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Abstract

Background: Batch effects were not accounted for in most of the studies of computational drug repositioning

based on gene expression signatures. It is unknown how batch effect removal methods impact the results of

signature-based drug repositioning. Herein, we conducted differential analyses on the Connectivity Map (CMAP)

database using several batch effect correction methods to evaluate the influence of batch effect correction

methods on computational drug repositioning using microarray data and compare several batch effect correction

methods.

Results: Differences in average signature size were observed with different methods applied. The gene

signatures identified by the Latent Effect Adjustment after Primary Projection (LEAPP) method and the

methods fitted with Linear Models for Microarray Data (limma) software demonstrated little agreement. The

external validity of the gene signatures was evaluated by connectivity mapping between the CMAP database

and the Library of Integrated Network-based Cellular Signatures (LINCS) database. The results of connectivity

mapping indicate that the genes identified were not reliable for drugs with total sample size (drug + control

samples) smaller than 40, irrespective of the batch effect correction method applied. With total sample size

larger than 40, the methods correcting for batch effects produced significantly better results than the method

with no batch effect correction. In a simulation study, the power was generally low for simulated data with

sample size smaller than 40. We observed best performance when using the limma method correcting for

two principal components.

Conclusion: Batch effect correction methods strongly impact differential gene expression analysis when the

sample size is large enough to contain sufficient information and thus the downstream drug repositioning.

We recommend including two or three principal components as covariates in fitting models with limma

when sample size is sufficient (larger than 40 drug and controls combined).
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Background

Drug repositioning is the process of finding new indi-

cations for existing drugs. If successful, it has advan-

tages over de novo drug development in terms of

potentially shorter development times, less costs and risks

[1]. Facilitated by recent growth of high-throughput omics

data, computational methods in drug repositioning have

been developed, which provide researchers efficient routes

to explore a large number of drugs and diseases simultan-

eously [2]. Many in silico drug repositioning approaches

have been developed during the past decades, which can

be broadly classified into target-based, expression-based,

knowledge-based, chemical structure-based, pathway-

based and mechanism of action-based [3]. Here, we focus

on gene expression-based approaches which require gene

expression signatures derived from the data itself and re-

quire little a priori knowledge on diseases or drugs. A gene

expression signature is a set of genes that are significantly
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up- or down-regulated by certain biological process or

pathological medical condition as compared to a control

condition. A popular approach is to identify new indica-

tions for drugs based on their gene signature showing an

opposite pattern of up−/down-regulation as compared to

a disease signature [4]. This approach was piloted by the

Connectivity Map (CMAP) project, in which a pattern

matching algorithm was employed to rank the similarities

between the query signature and the compound profiles

called reference signatures [5]. Several studies have used

this resource and applied a similarity based approach for

drug repositioning [6–10]. For example, Sirota et al. inte-

grated 164 drug compounds from CMAP and 100 diseases

to predict novel therapeutic indications on signatures in

drug-disease pairs, which have led to the discovery of ci-

metidine as a candidate treatment for lung adenocarcin-

oma [7]. As another example, Van Noort et al. utilized the

gene expression profiles of more than 1000 drugs from

CMAP and applied the inverse signature approach to

identify anti-metastatic drugs for the treatment of colorec-

tal cancer [11]. The follow-up database to CMAP is the

Library of Integrated Network-based Cellular Signatures

(LINCS) L1000 database [12], which has been recently

used in signature-based drug repositioning [13].

Despite CMAP having been demonstrated to be valu-

able and successful, it still has some limitations. These

include a limited number of cell-lines and the fact that

batches were required to generate all the data. Both fac-

tors can lead to biased analyses and here we focus on

batch effects. Batch effects are defined as technical varia-

tions that have been introduced by time varying external

factors during handling of the samples or effects of sam-

ple handling itself. Such factors include various sources,

such as personnel effects, environmental conditions, dif-

ferent experiment times, etc. [14], some of which can be

minimized by careful experimental design, while some

are impossible to be completely avoided in practice.

Whether batch effects were properly adjusted for can

potentially affect the validity of the generated gene sig-

natures as well as the power of the analysis to find dif-

ferentially expressed genes [15, 16]. Many batch effect

correction methods have been developed and were

reviewed by Lazar et al. [17]. COMBAT (combining

batches of microarray data) applies Empirical Bayes esti-

mation to adjust the mean and the variance by pooling

information across multiple genes in order to perform

gene-wise batch corrections for mean and variance [18],

which is an example for methods focusing on mean ad-

justments. Guided PCA (gPCA) performs a model selec-

tion on batch indicators/covariates known to impact

measurements which is interesting when study design is

complex and many potential factors that can influence

the measurement process have been recorded. RUV-2

(“Remove Unwanted Variation, 2-step”) makes use of

negative control genes that are a priori known to be un-

correlated with the biological effects of interest to iden-

tify the factors associated with batch effects, and further

adjusts for these factors [19]. While RUV-2 relies on the

quality of the control genes selected, the Latent Effect

Adjustment after Primary Projection (LEAPP) method

was developed to statistically isolate the batch effects

from biological effect of interest, which in essence means

that control genes are automatically selected [20]. Surro-

gate variable analysis (SVA) explicitly tries to define a

subspace orthogonal to the outcome variable on which a

principal component analysis (PCA), or an analogous

singular value decomposition (SVD), is computed. In

spirit, therefore, SVA is almost identical to LEAPP which

performs the same decomposition but uses a slightly dif-

ferent model. RUV-2, LEAPP and SVA rely on principal

components (PCs), explicitly or implicitly, to describe

batch effects and can potentially correct for complex

and non-linear batch effects.

However, in many drug repositioning studies, gene ex-

pression profiles were directly used from either CMAP

or LINCS without correcting for batch effects [3, 6, 7,

10, 13]. Otherwise, mean centering was used to correct

for batch effects (Noort et al. [11]). Koudijs et al. cor-

rected for batch effects by blocking on batch id [4]. The

impact of batch effect correction methods on computa-

tional drug repositioning efforts using these data re-

sources, and their final impact on downstream drug

repositioning pipelines has not been analysed.

