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Abstract: This study quantitatively examines the contribution of assimilating observations in the
regions with different dynamic instabilities to the analysis and prediction of an extreme rainstorm
event in Fujian Province of China. The wind profiling radar (WPR) observations are classified into
two groups, i.e., strong and weak instability areas (SIA and WIA), according to their local dynamic
instability identified by the ensemble spread. Their performance of assimilation and prediction in
terms of the wind and precipitation are evaluated and compared in detail. The results show that
the wind analysis error by assimilating all of the WPR observations can be reduced by about 30%.
In particular, the wind analysis errors by only assimilating the observations in the SIA are about
12% lower than those in the WIA. They are related to the existence of the low-level horizontal wind
shear with strong instability in the SIA. The case study shows that the assimilation of observations in
the SIA can effectively correct the wind fields on the two sides of the wind shear line, producing an
improved precipitation forecast compared to observation assimilation in the WIA.

Keywords: wind profiling radar; data assimilation; dynamic instability; rainstorm; southern China

1. Introduction

The skill of numerical weather prediction (NWP) crucially relies on the accuracy of the
initial condition (or analysis) that is generated by the data assimilation (DA) procedure [1–5].
A typical DA algorithm exists to optimally estimate the state of the real atmosphere by
combining the short-range model forecast (i.e., the first guess field, denoted by FG hereafter)
and the observations that measure the real atmosphere [6,7]. Therefore, the accuracy of
the initial analyses is driven by multiple factors, such as the model performance and the
observational precision. One of the most important factors is the model’s instability against
the real atmosphere, which varies in space and time. Such model instabilities are closely
related to the weather systems and regimes. For example, the flow in the front of an
upper-troposphere trough usually has stronger baroclinic instability than its tail part. The
regions with stronger instability generally have larger forecast uncertainties (or errors) of
the FG fields and thus correspond to a less accurate analysis than those dynamically more
stable regions [8,9].

It has long been conceived that NWP will benefit from supplementary observations
deployed in critical regions, that extend the conventional observational network [10,11].
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The critical regions are generally referred to as the regions that have the strongest insta-
bility or the fastest unstable growth of forecast errors [12–14]. The impact of assimilating
observations in the critical regions has been extensively studied, but mostly in observing
system simulation experiments (OSSE) [15–18].

Wind profiling radar (WPR) is a useful meteorological observation device that collects
temporally continuous vertical-profile observations of the horizontal wind vectors above
the ground [19]. This type of observation provides critical information on the circulations
from lower to upper levels associated with mesoscale weather systems, such as the local
wind shear and low-level jet [20–22]. Many studies have confirmed the positive influence
of WPR data on the mesoscale numerical prediction [23–26], especially on the short-range
temporal scale in the range of 0–12 h [22,27,28]. In the operational observing network
over southern China, the WPR has a wide coverage at a horizontal resolution of about
70 km and a vertical resolution of approximately 150 m. The maximum vertical altitude
of the WPR observations can reach 8–14 km. They provide valuable observations of the
main weather systems in southern China, especially the circulation systems at various
elevations associated with the high-impact heavy rainstorms that frequently occur in this
region. The WPR observations are an effective supplement to the existing conventional
observing network especially at the mid and upper levels in southern China. Although
the assimilation of the WPR observations and their impact on the prediction of local
rainstorms in southern China have been studied in various studies [21,22,29], the relative
importance of the observations in the different regions in contributing to the forecast
skill relating to rainstorms has not been investigated and quantitatively compared. In
particular, a heavy rainstorm in southern China is often induced by a complex interaction
of multi-scale systems with different dynamic instabilities. A quantitative comparison of
the assimilation impact of the WPR observations in different regions with the spatially
varying dynamic instability is key to understanding the influences of the different weather
systems on the rainstorms in southern China and augmenting and upgrading the existing
observing network.

