependent and give different

values for the slip length in the streamwise (Lx) and spanwise directions of the flow (Ly)
5. The effect of

such a direction-dependent slip-length boundary condition on turbulent flow has been studied numerically
by Min & Kim6, and later by Fukagata et al.8, for three different combinations: the purely streamwise slip
case, where the slip-length boundary condition is applied to the streamwise component of the velocity only
(Lx 6= 0, Ly = 0) , the isotropic case with equal values for the stream- and spanwise slip length (Lx = Ly)
and the purely spanwise slip case (Lx = 0, Ly 6= 0). Drag reduction (compared to the reference case, a
channel flow with standard no-slip boundary conditions) was found for the purely streamwise and isotropic
slip cases whereas a drag increase was observed for the spanwise slip cases.

There remain several open questions on the effect of an anisotropic Navier-slip boundary condition on
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skin-friction drag. It would be of interest to know which (Lx, Ly)-combinations give no change in drag, that
is the boundary between the drag-reducing and drag-increasing slip-length combinations. As the largest slip
length value studied in Ref. 6 was 0.02 times the channel half-height (L+0

i = Liuτ0/ν ≈ 3.6, the superscript
+0 indicates length scales given in units of the viscous length scale7 in the no-slip reference case in this
paper), the effects of even higher slip lengths on the turbulence statistics are of interest as a limiting case.
Also, the Reynolds number influence on the observed drag reduction is in need of further investigation;
the previous investigation in Ref. 8 was limited to a small number of cases. Fukagata et al.8,9 derived an
implicit formula for the relation between the change in drag and the streamwise and spanwise slip length
in a turbulent channel flow. This relation was tested only for a small number of cases, and it is of interest
to evaluate its general applicability. Finally, further turbulence statistics may give insight into how the
turbulence is modified by the presence of a slip-length boundary condition. Here the statistics of the wall-
shear stress are of special interest, as it is directly involved in the specification of the slip-length boundary
condition.
These questions will be addressed in this paper using direct numerical simulations (DNS) of turbulent

channel flow to explore a wide range of (Lx, Ly)-combinations at two different Reynolds numbers, Reτ0 = 180
and Reτ0 = 360.

II. NUMERICAL SETUP AND PARAMETER SPACE

The incompressible Navier-Stokes equations, non-dimensionalised by the channel half-height δ, the con-
stant fluid density and the friction velocity in no-slip reference case uτ0 , were solved numerically for turbulent
channel flow. A standard staggered-grid finite-difference code was employed using second-order central dif-
ferences for the discretisation of the spatial derivatives and a second order Adams-Bashforth scheme for the
time advancement. Periodic boundary conditions were applied in the streamwise and spanwise direction of
the flow. The mass flow rate in the channel was kept constant by varying the mean streamwise pressure
gradient in time, balancing the losses due to viscous dissipation (see e.g. Ref. 10). Simulations were con-
ducted at two different Reynolds numbers Re = Uδ/ν = 2810 and Re = 6250 based on the mean streamwise
velocity U , the channel half-height δ and the kinematic viscosity ν, or Reτ0 = uτ0δ/ν = 180 and Reτ0 = 360
based on friction velocity uτ0 in the reference case, which is a channel flow with standard no-slip boundary
conditions on both walls.
For the lower Reynolds number a domain size of 10×4×2 has been used where x is the streamwise, y the

spanwise and z the wall-normal direction of the channel. For the higher Reynolds number, Reτ0 = 360, a
reduced domain of size 5×2×2 was used to limit the computational cost of the large number of simulations
performed. The estimated change is drag is not affected significantly by the use of the smaller domain size
(see appendix A).

For the Reτ0 = 180 cases a grid of size 160 × 128 × 128 has been employed, which was stretched in the
z-direction in order to give a higher resolution near the wall (∆z+0

min = 0.75 and ∆z+0

max = 4.9). A grid of
size 160× 128× 256 was used for the Reτ0 = 360 cases using the same grid-stretching in the z-direction and
giving the same resolution in wall units.

As an initial state for the velocity field a fully developed turbulent velocity field from the corresponding
reference simulation of turbulent channel flow with standard no-slip boundary conditions has been used. An
initial Euler forward time integration step is used for the start-up of the Adams-Bashforth scheme.

The slip-length boundary condition

us = Lx
∂u

∂z









wall

, vs = Ly
∂v

∂z









wall

(1)

is applied symmetrically to the upper and lower wall of the channel. Note that the Navier-slip boundary
condition takes this simple form only for planar walls. For curved boundaries the Navier-slip boundary
condition takes a more complicated form11.
In some cases combinations with a no-slip boundary condition, equivalent to Li = 0, or with a full-slip

boundary condition, equivalent to an infinite slip length Li = ∞, are studied. The investigated slip length
values are given in table I and have been based on the viscous length scale ν/uτ0 of the respective no-slip
reference cases. Simulations have been run for all 80 resulting combinations of the streamwise and spanwise
slip lengths in the Reτ0 = 180 case. Another 72 simulations were performed for the Reτ0 = 360 case. In the
sections V-VII the focus is on the results for the Reτ0 = 180 cases. First, in section , the most important
practical aspect, i. e. the change in drag, will be discussed. A comparison with the formula of Fukagata et
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TABLE I. The streamwise and spanwise slip length values used in the simulations. For both Reynolds numbers all
possible combinations (L+0

x , L+0
y ) of the given values have been studied.

Reτ0 dir L+0

i

180 x 0, 0.1, 0.316, 1, 3.16, 10, 31.6, 100

y 0, 0.1, 0.316, 1, 3.16, 10, 31.6, 100, 316, ∞

360 x 0, 0.1, 0.316, 1, 3.16, 10, 31.6, 100

y 0, 0.1, 0.316, 1, 3.16, 10, 31.6, 100, ∞
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FIG. 1. The percentage change in drag versus the streamwise and spanwise slip length. (a) Reτ0 = 180; (b)
Reτ0 = 360. The large dots in the figures indicate the computed points on which the contour plot has been based.
As the measurement of the change in drag is subject to measurement errors it is difficult to establish the exact
location of the neutral curve in the contour plots of the change in drag. Therefore the −2.5% and +2.5% contours
are shown instead.

al.8, an implicit relation between change in drag and streamwise and spanwise slip length, is given in section
IV where also an improved version of this formula will be presented. Section V focuses on the changes in
the mean velocity profile and the profiles of the rms velocity fluctuations. The wall-shear stress statistics
are discussed in section VI, and the changes in the flow structure are explained in section VII.