In this study, we aim to investigate the influence of

batch effect removal methods on computational drug

repositioning focusing on microarray data, using the

example of the CMAP dataset, since this is still the

primary source of drug gene expression signatures.

We conduct comparisons between several batch effect

correction methods, including correcting for batch id

and correcting for PCs in linear models fitted by

limma, and the LEAPP method. We evaluate the

quality of the gene signatures generated by these

methods by gene set enrichment analyses on the

shared drugs between the CMAP database and the

LINCS database (Fig. 1a). We further perform a simu-

lation study to examine the validity of the batch effect

correction methods (Fig. 1b).

Results
Differential expression analysis

Figure 2 gives an overview of the distribution of sam-

ple sizes in CMAP dataset. Most of the drugs (55%)

have total sample size between 20 to 30, while only a

small fraction of drugs (3%) has total sample size

more than 40. The scatter plot (Fig. 2b) shows that

there are more control samples than drug samples for

most of the drugs.

Zhou et al. BMC Bioinformatics          (2019) 20:437 Page 2 of 14



Principal component analysis (PCA) was performed

for every gene expression data matrix jointly for the

treatment and control gene expression profiles corre-

sponding to each drug. As is shown in Fig. 3a, the me-

dian variance explained by the first 2 PCs decreases with

total sample size, from 62% (equal or below 20 samples)

to 48% (above 40 samples). The samples clearly cluster

by batch, but not by drug or control status (Fig. 3b-e).

However, it should be noted that in CMAP batch and

cell type are completely confounded for most drugs

(Additional file 1: Figure S1).

Gene expression differences between drugs and vehicle

controls were analyzed with linear models fitted by the

limma package (version 3.32.5). The null model always

contained the log-transformed concentrations. Subse-

quently, we tested if adding either the batch id or PCs im-

proves the external validity of the genes identified as

differentially expressed, as discussed below in the section

on connectivity mapping. We included several sets of co-

variates to adjust for batch effects: i) null; ii) batch id (corre-

sponding to the plate id); iii) one or more largest PCs

(continuous variable). The linear associations between

CMAP LINCS

Principal

component

analysis

Differential

expression

analysis

Evaluation with connectivity mapping

Batch effect correction methods:
1. Linear modeling with limma
   - Block on batch information
   - Correct for principal components
2. The LEAPP method

CMAP

Differential
expression

analysis

Principal

component

analysis

Principal

component

analysis

Simulate new

expression level

Differential

expression

analysis

Number of principal components
added to the models fitted by limma:

0 ~ 4

A B

Fig. 1 Overall workflow of the study. a, workflow of real data analysis. CMAP and LINCS datasets are analyzed by principal component analysis,

followed by differential expression analysis with several batch effect correction methods, which were then evaluated by connectivity mapping

(the procedure of connectivity mapping is illustrated by Additional file 2: Figure S2); b, workflow of simulation analysis. Expression data were

simulated from CMAP dataset, and the optimal number of largest principal components being corrected for was assessed

Fig. 2 Summary plots of sample sizes in CMAP dataset. a, total (drug + control) sample size distribution in CMAP dataset. b, scatter plot of the

relationship between control sample size and drug sample size for CMAP dataset. Note: the total number of drugs in CMAP dataset is 1309. In

plot B, the drug trichostatin A (128 drug samples and 709 control samples) was not plotted because the particularly large sample size prevents a

zoomed in view of other drugs
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features and the drugs were also assessed by fitting models

with the LEAPP method, for which no batch information

was provided.

After filtering out the genes with coefficients of

variation outside the 20 and 80% quantiles, the num-

ber of genes included in the differential expression

analysis decreased to 8131. Due to insufficient sample

size, which did not allow some linear models to be

fitted, some of the drugs do not have results pro-

duced in differential expression analysis, as illustrated

in Table 1. The models fitted by LEAPP produced

the largest percentages of results of drug signature

size greater than or equal to 10 at any FDR < 100%,

but the average signature size produced by the

method was smaller than those generated by the

methods respectively correcting for batch id, three or

four PCs using limma (Fig. 4). Comparing among the

methods using limma, correcting for batch id yielded

largest percentages of results with drug signature size

greater than or equal to 10 at any FDR ≤ 60%,

followed by correcting for four PCs, and the percent-

ages decreased with fewer PCs being included in the

model (Fig. 4a). Similarly, the models fitted by limma

with correction for batch id produced greatest average

signature size and that with no correction yielded the

smallest average signature size at any FDR < 100%

(Fig. 4b). Table 2 summarizes the average number of

Fig. 3 Results of principal component analysis on expression matrices for CMAP dataset. a, Median variance accounted for by the four largest

principal components grouped by total sample size. b-e, Score plots of the first two principal components for four typical drugs; colors indicate

batch (plate id) and shapes indicate drug or control status

Table 1 Number of drugs in CMAP dataset which yielded gene

differential expression results by each method

Method Number of results

limma+ Null 1288 (98.4%)

limma+1PC 1288 (98.4%)

limma+2PCs 1271 (97.1%)

limma+3PCs 1270 (97.0%)

limma+4PCs 1236 (94.4%)

limma + Batch id 1288 (98.4%)

LEAPP 1254 (95.8%)

Note: percentage out of 1309 drugs in parentheses
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shared differentially expressed genes generated by dif-

ferent methods for CMAP dataset at FDR ≤ 10%. In

general, if two methods both show larger average sig-

nature size, they tend to share a higher percentage of

shared genes as compared to other pairs of methods.

Notably, we observed less agreement between the

LEAPP method and the limma methods than the

agreement between the methods that fit models using

limma and use different sets of covariates. The

LEAPP method resulted in many estimates that were

exactly zero, even for genes that were considered sta-

tistically significant by LEAPP (FDR ≤ 10%), indicating

numeric convergence problems, which prevented

meaningful gene set enrichment analysis. Therefore,

these results were not further analyzed.