The ensemble forecasts are a series of model integrations starting from initially close
conditions, offering a sample of the possible future states. The spread of ensemble forecasts
is often used to quantify the forecast uncertainties, which are closely related to the dynamic
instability associated with weather systems [30–33]. The regions with a larger ensemble
spread generally indicate the existence of probably more unstable weather regimes. The
goal of this study is to quantitatively compare the impact of assimilating the WPR observa-
tions in strong instability areas (SIA) and weak instability areas (WIA) on the prediction of
a local rainstorm in the Fujian Province of southern China. The ensemble forecast spread is
used to approximately identify the spatial instability. The WPR observations are accord-
ingly divided into those in the SIA and WIA. Their separate and combined assimilation
effects on the prediction of a local rainstorm are comprehensively evaluated and compared.
The relevant mechanisms are also analyzed and clarified by relating the SIA and WIA to
the corresponding weather systems.

This study is arranged as follows. Section 2 briefly describes the weather case and
introduces the model configuration, the observational data, and experimental design. In
Section 3, the assimilation impacts of the WPR data on the SIA, WIA, and their combined
areas on the initial analysis and forecast, are evaluated and compared. The relevant
mechanisms are diagnosed and examined in detail. Finally, the summary and conclusions
are given in Section 4.

2. Weather Cases, Model, and Experimental Design
2.1. Weather Cases

An extreme heavy rainstorm event occurred in Fujian Province (highlighted in blue
in Figure 1), southern China, during the period from 14 to 17 May 2019. The observed
24-h accumulated rainfall in Sanming city, near the center of Fujian Province, reached
300 mm on 16 May, which broke the historical record of local daily precipitation since
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1961. Most of the operational global NWP systems showed limited forecast skills on the
location and intensity of the precipitation. For example, the maximum 24-h precipitation
in a 36-h forecast provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF) was located in the northwest of Jiangxi Province, about 300 km far away from
the observed precipitation center. Moreover, the forecasted maximum 24-h precipitation
was less than 100 mm, failing to give a timely warning of the extreme heavy rainstorm.
The initial ensemble spread of the global ensemble forecasts at the National Centers for
Environmental Prediction (NCEP) presented large amplitudes near the precipitation regions
(see Figure 2), implying possibly higher uncertainties of the initial analysis in these regions
than in other regions. Given the obvious spatial differences in the initial uncertainties
in distinct regions, this study will perform hindcast experiments to evaluate the impact
of assimilating the observations in these regions into the analysis and prediction of the
rainstorm event.
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Figure 2. The initial spread of the kinetic energy (shading, units: Kg·m2·s−2) of the global ensemble
forecasts at NCEP at 1200 UTC on 15 May 2019. Blue dots denote the wind profiling radar (WPR)
stations in strong instability areas, while black dots denote the WPR sites in weak instability areas.
The horizontal wind shear along nearly 28

◦
N is highlighted by black parallel lines.

2.2. Model Configuration and Data Assimilation System

The hindcast experiments were carried out using the Weather Research and Forecast-
ing (WRF) Model version 3.7. The WRF model is a fully compressible non-hydrostatic
model using a terrain-following hydrostatic pressure vertical coordinate and adopting the
Arakawa C-grid as the gird staggering [34], which is widely used in mesoscale synoptic
analysis research. The model configuration uses a two-way nested domain grid (Figure 1)
with a horizontal resolution of 18 km for the parent domain (D01), and 6 km for the inner
domain (D02). Both of the domains have 53 vertical levels. D01 covers the East Asia region
with a mesh of 141 × 131, and D02 covers southern China with a mesh of 241 × 241. The
physical parameterizations used in this study include the WRF single-moment five class mi-
crophysics scheme [35], the rapid radiative transfer model longwave radiation scheme [36],
the Goddard shortwave radiation scheme [37], the Grell 3D cumulus parameterization
scheme [38], and the MYJ planetary boundary layer scheme [39]. The lateral boundary
conditions for the background fields of DA and the model free forecasts were provided by
the 0.5 × 0.5 operational global forecasts of the global forecast system (GFS) at NCEP.