III. CHANGE IN DRAG

The effect of the slip-length boundary condition on the skin friction drag is measured by the percentage
change in drag ∆D defined by

∆D =

〈

− dp
dx

〉

−
〈

− dp
dx







0

〉

〈

− dp
dx







0

〉 × 100. (2)

Here, dp
dx is the (time-dependent) mean streamwise pressure gradient and dp

dx







0
is the mean streamwise

pressure gradient in the reference case. The percentage change in drag is greater than zero if the drag is
increased and lower than zero for drag reduction. The values measured in the case of Reτ0 = 180 are shown
in figure 1 (a).
The same trends as reported by Min & Kim6 are recovered: a reduction in drag is observed in the purely

streamwise and isotropic slip cases and a drag increase is observed for the purely spanwise slip case. Once
the spanwise slip length is increased to values of the order of the channel half-height the increase in drag
begins to saturate at approximately 60% in the purely spanwise slip case (∆D ≈ 63% for Lx = 0, Ly = ∞).
The transition from the drag-reducing to the drag-increasing domain is smooth. The neutral curve, i.e. the

boundary between the drag-reducing and drag-increasing domain on the map, levels off as the streamwise
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slip length is increased. Once a streamwise slip length of approximately L+0

x,thresh = 3.5 is exceeded the drag
is reduced in all cases. Even an infinite spanwise slip length cannot overcome the drag reducing effects.
In the vast majority of cases therefore the drag will be reduced. As the streamwise slip length is further
increased the turbulent fluctuations become weaker and weaker and the flow reverts slowly to the laminar
case. This is the case for all simulations with L+0

x = 100 at Reτ0 = 180. Since the process of relaminarisation
is slow these cases have not fully laminarised by the time the simulations have been terminated. Linear
stability analysis12 shows that streamwise slip delays transition to turbulence. It is therefore not unexpected
that a reverse transition occurs for high streamwise slip lengths. An accurate boundary for the transition
from the turbulent to the laminar case cannot be given here as this would require a different setup of the
numerical simulations13,14, which would incur considerably higher computational expense.
The possible future application of superhydrophobic surfaces in macroscopic devices, e.g. for the coating

of ship hulls, makes the Reynolds number dependence of the change in drag of particular interest, as these
devices typically operate at Reynolds numbers much higher than those commonly encountered in microfluidic
devices. In order to investigate the Reynolds number dependence of the results presented here a series of
simulations using a reduced domain size has been run at Reτ0 = 360. Except for the slip-length combinations
with L+0

y = 316 the same range of slip-length combinations (based on the viscous length scale in the no-
slip reference case) has been covered. Going to even higher Reynolds numbers has not been attempted as
this would entail a prohibitively high computational cost due to the large number of simulations needed to
construct the slip length map. It was checked that the smaller domain size does not influence the estimated
change in drag (see appendix A).
In figure 1 (b) the change in drag is shown for the Reτ0 = 360 cases. The percentage change is the same

or slightly lower than in the Reτ0 = 180 cases (see also table IV). For moderate slip lengths the values
of ∆D are close to the values obtained in the Reτ0 = 180 case. For high spanwise slip lengths the change
in drag is consistently lower than in the Reτ0 = 180 case. For example, for the (L+0

x = 0, L+0

y = ∞)
slip-length combination the change in drag ∆D± σ(∆D) is 55.5%± 4.8% in the Reτ0 = 360 case compared
to 63.2% ± 3.7% in the Reτ0 = 180 case. A similar reduction of the drag increase for high spanwise slip
lengths with Reynolds number was also observed in Ref. 8.
The neutral curve is in approximately the same place as in the Reτ0 = 180 case, implying that the critical

streamwise slip length, L+0

x,thresh, is approximately the same in both cases, independent of the Reynolds
number. In conclusion, we can not detect a significant Reynolds-number dependence of the results at
moderate slip lengths, although a trend towards lower increases in drag for high spanwise slip lengths is
observed.

IV. COMPARISON WITH A THEORETICAL PREDICTION FOR THE CHANGE IN DRAG

Fukagata et al.8,9 have proposed a simple implicit formula for the relationship between the change in drag
and the streamwise and spanwise slip length for turbulent channel flow

1

κ
lnReτ0 + F0 = (1−RD)L+0

x +

√
1−RD

κ
ln(

√

1−RDReτ0) +
√

1−RDF (
√

1−RDL+0

y ). (3)

Here, RD is the drag reduction rate (∆D = −100RD), F0 = 3.2 is a constant taken from Ref. 15 and F is an
empirical function describing the changes in the mean streamwise velocity in the purely spanwise slip case
F (L+

y ) = Uu−1
τ −κ−1 ln(Reτ ), where L

+
y = L+0

y uτ/uτ0 = L+0

y

√
1−RD and Reτ =

√
1−RDReτ0 . Fukagata

et al.8 proposed the following functional form for F

F (L+
y ) = F∞ + (F0 − F∞) exp

[

−(L+
y /a)

b
]

, (4)

where F∞ = −0.8, a = 7 and b = 0.7 were obtained from a fit to (their) DNS data. At the Reynolds
numbers studied by Fukagata et al.8, Reτ0 = 180 and Reτ0 = 400, the fitting parameters showed no
significant Reynolds number dependence. Fukagata et al.8 tested their model only for a small range of
values for the purely streamwise, isotropic and purely spanwise slip cases. The comprehensive study of slip
length combinations presented here enables a detailed evaluation of relation (3).