Connectivity mapping

To evaluate the batch effect correction methods on real

data, as well as to mimic real practice drug repositioning

utilizing gene expression-based approach, we used the

CMAP drug signatures as input to identify the LINCS

drug signatures using the relative connectivity score

(with higher scores denoting higher similarities) calcu-

lated by Gene Set Enrichment Analysis using function

ConnectivityScore implemented in PharmocoGx package

[21]. For each comparison, the LINCS drug signatures

were processed based on the drugs and the genes shared

with the CMAP database using the same gene filtering

criteria and the same batch effect correction method. If

the method indeed improves the quality of the drug sig-

natures, the relative rank of drug signatures of the same

drug should increase after applying the method (Add-

itional file 2: Figure S2). The LINCS dataset shares 962

drugs and 883 genes with CMAP dataset. After applying

the same criteria of filtering, the overlapping number of

genes used in differential expression analysis was 529. In

the gene set enrichment analysis, when the gene set was

limited to 15 genes with the lowest FDR values, the

mean ranks of the drug signatures of the same drugs

ranged between 250 to 500 in the groups of drugs with

Fig. 4 Results of differential expression analysis on CMAP dataset. a, percentage of drugs having signature size greater than or equal to 10 for

each gene expression analysis method plotted against FDR cutoff. b, average signature size resulted from each gene expression analysis method

plotted against FDR cutoff; y-axis was transformed to log-10 scale

Table 2 Average number of shared differentially expressed genes found by different methods for the CMAP dataset (FDR ≤ 10%)

Method limma+Null limma+1PC limma+2PCs limma+3PCs limma+4PCs limma+Batch id LEAPP

Limma+Null (ASS = 50) 44 (37.3%) 27 (20.0%) 18 (14.9%) 14 (14.1%) 49 (19.6%) 9 (11.0%)

limma+1PC 44 (88.0%) (ASS = 118) 61 (45.2%) 39 (32.2%) 28 (18.2%) 106 (42.4%) 15 (18.3%)

limma+2PCs 27 (54.0%) 61 (51.7%) (ASS = 135) 81 (66.9%) 55 (55.6%) 120 (48.0%) 17 (20.7%)

limma+3PCs 18 (36.0%) 39 (33.1%) 81 (60.0%) (ASS = 121) 70 (70.7%) 100 (40.0%) 17 (20.7%)

limma+4PCs 14 (28.0%) 28 (23.7%) 55 (40.7%) 70 (57.9%) (ASS = 99) 75 (30.0%) 15 (18.3%)

limma+Batch id 49 (98.0%) 106 (89.8%) 120 (88.9%) 100 (82.6%) 75 (75.8%) (ASS = 250) 25 (30.5%)

LEAPP 9 (18.0%) 15 (12.7%) 17 (12.6%) 17 (14.0%) 15 (15.2%) 25 (10.0%) (ASS = 82)

Abbreviations: ASS = Average signature size (removed missing values)

Note: The table contains the number of differentially expressed genes that are shared between each pair of methods on the CMAP dataset. The numbers on the

diagonal indicate the average number of differentially expressed genes found by the respective methods. For the LEAPP method, the significant genes with

estimate = 0 were ignored. Percentages in parentheses are the proportions of the number of shared genes to average signature size produced by the method on

the column header
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total sample size less than or equal to 40 for every

method compared between CMAP dataset and LINCS

dataset (Fig. 5a). The results improved dramatically in

the group of drugs with total sample size greater than

40, in which the mean ranks ranged within 50 for limma

methods correcting either for two, three or four PCs, or

batch id (Fig. 5a). The methods correcting for two and

three PCs and batch id were equivalent or significantly

better than not correcting for batch effects or correcting

for only one PC (P < 0.05). The superior performance of

sample size > 40 is further demonstrated by the plot of

the high proportion of drugs (19–36%) having the con-

nectivity scores of the same drugs ranked within top 3

for every method stratified by group, compared to the

low proportion of drugs within rank 3 (2–13%) observed

in the group with sample size ≤40 (Fig. 4b). When the

cut-off rank was relaxed from top 3 to top 10, similar re-

sults were obtained (Additional file 3: Figure S3).

We also performed the gene set enrichment analysis

using sets of significant genes with FDR ≤ 10% and the

results are plotted on Additional file 4: Figure S4A. In

the group of drugs with small sample size, the method

without batch effect correction resulted in higher pro-

portions of drugs having the same drug ranked within

top 3 in connectivity mapping between shared genes of

CMAP and LINCS dataset.

An increasing trend was observed for the methods that

correct for two to four PCs. When the cut-off rank was

relaxed from top 3 to top 10, similar results were ob-

tained (see Additional file 4: Figure S4B). Similar results

were obtained for FDR cutoff at 5 and 20% (Additional

file 5: Figure S5-Additional file 6: Figure S6). We

Fig. 5 Results of connectivity score analysis with a fixed number of 15 genes with lowest FDR. a, Boxplot of the ranks of the same drug in

connectivity mapping between CMAP and LINCS dataset. b, The proportion of drugs having the same drug ranked within top 3 in connectivity

mapping between shared genes of CMAP and LINCS dataset. The x-axes are grouped by the total sample size in CMAP dataset. The colors

indicate the differential gene expression analysis methods
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emphasize that results shown in Additional file 4: Fig.

S4, Additional file 5: Figure S5 and Additional file 6: Fig-

ure S6 only include the drugs that have at least 10 sig-

nificant genes as indicated by the differential expression

analysis, thus the drug lists varied among different

methods and total sample size groups.