The DA system in this study used the three-dimensional variational (3DVAR) DA
scheme [40], with a 1-h time window for the assimilation of observations. The static
background error covariance was generated using the typical National Meteorological
Center (NMC) method [41]. The WPR observations (red dots) were collected by the China
Meteorological Administration (CMA) and covered the coastal provinces, including Jiangsu,
Shanghai, Zhejiang, Jiangxi, Fujian, and Guangdong from eastern China to southern China
(Figure 1) at a spatial resolution of nearly 70 km. The observational errors of WPR below
500 m were relatively larger than at the upper levels, due to the surface friction effect.
On the other hand, WPR is a remote sensing observation device; thus, the attenuation
of the remote sensing signals caused by heavy rain may affect the accuracy. These WPR
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observations were assimilated only for the inner domain (D02). The surface automatic
weather station (AWS) observations (black dots in Figure 1) were used for the independent
verification of the forecast skill, and thus not assimilated to the initial conditions. Due to the
high vertical resolution of the WPR data at approximately 150 m, they were preprocessed
by a typical thinning step to better match the model vertical resolution [22,29]. In the
thinning step, the WPR observations that were closest to each model vertical level were
selected, while the rest of the data were rejected, which means the observations after the
thinning had a similar vertical resolution with the model.

2.3. Experimental Design and Evaluation

The numerical experiments in this study were conducted in a cycling DA and predic-
tion system, based on the 3DVAR scheme (Figure 3). Given the first case as an example,
the first DA cycle at 0000 UTC on 14 May was activated with a cold start, using initial and
boundary conditions downscaled from the analysis field of the GFS product at NCEP. The
WPR observations were then assimilated to generate the high-resolution analysis in the first
DA cycle. Afterward, the assimilation step was performed every 3 h in continuous cycles,
with the 3-h WRF model forecast initialized from the previous analysis as the FG. To reduce
the influence of the model spin-up on evaluation, the first three DA cycles were eliminated.
The analysis of the fourth DA cycle at 1200 UTC on 14 May was used to initialize a 12-h
forecast at a one-hour output frequency for evaluation. This entire process was repeated
six times every 12 h to produce a total number of six cases at an interval of 12 h. Such a
design of the experiment can reduce the dependence of the forecast cases and mitigate the
possible drift of continuously cycled analyses from the truth.
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Figure 3. Schematic diagram of the analysis and forecast cycles. “GFS” indicates the cold start of the
model at 12 h intervals, with the GFS forecasts as the first guess. “×” represents the warm start of the
model at 3 h intervals, with the 3-h forecasts in the previous cycle as the background. DA denotes the
analysis time to execute data assimilation. Gray straight lines with arrows represent the 3-h forecasts
for generating a first guess, while black dashed lines with arrows represent the 12-h free forecasts.

As pointed out in Section 1, the goal of this study is to compare the assimilation
impact of the WPR observations located in regions with different dynamic instabilities. The
regional instability is approximately quantified using the ensemble spread of the initial
ensemble members from the global ensemble forecast system at NCEP (downloaded from
https://apps.ecmwf.int/datasets/data/tigge/levtype=pl/type=cf/, (accessed on 9 July
2019)) before the assimilation of observations. The use of the same prediction system
(i.e., NCEP) to calculate the spread can provide a relatively consistent identification of the
regional stability in the FG, avoiding the possible bias of numerical results. The procedures
to divide the SIA and WIA according to the spatial distribution of ensemble spread can be
seen in Section 3.1. Three DA experiments were implemented and compared in this study.

https://apps.ecmwf.int/datasets/data/tigge/levtype=pl/type=cf/
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“E_SIA” and “E_WIA” are the DA experiments that only assimilated the WPR observations
in the SIA and WIA in D02, respectively. The experiment that assimilates all of the WPR
observations was also carried out (termed as “E_ALL”).