A. Modification of the formula

In the course of the comparison with relation (3) it became apparent that the choice of parameters F0,
F∞, and the form of the fitting function (4) made in Ref. 8 are not ideal and can be improved. Although
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FIG. 2. (a): F (L+
y ) versus spanwise slip length L+

y in the purely spanwise slip case. Two different versions for a
function fitted to F are shown. (b): The neutral curve for the original (4) and the new version (5) version of the
fitting function F .

the modifications are small, they have a noticeable effect. In the following a motivation for the changes
made will be given.
The first point is the constant F0; in Ref. 8 this was set to the value 3.2 taken from Dean’s formula for

the ‘optimum log-law for skin friction’15. No error bounds are given for F0 in Ref. 15, but it is calculated
from two quantities, the Coles parameter II and the velocity defect ratio J , which both show significant
experimental scatter. Computing F0 from the present DNS data in the no-slip case and from independent
DNS data for turbulent channel flow16 suggests that F0 = 3.0 is a more suitable choice at the Reynolds
numbers studied in this paper.
The second point relates to the choice of the fitting function, relation (4), i.e. its functional form and the

involved fitting parameters (F∞, a, b). The fitting function F is used to capture the changes in the mean
streamwise velocity in the purely spanwise slip case. The data points for F = Uu−1

τ −κ−1 ln(Reτ ) are shown
as a function of L+

y in figure 2 (a). F approximately follows the form of a smeared-out Heaviside function

of − ln(L+
y ), i.e. for small slip length values F is approximately constant, F (L+

y ) ≈ F0, for intermediate slip
length values there is a rapid decrease in F with increasing slip length, and for high spanwise slip lengths
F again levels at a constant value F∞ = F (L+

y → ∞). Fukagata et al.8 chose F∞ = −0.8, whereas for our
data F∞ can be computed directly from the (Lx = 0, Ly = ∞) combinations, giving F∞ = −1.03 for the
Reτ0 = 180 case and F∞ = −0.96 for Reτ0 = 360. Since the difference between the two Reynolds numbers
is small, F∞ = −1.0 will be used in the following for both Reynolds numbers. Instead of the functional form
for F proposed by Fukagata et al.8 (4) we propose the following form for F

F (L+
y ) = F∞ +

(F0 − F∞)2

(F0 − F∞) + L+
y
. (5)

The new form of the fitting function has the advantage of being simpler than relation (4); the number of
parameters is reduced from four (F0, F∞, a, b) to two (F0, F∞). The rms deviation of the data points for F
from the new fitting function (5) is reduced by more than a factor of 2 compared to the old version (4) (see
also figure 2 (a)). However, the crucial advantage of the new fitting function is visible at small values of the
slip lengths as will be pertinent in the following discussion of the neutral curve.

B. The location of the neutral curve

From relation (3) a prediction can be made for the location of the neutral curve, i.e. the boundary between
the drag-reducing and drag-increasing domain on the slip length map (see section III), by setting RD = 0:

L+0

x (RD = 0, L+0

y ) = F0 − F (L+0

y ), (6)

where F (L+0

y ) refers to the fitting function discussed above. The location and form of the neutral curve is
therefore strongly influenced by the functional form of the fitting function F . The location of the neutral
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FIG. 3. The measured (continuous contours, black labels) and the predicted (dashed contours, grey labels) percentage
change in drag. (a): using (4) for the fitting function F in the theoretical prediction (3), (b): using relation (5) for
the fitting function F . Case Reτ0 = 180.

TABLE II. Differences between predicted ∆DP and measured (DNS) ∆DDNS values for the percentage change in
drag ∆D.

Reτ0 form of F 〈∆DP −∆DDNS〉 〈(∆DP −∆DDNS)
2〉1/2

180 rel. (4) 2.0 2.5

180 rel. (5) 1.1 2.2

360 rel. (4) 1.5 1.9

360 rel. (5) 0.7 1.4

curve is shown in Figure 2 (b) for both the original (4) and the new (5) form of the fitting function F .
For high values of the spanwise slip length L+0

y the two curves coincide. A clear difference is visible for
small slip length values. Here, the neutral curve based on the new form of the fitting function F gives a
better representation. From our data we find that drag is reduced for all slip length combinations where
L+0

x ≥ L+0

y ; similarly it was observed by Min & Kim6 in the isotropic case L+0

x = L+0

y that the drag is
reduced or, for very low values of the slip length, not changed at all. This implies that for the neutral curve
L+0

x ≤ L+0

y . As is apparent from figure 2 (b), the neutral curve based on the original form of the fitting

function (4) predicts - contrary to these observations - that for small slip length values L+0

x is larger than
L+0

y along the neutral curve. The new form of the fitting function however preserves the empirical inequality

that for drag-neutral slip length combinations L+0

x ≤ L+0

y .

In section III a critical threshold value was identified for the streamwise slip length, L+0

x,thresh = 3.5, beyond

which drag is reduced in all cases. From relation (6) the following prediction for this threshold value can be
obtained

L+0

x,thresh = L+0

x (RD = 0, L+0

y → ∞) = F0 − F∞. (7)

Note that the result is the same for both the new and the old form of the fitting function, giving L+0

x,thresh = 4,
close to the value obtained from the present simulations.

As the relation for the neutral curve (6) contains no explicit Reynolds number dependence, the neutral
curve and the threshold value L+0

x,thresh should not show any Reynolds number dependence (provided that

the parameters used, i.e. (F0, F∞, a, b) or (F0, F∞), are Reynolds number independent). This agrees with
the observation made in section III that the neutral curve is approximately same for both Reynolds numbers
studied.
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FIG. 4. The measured (continuous contours, black labels) and the predicted (dashed contours, grey labels) percentage
change in drag ∆D using (5) for the fitting function F in the theoretical prediction (3). Case Reτ0 = 360.