Expression microarray data simulations

We simulated gene expression data from the original

data of nine drugs with varying sample sizes, i.e.

monastrol, LY-294002, colchicine, alprostadil, nocoda-

zole, felodipine, vorinostat, fulvestrant and trichostatin

A, of which the total sample size were 16, 24, 31, 33,

34, 43, 83, 128, and 837, respectively (Table 3). To

address different situations, five simulation scenarios

were applied and summarized in Table 4. These sce-

narios include different number of batches, allocation

ratios and batch effect sizes (see Methods).

Generally speaking, with more PCs added to the

model, more significant genes were found regardless

of the simulation setting applied (Additional file 7:

Figure S7, Additional file 8: Figure S8, Additional file 9:

Figure S9, Additional file 10: Figure S10 and Additional

file 11: Figure S11A), although a few cases (vorinostat is

especially exceptional across all the simulation settings)

demonstrated first an increase, then a decreasing trend

when considering different numbers of PCs with PC2 or

PC3 as the turning point. The increased number of signifi-

cant genes was at the cost of increased number of false

positive results (Additional file 7: Figure S7, Additional file

8: Figure S8, Additional file 9: Figure S9, Additional file

10: Figure S10 and Additional file 11: Figure S11B). The

proportions of false positive results were well con-

trolled for, below or slightly higher than the pre-de-

fined threshold for most of the simulated data when

correcting for one or two PC(s). The only exception

for this phenomenon was observed in the results of

the data simulated from the drug colchicine, for

which the highest proportions of false positive results

were observed in the method without batch effect

correction, and the proportions of false positive re-

sults were only well controlled in the setting of bal-

anced batch design, medium batch effects and FDR at

10% when corrected for one or two PC(s) (Additional

file 8: Figure S8). Notably, the number of simulated

significant genes was small for this drug (Table 3).

Moreover, for the data simulated from monastrol,

which have a sample size smaller than 20, few signifi-

cant results were obtained and proportions of false

positives were extremely low, accordingly (Additional

file 7: Figure S7, Additional file 8: Figure S8, Add-

itional file 9: Figure S9, Additional file 10: Figure S10

and Additional file 11: Figure S11A-B).

Statistical power was generally lower than 20% for

every method analyzed on the simulated data with

total sample size smaller than 40, even without add-

ing the additional simulated batch effects (Additional

file 7: Figure S7, Additional file 8: Fig. S8, Additional

file 9: Figure S9, Additional file 10: Figure S10 and

Additional file 11: Figure S11C). For the data with

total sample size larger than 40, with the increase of

the total sample size, the statistical power increased,

except for the data simulated from the real data of

the drug fulvestrant.

Examining the simulation results of the data simu-

lated from the real data of the drugs vorinostat and tri-

chostatin A, we observed that: i) when the medium

batch effects simulated from principal component load-

ings were added to the expression data, the power de-

creased by 10% for the method without batch effect

correction, while the power of the methods correcting

for two and three PCs only decreased by no more than

3% (Additional file 7: Figure S7 and Additional file 8:

Figure S8C); ii) increasing of FDR value from 10 to 20%

resulted in small increase in proportion of false posi-

tives (1–4%) in exchange for a higher increase in power

Table 3 Simulated drug profiles

Drug Drug
samples

Control
samples

Total sample
size

DEG in unsimulated
data

monastrol 8 8 16 22

LY-294002 12 12 24 403

colchicine 6 25 31 21

alprostadil 7 26 33 18

nocodazole 5 29 34 1060

felodipine 7 36 43 72

vorinostat 12 71 83 5145

fulvestrant 40 88 128 1453

trichostatin
A

128 709 837 6481

Note: drug, the drug of which the simulated data were generated from. DEG,

differentially expressed genes, that is, the number of genes that were

simulated to be differentially expressed due to the drug effects

Table 4 Simulation scenarios

Scenario name Batch effect
size parameter

FDR
threshold

Batch
allocation
difference

No batch effect 0 0.1 0

Medium batch effect, balanced
design

2 0.1 0

Large batch effect, balanced
design

4 0.1 0

Medium batch effect,
unbalanced design

2 0.1 0.3

Medium batch effect, balanced
design, larger FDR threshold

2 0.2 0
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(5–10%) (Additional file 8: Figure S8B-C and Additional

file 11: Figure S11B-C); iii) compared to the results of

the simulation with medium batch effect, when large

batch effects were added to the data, the power of

the method without batch effect correction and the

method correcting for only one PC decreased

substantially (> 15%), while the power of the method

correcting for two and three PCs remained similar (< 5% dif-

ference) (Additional file 8: Figure S8C and Additional file 9:

Figure S9C); iv) similar results were obtained when an unbal-

anced batch design was imposed (Additional file 8: Figure S8

and Additional file 10: Figure S10).

Discussion

The present study investigated differential expression

analyses with different batch effect correction methods

on the publicly available datasets CMAP and LINCS.

CMAP was used to obtain drug signatures, which are

critical in downstream analyses of drug repositioning.

The quality of the drug signatures generated by each

method was further analyzed by connectivity mapping

between the CMAP and the LINCS datasets on the sub-

set of shared drugs and genes between the databases.

Lastly, a simulation study was performed to compare

models with different numbers of PCs included as covar-

iates as well as the null models fitted by limma. To our

knowledge, this study is the first to evaluate batch effects

by conducting connectivity mapping between two data-

sets on shared drugs which can be seen as a gold-stand-

ard analysis, as the drugs should match up exactly if

data is reliable.

We believe that our comparison covers at least con-

ceptually a wide range of techniques employed in

practice as many characteristics are shared among

methods. Depending on whether batch information

has to be explicitly specified or not, a method can be

classified into being a supervised or unsupervised

method. It is therefore critical that either batch infor-

mation is correctly specified or a method can identify

this information automatically. If the batch informa-

tion is not well identified, the methods could under-

or overcorrect depending on whether too little or too

much information is used. The method correcting for

batch id is the prototype of a supervised method that

might undercorrect, as additional variations may be

present within batches. PCA is an unsupervised batch

effect correction method. As used in this paper, it

might overcorrect as all genes were included in the

estimation of PCs which includes those exhibiting

true biological effects. Finally, LEAPP is an unsuper-

vised method that might be optimal if the method

achieves to separate genes represent batches from

genes exhibiting biological effect. Arguably most

methods fall into these broader categories and our

results allow to judge whether conceptual trade-offs

translate into results from data analyses, and

simulations.