The analysis and forecast of zonal (U) and meridional (V) winds at different levels
were evaluated by verifying them against the WPR wind profile observations, because there
were very limited observations available for the verification of the mid-and upper-level
wind fields. There were only three sites for radiosonde observations in the core region,
i.e., Fujian Province, at which the radiosondes were launched only twice a day. These
observations were too sparse for the verification of the wind fields. The popular metric,
root mean square error (RMSE), was calculated to assess the performance of wind (U and
V components) analysis and forecast, which was defined as follows:

RMSE =

√
1
N ∑N

i=1(Mi − Oi)
2, (1)

where N is the number of WPR observations within D02; Mi represents the analysis
and model forecast interpolated in the observation space; and Oi is the corresponding
observation.

The forecast of the surface precipitation was verified against the AWS observations.
Two widely used metrics, the Threat Score (TS) and the Bias Score (BIAS), were computed
to evaluate the skill of the precipitation forecast:

TS =
C

F + NO − C
, (2)

where F represents the number of forecasted precipitation events; NO is the number of
observed precipitation events; and C is the number of the events with correctly forecasted
precipitation, i.e., the observed and forecasted precipitation events occur together. The
range of TS is 0 to 1, with a larger value indicating a more skillful precipitation forecast.
The BIAS is defined as:

BIAS =
F

NO
(3)

BIAS varies from 0 to positive infinity, with a value less or greater than 1 indicating an
underestimation or overestimation of the precipitation.

3. Results
3.1. Spatial Instability

The spatial distribution of the initial ensemble spread (shaded) of the kinetic energy
averaged over three vertical levels (850, 500, and 200 hPa) at 1200 UTC on 15 May 2019 is
shown in Figure 2. The kinetic energy is calculated by (u2 + v2)/2, where u and v represent
the zonal and meridional wind components, respectively. Noticeably, there is a high-spread
band between 26–29

◦
N extending from the west of Jiangxi Province to the east China sea

zonally, with the maximum in the west and north of Jiangxi Province. This high-spread
band is probably associated with the strong instability caused by the horizontal wind
shear along nearly 28

◦
N (highlighted by black parallel lines). The wind shear line is

a convergence zone between the cold and dry northwesterly wind and the warm and
wet southwesterly wind, as illustrated by the WPR wind observations at 850 hPa. The
mesoscale synoptic circulation confirms the validity of using the initial ensemble spread
in identifying the spatial dynamic instability. The WPR observations at individual levels
are reordered, according to the value of the ensemble spread of the kinetic energy at the
observation location, from the most unstable to the most stable. The first half of the WPR
observations (i.e., 50% percentile) are categorized into the SIA group and are assimilated in
the experiment E_SIA, while the second half belongs to the WIA group and is assimilated
in the experiment E_WIA.
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3.2. Impact of Assimilating WPR Data on Initial Analysis

An effective DA system can ingest the observational information into the analysis.
The analysis with the assimilated observations would thereby have better fitting with the
observations than the background. The fitting between the WPR observations (“O”) and
background (“B”) averaged over all of the cases was assessed (i.e., observational innovation)
first for the SIA, WIA, and the entire region (Table 1). The mean absolute observational
innovation (i.e., |O−B|) in the SIA was about 11% and 20% higher than that in the WIA
for the U and V winds, respectively. The absolute observational innovation in the SIA also
had a larger variability (i.e., standard deviation) than in the WIA. These results suggest
that the FG has larger uncertainties in regions with more unstable dynamics (i.e., SIA).
Figure 4 further compares the fitting of the WPR observations at all of the altitudes in
all of the cases with the corresponding background (i.e., O vs. B) and analysis (i.e., O
vs. A) interpolated in the observation space for U and V. The analyses of both U and V
presented a better fitting with the observations than the background (cf. left and right panel
in Figure 4). Quantitatively, |O−A| averaged over all of the altitudes and all six cases
were significantly lower than |O−B| by about 30% (1.6674 vs. 2.5069 m s−1 for U and
1.7407 vs. 2.6029 m s−1 for V). These results signify the effective assimilation of the WPR
observations in modulating the wind analysis fields.