C. Change in drag: prediction and measurements

In figure 3 the change in drag obtained from the DNS data is compared with the predicted change in drag
using the implicit relation (3). Results are shown for both using the original (4) and the new (5) version
of the fitting function F . In table II errors for the predicted change in drag compared to the values for
the DNS data are listed. Given its simple form, the prediction of Fukagata et al8 (3) makes a surprisingly
good prediction for the change in drag. On average, the difference between the predicted percentage change
in drag and the DNS results is approximately two percentage points (see table II). While there is little
difference between the results for the original and the new version of the fitting function at high streamwise
slip lengths, the accuracy of the prediction is significantly improved at small slip lengths by using the new
form of the fitting function (5). As the fitting function is used to capture the effects of purely spanwise slip,
this behaviour is expected.
For the new form of the fitting function the rms error for the change in drag is lower. Note that, for

both old and new form of the fitting function and both Reτ0 = 180 and Reτ0 = 360, there is a bias for the
theoretical prediction to overpredict ∆D (see table II). This means that the drag increase with spanwise slip
length tends to be overpredicted whereas the drag reduction with increasing streamwise slip length tends to
be underpredicted by the theoretical relation.
A good prediction in the change in drag is also achieved at the higher Reynolds number Reτ0 = 360 (see

figure 4). Here, the new form of the fitting function also improves the results compared to the original form
(see table II). Relation (3) predicts a weakening of the drag increase caused by the spanwise slip length L+0

y

with increasing Reynolds number. This is mirrored in our data (see section III).
In conclusion of this section, a surprisingly good prediction for the change in drag has been obtained from

the relation of Fukagata et al.8, which has been further improved and simplified by a change of the fitting
function F . In the derivation of their relation Fukagata et al.8 have simply added the effects of streamwise
and spanwise slip, and have not considered any coupling between streamwise and spanwise slip, i.e. cross
terms in L+0

x and L+0

y . As their approach is successful overall, the potential coupling between streamwise
and spanwise slip must be too weak to have a strong effect on the change in drag.

V. VELOCITY PROFILES

The changes in the mean streamwise velocity profile and the turbulent velocity fluctuations will be first
discussed using the shape factor H, the centreline velocity, the mean streamwise slip velocity on the walls
and the peak value of the rms streamwise velocity fluctuations in order to give an overview over all cases
on the slip length map. In the second part of this section details in the profiles will be discussed for two
different routes across the slip length map, which are of special interest regarding the transition from the
drag-increasing to the drag-reducing domain of the slip length map.
The spanwise slip length has little influence on the mean streamwise slip velocity (see figure 5) and as

expected the slip velocity on the wall increases with increasing streamwise slip length. The shape factor,
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FIG. 5. The mean streamwise slip velocity on the wall 〈us〉 versus the streamwise and spanwise slip length, case
Reτ0 = 180.
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FIG. 6. Shape factor H shown versus streamwise and spanwise slip length (a). The change in the shape factor for
the purely streamwise (x-axis: Li = Lx) and purely spanwise (x-axis: Li = Ly) cases is compared to the shape factor
dependence on the streamwise slip length in the laminar case in (b). The dashed line shows the value of the shape
factor in the no-slip reference case. Case Reτ0 = 180.

shown in figure 6, decreases with both increasing streamwise and spanwise slip length. In the case of
increasing streamwise slip the decrease in the shape factor can be attributed to the upwards shift across the
entire profile due to the finite slip velocity on the wall combined with the lower curvature of the profile across
the channel that is needed to maintain a constant mass flow rate. The lower curvature of the profile is in
line with the lower centreline velocity that is observed for increasing streamwise slip lengths (see figure 7). A
(similar) decrease in the shape factor and the centreline velocity would also be expected in the corresponding
laminar cases (see figure 6 (b)).

For very high streamwise slip lengths (L+0

x = 100) the flow returns slowly to the laminar state. The
shape factor approaches the value for the laminar solution H ≈ 1.4 (see appendix B) and is slightly larger
than that of the next smaller streamwise slip length. This is due to the higher shape factor and the higher
centreline velocity one would expect for the laminar case.

The decrease in the shape factor for increasing spanwise slip length is in comparison much smaller.
Here, the decrease in the shape factor can be attributed to a higher slope in the near-wall region enforced
by the higher wall-shear stress needed to balance the higher mean streamwise pressure gradient. This is
accompanied by an increase of the centreline velocity. The Reynolds number Reτ based on the actual wall-
shear stress increases with increasing spanwise slip length, and the observations made are in line with the
expected Reynolds number dependence of the shape factor and the centreline velocity for turbulent channel
flow16.

To give an overview of the change in the intensity of the rms velocity fluctuations the peak value of
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FIG. 7. Centreline velocity (a) and peak value of rms streamwise velocity fluctuations (b) shown versus streamwise
and spanwise slip length, Reτ0 = 180.
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FIG. 8. Illustration of the two routes taken across the slip length map; (a): ‘west-to-east’-direction, (b): along
neutral curve. The colours and markers correspond to the colours and markers of the lines in the corresponding plots
of the mean and rms velocity profiles (see figures 9 and 10).

the rms streamwise velocity fluctuations is shown in figure 7 (b). A high spanwise slip length leads to an
intensification of the turbulent fluctuations and the peak value moves closer to the wall (not shown). For full
slip in the spanwise direction 〈u′ 2〉1/2 has increased by approximately 20% compared to the no-slip reference
case 〈u′ 2〉1/2 ≈ 2.6. Note that this increase is much higher than the increase in the turbulent fluctuations
one would expect based on the corresponding increase in the wall-shear stress based Reynolds number Reτ
(Reτ = 230 for L+0

x = 0, L+0

y = ∞) (see e.g. Ref. 16). For increasing streamwise slip length the peak value

of 〈u′ 2〉1/2 decreases and the position of the peak moves further away from the wall. Comparing figures 7
(b) and 1 (a) one can notice that there is a close correlation between change in drag and the peak value
of 〈u′ 2〉1/2. For drag-increasing slip-length combinations an increase in the peak value of 〈u′ 2〉1/2 can be
observed, whereas drag-reducing combinations are accompanied by a decrease in the peak value of 〈u′ 2〉1/2.
The mean velocity profiles and rms velocity fluctuations for the purely streamwise, spanwise and isotropic

cases follow the results in Ref. 6 well and will not be presented here. Instead the influence of the slip-length
boundary condition will be illustrated by traversing the slip length map along two different routes shown in
figure 8 that are of particular interest for the transition from the drag-increasing to the drag-reducing part of
the slip length map. In the first case the slip length map is traversed in a ‘west-to-east’ direction by keeping
a constant finite spanwise slip length L+0

y = 1 and varying the streamwise slip length from L+0

x = 0 to

L+0

x = 10, going from a case with a clear drag increase of ≈ 11% (L+0

x = 0, L+0

y = 1) to a case with a strong

drag reduction of ≈ 49% (L+0

x = 10, L+0

y = 1). Figure 9 shows that for vanishing or very low streamwise
slip length the mean streamwise velocity profile remains unchanged. With increasing streamwise slip length
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lines) and spanwise (dashed lines) velocity components for the ‘west-to-east’-traversal of the slip length map. Case
Reτ0 = 180. The colours and markers of the lines correspond to the colours and markers used in the illustration of
the ‘west-to-east’ route across the slip length map in figure 8 (a). The black lines correspond to the no-slip reference
case.