We showed that batch effect correction methods had a

significant impact on the results of the gene expression

analysis, and because the disease signature is directly

compared to the results of the drug signature in gene-

expression based drug repositioning [4], the downstream

analyses of drug repositioning will likely be compro-

mised in the case of uncorrected batch effects in the

drug signature. This was demonstrated by i) the exist-

ence of significant batch effects as illustrated by PCAs;

ii) that the generated gene signature sizes varied sub-

stantially between different batch effect correction

methods; and iii) that in the group of drugs with total

sample size larger than 40, we observed significant im-

provement in the relative ranks for batch effect correc-

tion methods compared to the null model in the analysis

of connectivity mapping with a fixed number of 15

genes, that is, we were closer to the truth with batch ef-

fect correction compared to no batch effect correction.

Note that we also conducted the analysis of connectivity

mapping with sets of significant genes to mimic the ana-

lysis in practice (Additional file 4: Figure S4, Additional

file 5: Figure S5 and Additional file 6: Figure S6), how-

ever, the plots of the results should not be taken as com-

parisons between the methods, since each method and

sample size group had different list of drugs being ana-

lyzed by the gene set enrichment analysis depending on

whether the drug produced a sufficiently large enough

signature size (≥ 10). Therefore, the results depend

highly on the average quality of the drug signatures

which varied among the methods and prevents a fair

comparison. For example, it is highly likely that the aver-

age quality of the drug signatures produced by the

method without batch effect correction was higher only

because the drug signatures with higher quality of genes

(of evident signals) were found by the method, and thus

the proportion of successful discoveries was higher for

the method. This is supported by the fact that the

method without batch effect correction found the fewest

drugs with at least 10 significant genes among all the

methods (Fig. 4).

In connectivity mapping, we showed that most of the

CMAP drugs of total sample size smaller than 40 are

not retrievable from LINCS (not among the connectivity

score rank top 3). Therefore, the drug signatures gener-

ated by the differential expression methods investigated

in this study were probably not reliable when the total

sample size was smaller than 40, in the sense that the

drug signatures are probably unable to perform well in

downstream analysis of drug repositioning, no matter

whether batch effects were corrected for or not. This

was also supported by the simulation results, where we
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observed extremely low power in every simulated data

with total sample size smaller than 40. Therefore, we

conclude that more than 40 total samples are needed to

generate reliable drug signatures from CMAP data.

The LEAPP method was not effective in our analysis—

at least in the way we used it—although the method is

theoretically advantageous and convenient (Sun et al.

[20]). The differential expression results generated by

the LEAPP method show little agreement with the

limma methods, but we were unable to validate the

quality of the drug signatures generated by the method

or determine if the method was better in analyzing the

CMAP dataset than the limma methods. The LEAPP

method generated many estimates being exactly 0 in

both the CMAP and the LINCS datasets, which pre-

vented us from running the gene set enrichment ana-

lysis. Most likely, sample size in our application was too

low for LEAPP to work reliably but we did not investi-

gate this hypothesis in detail. We were unable to run

simulations for LEAPP as it was too time consuming.

Among the limma methods, correcting for two and

three PCs performed equally well as correcting for batch

id when analyzing data with large sample size, as was in-

dicated by the analysis of connectivity mapping. Never-

theless, the method adjusting for PCs has the potential

to outperform the method adjusting for batch id for the

following reasons: i) PC scores are continuous, which

could detect relatively small technical differences within

batches, such as, the temperature gradient on plates, and

thus could have benefits over categorical variables like

batch id; ii) PCs can be directly generated from the gene

expression data so that the researcher does not need to

rely on accurate batch labels; iii) PCs can be analyzed in

a more refined fashion. For example, control genes could

be introduced in the analysis, as is applied in the RUV-2

method [19]. Secondly, non-linear relations could be in-

troduced to the model with PCs accompanied by model

selection of non-linear terms.

In the simulation study, correcting for two PCs

achieved relatively higher power and fewer false positives

than correcting for other numbers of PCs in the simu-

lated data of sufficiently large total sample size. In gene

set enrichment analysis, though, correcting for three PCs

performed relatively better. Based on the results, we rec-

ommend correcting for two or three PCs in data with

sufficiently large sample size.

The simulation study also suggested less conservative

FDR cutoff value should be considered. We speculate

that the increase of the FDR threshold could increase

power with small trade-off on the proportions of false

positives, which might improve the results in the gene

set enrichment analysis.

It is likely that PCs are unstable when the sample size

is small, which may be one of the reasons that it did not

perform well in data with small sample size in our ana-

lysis. PC correction can be adapted by applying weights

in PCA by borrowing information from other data, such

as, data from the same batch or by shrinking the covari-

ance matrix towards the identity matrix [22]. We here

only investigated raw PCs and modifications will be

studied in future research.

In our study, we performed the analysis of connect-

ivity mapping between two databases on the shared

drugs. On the one hand, we implemented the prac-

tical procedure of computational drug repositioning.

On the other hand, we provided a method to evaluate

the quality of the drug signatures generated by differ-

ential expression methods, where we sought to find

the same drugs back in the top of the lists ordered

by the connectivity scores. Because the same drug is

expected to affect the same cell line in different data-

bases similarly, this could be considered a “gold

standard”. However, there were also some limitations

to this approach. Firstly, not all the cell types used in

CMAP are available in LINCS. The analysis was done

without matching the cell types between the two da-

tabases. Although ignoring the cell types may add

noise to the analysis, the results are unbiased and ro-

bust. On the other hand, matching cell types would

remove several samples from CMAP and thus take

the analysis further away from real applications. Sec-

ondly, we imposed a fixed number of 15 genes in the

signature for the analysis, which was rather small and

may negatively affect results. The minimum number

for gene set enrichment analysis was suggested to be

25 so as to avoid inflation of scorings [23]. We chose

to standardize on 15 genes because most drugs could

not identify at least 25 genes below the FDR cutoff.