Table 1. The observational innovation between the WPR observations (“O”) and background (“B”)
averaged over all cases in the SIA, WIA, and entire region for zonal (U, units: m s−1) and meridional
wind (V, units: m s−1).

Absolute Error Standard Deviation

U V U V

SIA 2.68 2.97 2.78 2.95
WIA 2.36 2.42 2.51 2.53

The probability density functions (PDF) of O−B and O−A for U and V winds for all
of the levels and all of the cases are further displayed in Figure 5. It can be seen that the
PDF of both O−B and O−A for U and V present a Gaussian-like distribution with a near-
zero mean, indicating that the fitting of both the analysis and background is statistically
unbiased. Moreover, the standard deviation of O−A is clearly smaller than that of O−B
for both U (2.25 vs. 3.28 m s−1) and V (2.32 vs. 3.41 m s−1), implying a better fitting of the
analysis to the observations than the background, as suggested by Figure 4.

To quantify the contribution to the initial analysis of assimilating the WPR observations
into the SIA and WIA, Figure 6 compares the horizontal root mean square |O−B| (green)
and |O−A| in the E_SIA (blue), E_WIA (red), and E_ALL (orange) experiments at the
different levels for U (a) and V (b) at 1200 UTC, 15 May 2019. |O−A| in E_ALL is smaller
than |O−B| at all of the vertical levels for U and their differences are overall homogeneous
vertically at about 1 m/s (Figure 6a). This is predominantly contributed by the assimilation
of the observations in the SIA, except for the near-surface level and the upper troposphere.
It is because the SIA, with more intense instability, has a larger FG error variance (Table 1),
and thus has a greater weight on the WPR observations in the assimilation. In contrast, the
differences between |O−A| in E_ALL and |O−B| for V are distinct at the different levels,
which are much larger in the upper and lower troposphere than in the mid-troposphere. The
limited assimilation impact in the mid-troposphere is possibly associated with the relatively
high-skill simulation of the mesoscale circulation in the FG at this level, corresponding to
the minimum |O−B| of FG across the levels (see the green line in Figure 6b). The averaged
results over all of the cases and all of the altitudes show that the assimilation of the WPR
observations in the SIA (i.e., E_SIA) can attain around a 60% error reduction in the analysis
error in E_ALL, relative to the FG error, while E_WIA can attain only a 30% error reduction
(not shown).
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3.3. Impact of WPR Data on the Forecast

This section verifies the forecast skill of the E_ALL, E_SIA, and E_WIA experiments in
D02. Figure 7 shows the sample-mean RMSE of the 850-hPa wind forecasts verified against
the WPR observations. At the initial time, E_ALL has the smallest RMSE for both U and V,
followed by E_SIA and E_WIA, as suggested by Figure 6. The wind analysis error of E_SIA
is about 12% lower than that of E_WIA for both U and V. The F-test shows that the 12%
reduction in wind analysis error is statistically significant at a 90% and 99% confidence level
for U and V, respectively. Interestingly, despite the larger analysis error of U and V winds,
E_SIA has a very close RMSE of the U and V forecasts compared to E_ALL at 6 and 12 h. It
possibly implies that the baroclinic instability associated with the horizontal wind shear
plays a critical role in modulating the evolution of the circulation. Significantly reducing
the initial errors in these regions (i.e., the SIA) may benefit the subsequent wind forecasts
to the largest extent. E_WIA, with the worst accuracy of initial condition, performs much
worse than E_ALL and E_SIA in the wind forecasts (about a 10% increase in the RMSE
averaged over time). The lower mean error for V wind at 12 h than at 6 h in Figure 7 is
possibly an effect of the diurnal variation (not shown).