TABLE III. Slip-length combinations and corresponding percentage change in drag for the route along the neutral
curve across the slip length map for Reτ0 = 180.

L+0
x 0.1 0.316 0.631 2.51 3.5

L+0
y 0.1 0.316 1 10 ∞

∆D −0.1 −1.2 0.8 0.7 0.1

the inner part of the mean streamwise velocity profile begins to shift upwards to accommodate the finite
value of the slip velocity on the walls, whereas the outer part of the profile remains almost unchanged. The
profile changes across the whole height of the channel only for the highest slip length considered. As the
overall mass flow rate is kept constant, the small increase in mass flow rate near the walls due to the finite
slip velocity on the walls does not affect the mean flow in the middle of channel. The velocity in the middle
of the channel is decreased significantly only in cases where a very high slip velocity on the walls leads
to a large increase in the mass flow near the walls. The rms velocity fluctuations show an increase across
the full width of the channel for the drag-increasing cases at low streamwise slip lengths. With increasing
streamwise slip length the intensity of the fluctuations decreases everywhere, except in the near-wall region,
where an increase in the streamwise velocity fluctuations can be observed due to the increasing slip velocity
on the wall (see also Ref. 6).

In the second case a route that approximately traces the neutral curve is followed across the slip length
map. In order to achieve this three more simulations at intermediate slip-length combinations have been
conducted. The slip length values and the corresponding percentage change in drag considered here are
listed in table III. In all cases the change in drag is very low and does not exceed 2%. Again the mean
velocity profile shown in figure 10 is mainly influenced by the value of the streamwise slip length. As the
streamwise slip length does not exceed L+0

x = 3.5 only the inner region of the velocity profile is significantly
affected whereas the outer region is approximately unchanged in all cases considered here. The level of rms
velocity fluctuations is approximately the same in all cases. A significant change in the shape of the profile
can be observed only near the walls where the effects of a finite slip velocity on the walls are felt. For the
combinations involving large spanwise slip lengths the significant slip velocities on the walls lead to a shift
of the peak of the urms-fluctuations closer to the wall and a flattening of the profile of the vrms-fluctuations.

A possible interpretation of these results is that even for infinite spanwise slip the vrms-fluctuations on
the wall do not exceed the peak value of the corresponding profile. Therefore, once a rms spanwise slip
velocity of approximately the peak value max(vrms) is reached a further increase of the spanwise slip length
will have little effect. Thus the adverse effects of spanwise slip on the drag are limited. On the other hand,
a streamwise slip length will always have a reducing effect on the intensity of the turbulent fluctuations, and
this effect will increase with increasing slip lengths. Therefore a finite streamwise slip length is sufficient to
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FIG. 10. The mean streamwise velocity profile (a) and the rms velocity fluctuations (b) of the streamwise (continuous
lines) and spanwise (dashed lines) velocity components for the traversal of the slip length map along the neutral
curve. Case Reτ0 = 180. The colours and markers of the lines correspond to the colours and markers used in the
illustration of the route along the neutral curve across the slip length map in figure 8 (b). The black lines correspond
to the no-slip reference case.

overcome the turbulence-intensifying effects of infinite spanwise slip.

VI. WALL-SHEAR STRESS STATISTICS

The statistics of the wall-shear stress are of special interest as the local wall-shear stress is directly
involved in the specification of the Navier-slip boundary condition. The mean streamwise wall-shear stress
balances the mean streamwise pressure gradient and thus its slip-length dependence can be inferred from the
change in drag shown in section III, and will not be discussed here again. The application of a slip-length
boundary condition changes also the intensity and distribution of the wall-shear stress fluctuations. Thus the
fluctuating wall-shear stress is a useful diagnostic to study the effect of the slip-length boundary condition
on near-wall turbulence. We will first discuss the changes in the streamwise wall-shear stress fluctuations
before considering the effects of the slip-length boundary condition on the spanwise wall-shear stress.

A. Streamwise wall-shear stress fluctuations

Due to the fluctuations in the near-wall velocity, much higher shear stress values on the wall can be
attained locally. In the standard no-slip case the ratio between the rms value of the streamwise wall-
shear stress fluctuations and the mean streamwise wall-shear stress 〈τ ′ 2w,x〉1/2/〈τw,x〉 is found to be between
approximately 0.35 and 0.41 in experiments at moderate Reynolds numbers (see Refs 17–19) and is known
to increase slowly with increasing Reynolds number (see e.g. Refs 16 and 20).

For the no-slip reference case we obtain a value of 0.36 which is in good agreement with the value of
the DNS by Kim et al.21 (0.36). In figure 11 the ratio 〈τ ′ 2w,x〉1/2/〈τw,x〉 is plotted versus streamwise and
spanwise slip length. The normalised streamwise wall-shear stress fluctuations decrease with increasing
streamwise slip length. This is in line with the picture of an increasing laminarisation of the flow, since the
wall-shear stress fluctuations would vanish for a laminar channel flow. The streamwise slip length hampers
the build-up of extremely high wall-shear stress events, since the velocity on the wall can follow the near-wall
velocity. This would not be possible in the standard no-slip case where the wall velocity is independent of
the near-wall velocity, i.e. always vanishes.
The spanwise slip length has an opposite effect: the ratio 〈τ ′ 2w,x〉1/2/〈τw,x〉 increases with increasing span-

wise slip length. The absolute increase in the streamwise wall-shear stress fluctuations is even higher, since
the mean streamwise wall-shear stress increases with increasing spanwise slip length as well. The spanwise
slip length therefore clearly leads to an intensification of the turbulence near the wall. As in the case of the
peak value of the rms streamwise velocity fluctuations the streamwise wall-shear stress fluctuations correlate
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FIG. 11. Normalised streamwise wall-shear stress fluctuations 〈τ ′ 2
w,x〉