Thirdly, point estimates of fold changes were used to

calculate the connectivity scores, which did not ac-

count for the uncertainties in the estimates. This

could be addressed by for example weighting esti-

mates according to p-values, or introducing another

parameter determining the degree of weighting.

We observed that the power of the differential ex-

pression analyses on the data simulated from fulves-

trant, which has a large total sample size (83), was

extremely low. As can be seen in Additional file 12:

Figure S12, the standard errors of the effect estimates

of fulvestrant seem to be high, indicating a large

noise component. The proportions of false positive

results were not controlled at the pre-defined signifi-

cance level in some cases despite the Benjamini

Hochberg correction. No special patterns were ob-

served in the histograms of the P-values for these

cases (Additional file 13: Figure S13 and Additional

file 14: Figure S14). Further research is needed to

understand this phenomenon.
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In the simulation study, we simulated both the case

and control data under the null hypothesis by extracting

the variance-covariance matrix from the real data of the

vehicle controls, thereby capturing both biological and

batch effects in the covariance matrix. Instead of inter-

preting such data as batch-effect free, we see it as a

starting point for the simulations with a realistic covari-

ance structure which is not necessarily identical to that

of the actual drug. Moreover, the drug effects simulated

were based on point estimates of differential expression

analysis of real data which only reflect the truth up to

uncertainty in estimates. The absence of further modifi-

cations of drug effects implies that some effects are over-

estimated and are exaggerated in the simulations. In the

simulations, where the simulated drug effects were small,

the power to detect the differences between simulated

cases and simulated controls was expected to be small as

well. Lastly, the batch effects were simulated from the

first two PCs of the PCA, which is probably the reason

that the method correcting for two PCs performed bet-

ter than the other methods. On the other hand, the real

data analysis supports the more general conclusion put

forward in this discussion.

Conclusions
Our study highlighted the importance of batch effect

correction in computational drug repositioning, espe-

cially in generating gene expression signatures with the

CMAP dataset, which has been used in at least 2800

studies. We recommend exercising caution in selecting

proper batch effect correction methods. In applying the

methods discussed in this study, sufficient sample size is

essential to assure the validity of results. It is advisable

to adjust for two or three PCs in the models fitted by

limma when the total sample size is large enough (at

least > 40 drug and controls combined), which applies to

most of the drugs in LINCS (among the drugs shared

with CMAP, 99.8% have total sample size larger than

40). However, for drugs of smaller total sample size, if

analyzed with the methods discussed in this paper, the

results should be interpreted with caution. Dealing with

small sample sizes seems to require more method

development.

Future work can include: i) applying weights and/or

regularization in PCA on data with small sample size; ii)

evaluating the optimal number of genes to be used in

gene set enrichment analysis; iii) conducting simulations

with various sizes of drug effects.

Methods

Data sources

CMAP database (build 2) was downloaded using the

PharmacoGx package (version 1.6.1) [24]. Pre-processing

of the database included Robust Multiarray Average

(RMA) normalization, followed by correction for be-

tween platform differences using combat function in the

SVA package (version 3.10.0) [25]. The CMAP dataset

consists of 1309 distinct drugs. The number of genes in

each gene expression profile is 11,833. In total, 7056

samples, including the bioactive perturbagens and their

corresponding vehicle controls, were profiled. There are

overall 302 batches, performed in five kinds of cell type.

The LINCS database in the level 3 format was ob-

tained from the NCBI Gene Expression Omnibus (GEO)

dataset (GSE92742), which was pre-processed by invari-

ant set scaling and quantile normalization [12]. The

number of genes provided at this level is 12,328 in total,

out of which 11,350 were imputed from 978 landmark

genes. However, we only included the 978 directly mea-

sured genes in our analysis. The samples profiled in the

cell lines that had not been used in CMAP were ex-

cluded. Conversion from Entrez gene identifiers to

Ensembl gene identifiers used by the CMAP database

was performed using the bioMart package (version

2.32.1).

Data cleaning

To avoid the effect of influential observations on the

analyses, for every drug, samples were excluded if the

concentration value used for the perturbation was more

than 1.5 times the interquartile range above the third

quartile or below the first quartile of the concentration

values. The vehicle controls, i.e. samples containing only

solvents for the active drug, from the same batches as

the excluded drug samples were excluded as well. The

total sample size of certain drug is therefore the sum of

the number of drug samples and the number of the cor-

responding vehicle controls after exclusion.

To reduce the computational burden of the analyses

while increasing the statistical power, we applied non-

specific gene filtering by removing genes with coeffi-

cients of variation outside the 20 and 80% quantiles (co-

efficient of variation is the ratio of the standard

deviation to the mean).

Principal component analysis

PCA was used both as a descriptive tool to evaluate the

existence of batch effects and as a correction method

[19]. Scores of the PCs were extracted, which were sub-

sequently added as covariates up to the first four compo-

nents into the differential gene expression models.

Plotting the scores is a way of visualizing batch effects.

This analysis was performed using the built-in R func-

tion prcomp.

Differential expression analysis

Concentrations of the vehicle controls were set to zero,

while the concentrations of the drugs were rescaled to
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molar concentrations, and subsequently loge plus one

transformed (i.e. the mean of the log-transformed con-

centrations of vehicle controls was zero).

Batch effect correction methods

Linear modeling with limma

Limma is an R/Bioconductor software package that fits

linear model to each row that represents a gene in an

gene expression matrix, as well as borrows information

from the other genes analyzed, thus providing more reli-

able statistical results [26].