The averaged TS and bias over all of the six cases are evaluated for E_ALL, E_SIA, and
E_WIA in Figure 8 for the prediction of the first 3-, 6-, 9-, and 12-h accumulated precipitation
greater than 0.01 and 15 mm. E_SIA displays the best TS of the rainfall forecasts for all
of the lead times, followed by E_ALL and E_WIA. E_ALL performs better than E_WIA,
especially in the TS with the 0.1-mm threshold (Figure 8a), but performs overall similarly
to E_WIA for the 15-mm threshold (Figure 8b). The maximum relative improvement of TS
for E_SIA relative to E_WIA reaches about 6% and 19% for the thresholds of 0.1 and 15 mm,
respectively, at 6 h. These results further indicate that the assimilation of the observations
within the regions with unstable weather dynamics possibly plays the most important role
in improving the precipitation forecast. In contrast, E_ALL, E_WIA, and E_SIA present little
differences in the performance of the BIAS score. It possibly implies that the assimilation of
only the momentum observations, without considering thermodynamic observations such
as water vapor, has little influence on the prediction of the precipitation area (i.e., the BIAS).
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3.4. Sensitivity of the Selection of WPR Observations

In this study, the categorization of the WPR observations into the SIA and WIA is
determined by the selection of the quantile parameter. The upper (lower) quantile of the
reordered WPR observations is defined as the standard of the selection of the observations
in the SIA and WIA. Therefore, it is necessary to evaluate the sensitivity of the selection of
the WPR observations in the comparison of the analysis and prediction between E_SIA and
E_WIA. Figure 9 shows the variation in the sample-mean RMSE between the wind analysis
and WPR observations in D02 with the selection of the quantile for the SIA and WIA. As
pointed out above, the RMSE with all of the WPR observations assimilated is lower than
those with part of the observations assimilated, while the background without any of
the observations assimilated has the largest RMSE. The RMSE becomes larger with fewer
observations assimilated (i.e., a smaller quantile) for both E_SIA and E_WIA. Nevertheless,
E_SIA remains at nearly a 0.1 ms−1 lower RMSE of wind analysis than E_WIA for the
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quantiles from 50% to 20%. In addition, the performance of E_SIA and E_WIA becomes
closer with a smaller number of the WPR observations assimilated (i.e., a smaller quantile).
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3.5. A Case Study

Since the maximum precipitation during this storm event occurred on May 16, a
forecast case initialized at 1200 UTC on 15 May 2019 was selected to analyze the possible
mechanism of the assimilation impact on the precipitation forecast. Figure 10 shows the FG
(Figure 10a), the analyses of E_SIA (Figure 10b) and E_WIA (Figure 10c), and the analysis
increment (i.e., analysis minus FG) of E_SIA (Figure 10d) and E_WIA (Figure 10e) for the
850-hPa meridional wind. The WPR wind observations assimilated in the SIA and WIA
(green and yellow wind bars, respectively) are also displayed as a reference. A mesoscale
horizontal wind shear was maintained along the northern and northwestern boundary of
the Fujian Province in both the WPR observations and the model FG field (Figure 10a). The
horizontal wind shear is the confluence of the southwesterly warm and moist flow and the
cold and dry flow from the northwest, acting as an important environmental circulation for
the rainfall. Despite the nearly consistent position of the horizontal wind shear line, the FG
presented stronger meridional wind than that observed both to the north and south of the
shear line (Figure 10a).