1/2/〈τw,x〉 versus streamwise and spanwise slip
length, Reτ0 = 180.
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FIG. 12. Probability density function of streamwise wall-shear stress fluctuations for purely streamwise slip; (a):
probability shown on a linear scale, (b): on a logarithmic scale; Reτ0 = 180.

well with the change in drag. Along the neutral curve 〈τ ′ 2w,x〉1/2/〈τw,x〉 is approximately constant, an increase

in drag is accompanied by an increase of 〈τ ′ 2w,x〉1/2/〈τw,x〉, and the opposite holds for a decrease in drag.
The probability density function (pdf) of the streamwise wall-shear stress fluctuations shown in figure 12

has a characteristically skewed shape and is also quite flat. In experiments and numerical simulations (under
no-slip boundary conditions) skewness factors between 0.84 and 1.1, and flatness factors ranging from 4.1 to
about 4.8, have been measured18. The flatness of the wall-shear stress pdf is also known to increase slowly
with the Reynolds number16,20.
The values obtained for the no-slip reference case in our simulation fall well within these ranges (skewness

factor: S ≈ 0.97 and flatness factor K ≈ 4.5). The streamwise slip-length boundary condition has a
significant effect on the shape of the pdf of the streamwise wall-shear stress fluctuations. With increasing
streamwise slip length the skewness of the pdf decreases and it becomes increasingly less flat (see figure 13).
The decrease in skewness and flatness indicates that high (positive) wall-shear stress events are preferentially
damped by the streamwise slip boundary condition as can also be observed from the decrease in the right
hand tail of the pdf. For high streamwise slip length values the flatness factor drops below 3 and the skewness
factor approaches zero, making the pdf sub-Gaussian.
The spanwise slip length has a smaller effect on the shape of the streamwise wall-shear stress pdf. Here an

increase of the flatness and the skewness can be observed for moderate slip length values which approximately
saturates for higher slip length values (see figure 13 (b)).
We can infer from the wall-shear stress pdf in the no-slip reference case that negative values of the

wall-shear stress can occur, since the pdf of the wall-shear stress fluctuations shows a finite signal for
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FIG. 13. Skewness (a) and flatness (b) factors of the streamwise wall-shear stress fluctuations for the purely stream-
wise (x-axis: L+0
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y ) slip configurations versus slip length. Reτ0 = 180.
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FIG. 14. (a): probability of negative streamwise wall-shear stress for the purely streamwise (x-axis: L+0

i = L+0
x )

and purely spanwise (x-axis: L+0
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y ) slip-length combinations. (b): slip velocities Upeak

s , 〈us〉 and centreline
velocity versus slip length in the purely streamwise slip case. Case Reτ0 = 180.

x < − 〈τw,x〉

〈τ ′ 2
w,x〉

1/2 = −2.8. This corresponds to very rare events of negative streamwise velocity near the wall.

By integrating the probability density function p(x) of the streamwise wall-shear stress fluctuations from

−∞ (here due to the finite width of the resolution of the pdf: −10) to ξ = − 〈τw,x〉

〈τ ′ 2
w,x〉

1/2 we can obtain a rough

estimate for the probability of negative streamwise wall-shear stress events

P (τw,x < 0) =

∫ ξ

−∞

p(x)dx. (8)

For purely spanwise slip P (τw,x < 0) corresponds to the probability of negative streamwise velocity near
the wall. In the no-slip reference case we obtain a value of P (τw,x < 0) ≈ 2 · 10−5 at Reτ0 = 180. This
is lower than values reported in the literature for the probability of negative wall-shear stress from DNS
using spectral methods with Chebyshev polynomials in the wall-normal direction16,22. For an accurate
computation of this quantity a very high near-wall resolution (as e.g. provided by Chebyshev methods) is
needed, as the probability of reverse flow increases significantly below z+ = 1 (see Ref. 22). Nevertheless it is
interesting to consider the qualitative changes in this quantity for large slip lengths in the purely streamwise
and spanwise slip cases.
The probability of negative wall-shear stress events decreases with increasing streamwise slip length (due to

finite resolution of the pdf no events have been found for L+0

x > 1) and increases with increasing spanwise slip
length (see figure 14 (a)). In the purely spanwise slip case the probability of negative streamwise velocities
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w,y〉

1/2/〈τw,x〉 versus streamwise and spanwise slip
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in all cases shown. Reτ0 = 180.

near the wall is significantly enhanced. For infinite spanwise slip combined with vanishing streamwise slip
we obtain P (τw,x < 0) ≈ 1 · 10−3 which is an order of magnitude higher than the probability of negative
wall-shear stress in the no-slip reference case. To reach a comparable probability of negative wall-shear
stress in the no-slip case a Reynolds number in excess of Reτ = 1440 would need to be attained16.
The strong increase in P (τw,x < 0) for high spanwise slip is not caused by an increase in the left hand tail

of the pdf of the wall-shear stress p
(

τ ′w,x/〈τ ′ 2w,x〉1/2
)

. The significant growth in the probability of negative
streamwise wall-shear stress with increasing spanwise slip can be attributed to the relative increase of the
intensity of the streamwise wall-shear stress fluctuations 〈τ ′ 2w,x〉1/2 compared to the mean streamwise wall
shear stress 〈τw,x〉. The mean streamwise wall-shear stress is thus more easily overcome by the fluctuating

streamwise wall-shear stress. In the computation of P (τw,x < 0) this leads to a decrease of the ratio
〈τw,x〉

〈τ ′ 2
w,x〉

1/2

and thus an increase of the right boundary ξ of the domain of integration in eqn (8).
At the other extreme of the wall-shear stress pdf, corresponding to very high positive values, the peak

values of the streamwise slip velocity on the wall are of interest. As there is no clear maximum value, an
estimate for the peak value is computed from

Upeak
s = L+0

x (x∗〈τ ′ 2w,x〉1/2 + 〈τw,x〉) (9)

where the peak streamwise wall-shear stress fluctuation

x∗ =
{

min(x)|p(x) < 10−5 ∩ x > 0
}

(10)

is based on an arbitrary cut-off value 10−5 for the pdf. In the case of small streamwise slip length the
peak value can be considerably higher than the mean value of the slip velocity on the wall (see figure 14
(b)). With increasing slip length the relative difference between the peak and the mean value decreases.
For higher streamwise slip length the peak value starts to approach the centreline velocity. However, at the
highest slip length investigated (this is a case that is in the process of laminarisation) this trend is reversed
as the Upeak

s becomes equal to the mean slip velocity on the wall.