The model without batch effect correction:

yi ¼ β0 þ β1X i þ ξ i;

where yi is the expression value of sample i, β0 is the

intercept, β1 is the drug effect, Xi is loge plus one trans-

formed molar concentrations of the drug, ξi is the re-

sidual for sample i.

We assessed the following batch effect correction

methods that adjusted for covariates in linear models fit-

ted by the limma package (version 3.32.5).

Blocking batch information in linear model By in-

cluding batch id (corresponding to the plate used to in-

cubate the sample) while fitting linear model, this

method adjusts the mean of the expression levels by the

contrast of a batch with the reference batch.

yi ¼ β0 þ β1X i þ β2Z1i þ…þ β jþ1Zji þ ξ i;

where yi is the expression value of sample i, β0 is the

intercept, β1 is the drug effect, Xi is loge plus one trans-

formed molar concentrations of the drug, β2,..., βj + 1 are

the coefficients of the dummy variables for batch IDs,

Z1i, ..., Zji are the dummy variables for batch IDs (j in-

dexes the batches) of sample i, ξi is the residual for sam-

ple i.

Correcting for principal components in linear model

The method adjusts for batch effect by including several

PCs starting from the first as covariates while fitting the

linear model. These PCs are believed to capture batch

effects under the assumption that the variation caused

by batch effects is much larger than the variation caused

by drug effects. The method is similar to RUV-2 but

without applying the PCA on negative control genes, as

drug specific control genes have not been determined.

The optimal number of PCs needed to capture the batch

effect is part of the evaluation. In formula.

yi ¼ β0 þ β1X i þ β2C1i þ…þ βpþ1Cpi þ ξ i;

where yi is the expression value of sample i, β0 is the inter-

cept, β1 is the drug effect, Xi is loge plus one transformed

molar concentrations of the drug, β2,..., βp are the

coefficient of the principal components, C1i, ..., Cpi are the

scores of the first 1 to p principal component(s) of sample

i, p = 1, 2, 3 or 4, ξi is the residual for sample i.

Empirical Bayes procedures implemented in the limma

package was employed to moderate estimated gene vari-

ances generated by limma models.

The latent effect adjustment after primary projection

method

The LEAPP method attempts to automatically separ-

ate batch effects from the biological effects of interest

by an estimation procedure. An attractive feature of

the method is that it obviates the need of a list of

control genes. The model estimates latent vectors cor-

responding to PCs so that residuals become uncorre-

lated, i.e. clustering in the data is removed. The

number of latent variables is subject to variable selec-

tion and the method can be seen as PCA correction

that searches control genes implicitly. The detailed

description of the method can be found in the paper

of Sun, et al. [20]. The analyses was conducted with

LEAPP package (version 1.2). For the LEAPP func-

tion, we entered loge plus one transformed concentra-

tions as primary variables, assuming sparsity of the

primary parameter. IPOD algorithm in Owen and She was

applied to enforce sparsity [27]; hard thresholding was

used in the algorithm to ensure robustness.

The resulting P-values were adjusted with Benjamini-

Hochberg approach to control the false discovery rate

(FDR). The significance level is defined at FDR 10% but

other commonly used FDR levels (5, 20%) were also

assessed.

Connectivity mapping

The connectivity scores were calculated by Gene Set

Enrichment Analyses (GSEA) with the function Con-

nectivityScore in PharmacoGx package (version 1.6.1)

[28]. The Benjamini-Hochberg FDRs were recalculated

for CMAP based on the genes shared with LINCS,

after which the estimates of the 15 genes with lowest

FDR values were extracted and compared to the cor-

responding set of genes in the LINCS database. For

each drug in the CMAP dataset, we ranked the list of

drugs in the LINCS dataset according to the order of

the connectivity score from highest to lowest, and the

rank of the corresponding same drug in LINCS data-

set was extracted. Wilcoxon signed-rank test was used

for comparing the resulting ranks between methods.

Additionally, instead of using a fixed number of genes

to calculate the connectivity scores, the same analysis

was performed by only using the estimates of the dif-

ferentially expressed genes defined by certain FDR

threshold, so as to mimic the procedure of drug and

disease connectivity mapping. The connectivity score
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was only calculated when the number of differentially

expressed genes exceeded 9, which is the minimum

required by the GSEA function. Different FDR cut-off

values (FDR ≤ 5%, FDR ≤ 10% and FDR ≤ 20%) to de-

termine significance were assessed.

Expression microarray data simulations

Simulation studies were performed to compare i) the

null model fitted by limma, and ii) the models fitted

by limma with different number of PCs included as

covariates. We based our simulated data on the cor-

relation structure of real data corresponding to a rep-

resentative selection of drugs and its vehicle controls.

By simulating the same sample size as for the real

data, simulations closely follow a realistic setting (sig-

nificance level defined at FDR ≤ 10%). Simulated data

under the null hypothesis were generated from real

expression data of vehicle controls, with noise added

by sampling from multivariate distribution with mean

0 and covariance matrix extracted block-wise from

the data (1000 genes per block). Afterward drug ef-

fects extracted from the linear models fitted by limma

on log-transformed drug concentration and adjusted

for two PCs, were added to the simulated treatment

group. Further, rescaled loadings of the first two PCs

from the PCA on the real expression data of both the

treatment and the control groups were used to simu-

late batch effects. The rescaling factors were 0, 2 and

4, representing no, medium and large batch effects re-

spectively. The batch effects were simulated in four

scenarios: 1) without loadings, 2) only the first princi-

pal component (PC1), 3) only the second principal

component (PC2), and 4) PC1 and PC2. These four

scenarios were always applied to the complete simu-

lated case data, but the percentage applied to the

control data thus modified depending on whether the

batch effect was simulated as balanced or not. Thirty

percent differences in batch allocation were imposed

to simulate unbalanced designs. FDR cutoff values at

10 and 20% were evaluated. The simulation was con-

ducted 10 times per drug and per setting.