The observational innovation (i.e., observation minus FG in the observation space)
in Figure 10a can be effectively corrected by assimilating the WPR observations in E_SIA;
resulting in the stronger southerly wind to the south of the shear line and the stronger
northerly wind to the north of the shear line in the E_SIA analysis than in the FG (Figure 10b).
This can be seen more clearly in the negative (positive) analysis increment to the north
(south) of the wind shear line (Figure 10d). The wind analysis in E_WIA is very close to the
FG (cf. Figure 10a,c) since there are no observations assimilated in the SIA. The analysis
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increment in the WIA is also overall weaker than that in the SIA, due to the relatively
smaller ensemble spread (or background error variance) in the WIA.
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Figure 11 shows the forecasts of the 6-h accumulated precipitation for E_SIA (Figure 11a)
and E_WIA (Figure 11b), and the corresponding observation (Figure 11c). There are two sig-
nificant maximum precipitation centers in the observations, located near the western and
northern boundary of Fujian Province, respectively, which are both roughly captured by
the E_SIA and E_WIA forecasts. Nevertheless, the E_SIA has an overall eastward shift for
the two rainfall centers relative to E_WIA, which is closer to the observed rainfall location.
It may be related to the assimilation of the WPR observations in the SIA which modulates
the structure and strength of the horizontal wind shear (see Figure 10). Meanwhile, E_SIA
has a more accurate intensity prediction for the northern precipitation center and a similar
intensity prediction for the southern center compared to the E_WIA, despite both of them
being overestimated.
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4. Summary and Discussions

This study evaluated and compared the impact of the assimilation of observations in
distinct dynamic instability regions on the analysis and prediction of a record-breaking
extreme precipitation event that occurred in Fujian Province in May of 2019. The assimilated
observations are the wind profiling radar (WPR) data, which can provide vertical profiles
of the wind fields over Fujian Province and adjacent regions at a horizontal resolution of
about 70 km. They are categorized into those in a strong instability area (SIA) and a weak
instability area (WIA), according to the amplitude of the initial ensemble spread of the
NCEP global ensemble forecast system. Six consecutive experiments of cycling DA and
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predictions were run and used to comprehensively compare the relative contribution of
assimilating the WPR observations in the SIA and WIA into the analysis and prediction of
the rainfall event, and the relevant mechanisms were analyzed and clarified.

The statistics of the difference between the WPR observations and the FG in the ob-
servational space (i.e., observational innovation) indicated that the SIA has overall larger
background forecast errors than the WIA, which ascertains the validity of the categoriza-
tion of observations according to the initial ensemble spread. The difference between
the analysis error of the zonal and meridional wind is insensitive to the selection of the
percentile of observations to define the SIA and WIA. Associated with the assimilation
impact on the wind analysis, E_SIA also shows an improved prediction skill of the wind
and precipitation than E_WIA. A case study reveals that the SIA is associated with a strong
horizontal wind shear along the southwest to northeast direction near the western bound-
ary of Fujian Province. The assimilation of the WPR observations in this region helps to
correct the position of the shear line and the wind strength and direction at the two sides
of the wind shear. This dramatically contributes to the improvement of the precipitation
forecast, especially the position of the extreme rainfall centers.

In the context of the observing system experiment, this study demonstrates that the
assimilation of observations in critical regions has a more significant positive impact on the
analysis and prediction than in other regions, given the same amount of observations. Our
study also confirms that the critical regions corresponding to strong dynamic instability
can be effectively identified by the ensemble spread. Despite the limited number of
cases, our conclusions could be generalized to the assimilation and prediction of other
extreme weather events that accompany the strong development of instability. The results
emphasize the importance of the optimal design of the observing network for these extreme
events, such as local storms and heavy rainfall. In future work, more rainstorm cases in
southern China will be studied to see if there are statistical properties of the distribution of
the dynamical instability for extreme precipitation events.

5. Conclusions

Overall, the above results from the experiments suggest that:

1. The WPR observations have a larger impact on the analysis in the SIA than in the
WIA, resulting in about 12% lower observational fitting errors of the analysis in the
SIA than in the WIA. The analysis of E_SIA accounts for about 60% error reduction in
E_ALL with all of the WPR observations assimilated.

2. Although the selection of the percentile of observations will affect the number of the
observations in SIA and WIA, a sensitivity analysis shows that the E_SIA always has
more improvements in the analysis than the E_WIA.

3. The WPR observations in SIA help to reduce the background errors corresponding
to the shear line, which contributes to the improvement of the wind and precipita-
tion forecast.

4. The critical regions with strong dynamic instability can be effectively identified by
the ensemble spread, which may be helpful in the future optimal design of the
observing network.
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