B. Spanwise wall-shear stress fluctuations

Spanwise wall-shear stress fluctuations have received far less attention in the literature than the streamwise
wall-shear stress. The level of the spanwise rms wall-shear stress fluctuations is approximately 1/2 of the
value of the streamwise rms wall-shear stress fluctuations17 in the standard no-slip case. The normalised
rms spanwise wall-shear stress fluctuation 〈τ ′ 2w,y〉1/2/〈τw,x〉 is found to be 0.19 in the no-slip reference case,

which is in good agreement with the value of Kim et al.17,21 (also 0.19). The level of the normalised spanwise
wall-shear stress fluctuations, shown in figure 15, decreases both with increasing spanwise and increasing
streamwise slip length. At first sight this may be surprising, since the streamwise and spanwise slip lengths
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FIG. 16. Streamwise (a) and spanwise (b) correlation length scales of the streamwise velocity at a distance of
z+0 ≈ 10 from the wall shown versus streamwise and spanwise slip lengths. Case Reτ0 = 180.

show opposite effects for the streamwise wall-shear stress fluctuations, but the decrease of the spanwise
wall-shear stress fluctuations can be attributed to two different processes. Firstly, for increasing streamwise
slip length the overall level of turbulent fluctuations decreases due to an increasing regularisation of the flow
and therefore the level of spanwise wall-shear stress fluctuations decreases as well. Secondly, for increasing
spanwise slip length the spanwise slip boundary condition prevents the build-up of very high wall-shear
stress values, since the spanwise velocity on the wall can follow the near-wall fluctuations of the spanwise
velocity. Thus the overall level of the fluctuations decreases. The fact that extreme events are preferentially
damped in the case of high spanwise slip length values can also be observed from the pdf of the spanwise
wall-shear stress fluctuations (see figure 15 (b)). In the no-slip reference case this is quite flat (K ≈ 6.3),
however with increasing spanwise slip length the flatness decreases (K ≈ 3.7 for L+0

x = 0, L+0

y = 316).
For vanishing or low streamwise slip high spanwise slip has a strong effect on small-scale turbulence in

the near-wall region by significantly enhancing the anisotropy of the turbulence. In this case strong and
highly intermittent streamwise wall-shear stress fluctuations are combined with weak and close to Gaussian
spanwise wall-shear stress fluctuations. The spanwise slip-length boundary condition is therefore able to
change the character of the small-scale turbulence in the near-wall region.

VII. FLOW STRUCTURE

In this section we consider to which extent the Navier-slip boundary condition changes the structure of
the flow, focusing on the characteristic streaks in the near-wall region. To give an overview of the effects of
various streamwise spanwise slip-length combinations, streamwise and spanwise correlation length scales of
the streamwise velocity are shown in figure 16 for a distance of z+0 ≈ 10 from the wall. The streamwise and
spanwise slip lengths have been computed based on the point where the corresponding correlation functions
Ru,xx or Ru,yy fall the first time below 1/e, i.e. for the streamwise correlation length scale

Lu,xx =

{

min(∆x)|Ru,xx(∆x) <
1

e

}

(11)

where

Ru,xx(∆x) =
〈u′(x, y, z)u′(x+∆x, y, z)〉

〈u′ 2(x, y, z)〉 . (12)

This measure has been chosen as it is less sensitive to the computational box size than the integral length
scale. For high streamwise slip the streamwise correlation length scale is not always defined, since the
structures in the velocity field grow beyond the domain size of the simulation. The corresponding cases are
indicated by black dots on the map. This is consistent with an eventual return to the laminar case for very
high streamwise slip lengths as the decay of streamwise streaks is one of the last steps of relaminarisation14,23.
The streamwise correlation length Lu,xx can be seen as a measure for the length of the streaks and the
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FIG. 17. Contours of streamwise velocity fluctuations at a distance of z+0 ≈ 10 from the wall. (a): no-slip case, (b):
L+0

x = 0, L+0
y = 316, (c): L+0

x = 3.16, L+0
y = 0, (d): L+0

x = 3.16, L+0
y = 316. Case Reτ0 = 180.

spanwise correlation length for the width of the streaks in the near wall region. Increasing spanwise slip
length leads to a decrease in Lu,xx and to a small decrease in Lu,yy. In a slice through the streamwise
velocity field at a distance of z+0 ≈ 10 from the wall we can observe that the streaks tend to be disrupted
and appear more irregular than in the no-slip reference case (see figure 17). Increasing streamwise slip leads
to an increase in Lu,xx and Lu,yy and the streaks become more regular than in the no-slip reference case.
For moderate slip lengths the changes in the flow structure near the wall are not large. The streaky pattern
can still be observed in all cases and the changes in the correlation length scales are comparatively small.
The flow structure begins to change significantly only for very high streamwise slip lengths.

The streak amplitude increases with increasing spanwise slip and decreases with increasing streamwise
slip. This is in agreement with the results for the peak streamwise velocity fluctuations discussed in section
V.
In figure 18 Lu,xx and Lu,yy are shown for the purely streamwise and spanwise slip cases for several

distances from the wall. Near the wall a significant increase in Lu,xx for increasing streamwise slip can
be observed, whereas a decrease occurs for increasing spanwise slip, as has already been observed. For
high distances from the wall the streamwise correlation lengths are close to the no-slip reference case. This
indicates that the structure of the streamwise velocity in the outer layer is not strongly affected by presence
of spanwise or moderate streamwise slip. The collapse onto the no-slip reference case is delayed to higher
distances from the wall for higher slip lengths. In contrast, the effect of the slip-length boundary condition
on the spanwise correlation length Lu,yy is very small for both the purely streamwise and purely spanwise
slip cases.