Additional files

Additional file 1: Figure S1. Score plots of the first two principal

components for four typical drugs (A, B, C, D). Colors indicate batch

(plate id) and shapes indicate cell type. (PDF 1116 kb)

Additional file 2: Figure S2. Using connectivity mapping to evaluate

batch effect correction methods illustrated by ciclopirox. First, both CMAP

and LINCS underwent the differencial expression analyses with the same

batch effect correction methods, which resulted in drug signatures for all

the drugs; second, the drug signature of ciclopirox in CMAP matched to

all the drug signatures in LINCS, and the resulted connnectivity scores

were ranked, where we expect that ciclopirox appears within the top

three of the ranked list when the drug signature generated by the

method is of high validity and good quality. (PDF 85 kb)

Additional file 3: Figure S3. Results of connectivity score analysis with

a fixed number of 15 genes with the lowest FDR. The y axis is the

proportion of drugs having the same drug ranked within top 10 in

connectivity mapping between shared genes of CMAP and LINCS

dataset. The error bars are the 95% confidence levels as estimated by

binomial test. The x-axis is grouped by the total sample size in CMAP

dataset. The colors indicate the differential gene expression analysis

methods. (PDF 488 kb)

Additional file 4: Figure S4. Results of connectivity score analysis with

all significant genes (FDR ≤ 10%). Only drugs with at least 10 significant

genes yielded were included in the analysis. The y axis is the proportion

of drugs having the same drug ranked within top 3 or 10 in connectivity

mapping between shared genes of CMAP and LINCS dataset. The error

bars are the 95% confidence levels estimated by binomial test. The x-axis

is grouped by the differential gene expression analysis methods. The

colors indicate the total sample size in CMAP dataset. (PDF 1461 kb)

Additional file 5: Figure S5. Results of connectivity score analysis with

all significant genes (FDR ≤ 5%). Only drugs with at least 10 significant

genes yielded were included in the analysis. The y axis is the proportion

of drugs having the same drug ranked within top 3 or 10 in connectivity

mapping between shared genes of CMAP and LINCS dataset. The error

bars are the 95% confidence levels estimated by binomial test. The x-axis

is grouped by the differential gene expression analysis methods. The

colors indicate the total sample size in CMAP dataset. (PDF 1492 kb)

Additional file 6: Figure S6. Results of connectivity score analysis with

all significant genes (FDR ≤ 20%). Only drugs with at least 10 significant

genes yielded were included in the analysis. The y axis is the proportion

of drugs having the same drug ranked within top 3 or 10 in connectivity

mapping between shared genes of CMAP and LINCS dataset. The error

bars are the 95% confidence levels estimated by binomial test. The x-axis

is grouped by the differential gene expression analysis methods. The

colors indicate the total sample size in CMAP dataset. (PDF 1433 kb)

Additional file 7: Figure S7. Results of the simulation study without

batch effects and FDR < 10%. A, log10 transformed number of significant

genes averaged over 10 simulations; B, Proportion of false positives

among the significant genes averaged over 10 simulations; C. the power

of the analysis averaged over 10 simulations. (PDF 95 kb)

Additional file 8: Figure S8. Results of simulation study with medium

batch effects and FDR < 10%. A, log10 transformed number of significant

genes averaged over 10 simulations; B, Proportion of false positives

among the significant genes averaged over 10 simulations; C. the power

of the analysis averaged over 10 simulations. (PDF 95 kb)

Additional file 9: Figure S9. Results of simulation study with large

batch effects and FDR < 10%. A, log10 transformed number of significant

genes averaged over 10 simulations; B, Proportion of false positives

among the significant genes averaged over 10 simulations; C. the power

of the analysis averaged over 10 simulations. (PDF 94 kb)

Additional file 10: Figure S10. Results of simulation study with

medium batch effects, FDR < 10% and unequal allocation of cases and

controls. Medium batch effect simulated with 0.3 differences between

cases and controls. A, log10 transformed number of significant genes

averaged over 10 simulations; B, Proportion of false positives among the

significant genes averaged over 10 simulations; C. the power of the

analysis averaged over 10 simulations. (PDF 94 kb)

Additional file 11: Figure S11. Results of simulation study with

medium batch effects and FDR < 20%. A, log10 transformed number of

significant genes averaged over 10 simulations; B, Proportion of false

positives among the significant genes averaged over 10 simulations; C.

the power of the analysis averaged over 10 simulations. (PDF 94 kb)

Additional file 12: Figure S12. Negative log 10 of P-values plotted

against absolute estimates of extracted drug effects of felodipine,

fulvestrant and vorinostat. (PDF 391 kb)

Additional file 13: Figure S13. Histograms of P-values resulted from

differential expression analyses on one set of data simulated from

colchicine with balanced batch design and median batch size (parameter

settings see Table 4) at FDR≤ 0.1. The differential expression analyses: A)

limma + null model; B) limma + 1 PC; C) limma + 2 PCs; D) limma + 3
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PCs; E) limma + 4 PCs. Abbreviations: PC, principal component; MPFP,

mean proportion of false positive results. MPFP, mean proportion of false

positives among the significant genes. (PDF 1648 kb)

Additional file 14: Figure S14. Histograms of P-values resulted from

differential expression analyses on one set of data simulated from

vorinostat with balanced batch design and median batch size (parameter

settings see Table 4) at FDR≤ 0.1. The differential expression analyses: A)

limma + null model; B) limma + 1 PC; C) limma + 2 PCs; D) limma + 3

PCs; E) limma + 4 PCs. Abbreviations: PC, principal component; MPFP,

mean proportion of false positive results. MPFP, mean proportion of false

positives among the significant genes. (PDF 1242 kb)
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CMAP: Connectivity Map; LEAPP: the Latent Effect Adjustment after Primary

Projection; PCs: principal components; LINCS: Library of Integrated Network-

based Cellular Signatures; PCA: principal component analysis
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