VIII. CONCLUSIONS

A systematic study of the effect of an anisotropic Navier-slip boundary condition on turbulent channel
flow has been presented. Depending on the relative magnitude of the streamwise and spanwise slip lengths,
both drag-reducing and drag-increasing cases can be observed. A threshold value of approximately three to
four times the viscous length scale has been identified for the streamwise slip length, beyond which drag is
reduced in all cases even for infinite spanwise slip. For purely spanwise slip the change in drag saturates for
high slip lengths L+0

y = O(102). Even infinite spanwise slip does not lead to a further increase in drag. At
the moderate Reynolds numbers studied here the Reynolds number has only a small effect on the observed
change in drag when the slip lengths are the same in units of the corresponding viscous length scale. The
only Reynolds number effect observed is the slightly smaller increase in drag for high spanwise slip lengths
at the higher Reynolds number.
A detailed comparison has been made with the implicit formula of Fukagata et al.8,9 for the relation of

the change in drag with the streamwise and spanwise slip length. A new version for the fitting function
contained in this model has been presented, which reduces the number of free parameters in the model from
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FIG. 18. Streamwise (a), (c) and spanwise (b), (d) correlation length scale of the streamwise velocity component
for different distances from the wall. (a), (b) purely streamwise slip case; (c), (d): purely spanwise slip case. Case
Reτ0 = 180.

four to two, has a simpler form than the original version of the fitting function and gives a more accurate
representation for the neutral curve. For both versions a good agreement was found with the DNS data,
implying that any coupling between the effects of the streamwise and spanwise slip does not have a strong
influence on the change in drag.
The change in drag is shown to be correlated with both the amplitude of the near-wall peak of the stream-

wise velocity fluctuations and the streamwise wall-shear stress fluctuations. For slip-length combinations
which lead to a negligible change in drag the level of the velocity fluctuations is unchanged compared to the
no-slip reference case, except in the immediate vicinity of the wall.

A detailed investigation of the wall-shear stress statistics revealed an increase of the intensity of the
streamwise wall-shear stress fluctuations with increasing spanwise slip length, whereas streamwise slip led
to a decrease. This corresponds to a significant increase of the probability of backflow near the wall for the
purely spanwise slip case for high spanwise slip lengths. The intensity and intermittency of the spanwise
wall-shear stress fluctuations decrease with both increasing spanwise and increasing streamwise slip. High
spanwise slip can therefore change the nature of near-wall turbulence, by enhancing the intensity and
intermittency of the streamwise wall-shear stress fluctuations and decreasing the intensity and intermittency
of the spanwise wall-shear stress fluctuations.
The changes introduced by the Navier-slip boundary condition into the structure of the velocity field have

been investigated, focusing on the streamwise near-wall streaks in the velocity field. High spanwise slip leads
to disrupted and more irregular near-wall streaks whereas high streamwise slip leads to straighter and more
regular streaks. The effect of the Navier-slip boundary condition on the spanwise correlation length of the
streamwise velocity is minimal for moderate streamwise slip lengths.

The description of superhydrophobic surfaces by a linear slip-length boundary condition with a constant
slip length, as used in the present study, is only applicable for moderate shear rates24. In general, the slip
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TABLE IV. Influence of domain size and Reynolds number on the mean streamwise pressure gradient and the
percentage change in drag for two representative slip length cases.

L+0
x L+0

y domain Reτ0
〈

dp
dx

〉

σ
(〈

dp
dx

〉)

∆D σ(∆D)

0 0 5× 2× 2 360 −1.000 0.019

0 0 10× 4× 2 360 −0.996 0.015

0 0 10× 4× 2 180 −1.002 0.017

0 1 5× 2× 2 360 −1.085 0.021 8.5 2.9

0 1 10× 4× 2 360 −1.087 0.018 9.1 2.5

0 1 10× 4× 2 180 −1.110 0.022 10.7 2.8

1 0 5× 2× 2 360 −0.902 0.017 −9.8 2.4

1 0 10× 4× 2 360 −0.897 0.017 −10.0 2.2

1 0 10× 4× 2 180 −0.886 0.019 −11.6 2.4

length will depend on the shear rate at the wall25. As the local instantaneous shear rate in a turbulent flow
at the wall can significantly exceed the mean wall-shear rate, a shear-rate dependent non-linear slip-length
boundary condition may lead to different changes in drag. Since no non-linear slip length model has yet
been derived for superhydrophobic surfaces this will need to be a subject for future investigations.
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Appendix A: Influence of the domain size on the change in drag

In order to ensure that the smaller domain size used for the Reτ0 = 360 simulations does not influence the
mean streamwise pressure gradient and the estimated value of the change in drag, two representative slip
length cases and the reference case were run for both the full and the reduced domain size. The resulting
values for the mean streamwise pressure gradient and the change in drag are given in table IV. The values of
the mean streamwise pressure gradient for the full and the reduced domain size agree well with each other,
with the differences being less than 1%. The differences in the change in drag are comparatively larger but
still considerably lower than the standard deviation σ(∆D). We can conclude that the smaller domain size
is sufficient to establish mean flow quantities such as the mean streamwise pressure gradient and the change
in drag.

Appendix B: Dependence of the shape factor H on the slip length in the laminar case

The shape factor H = δ∗/θ is the ratio of the displacement thickness δ∗ =
∫ 1

0

(

1− 〈u(z)〉
〈uc〉

)

dz to the mo-

mentum thickness θ =
∫ 1

0
〈u(z)〉
〈uc〉

(

1− 〈u(z)〉
〈uc〉

)

dz, where uc is the centreline velocity. It is used to characterise

the ‘flatness’ of the mean velocity profile7, i.e. a lower shape factor corresponds to a flatter profile. For
laminar channel flow the shape factor is H = 2.5 under standard no-slip boundary conditions on the walls.
When streamwise slip boundary conditions are applied on the walls the shape factor varies with the slip
length

H(Lx) =
5

2

(

1 + 2Lx

1 + 5Lx

)

. (B1)

The spanwise slip length Ly has no effect on laminar channel flow as the spanwise velocity component
vanishes. Relation (B1) shows that with increasing streamwise slip length Lx the shape factor decreases; this
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means that the mean streamwise velocity profile gets increasingly flatter. In the limit of infinite streamwise
slip, Lx → ∞, the shape factor approaches its theoretical lower bound26 H = 1 for a perfectly flat profile.
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