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Abstract: Local damage to plants can induce fast systemic physiological changes through generation
and propagation of electrical signals. It is known that electrical signals influence numerous physi-
ological processes including photosynthesis; an increased plant tolerance to actions of stressors is
a result of these changes. It is probable that parameters of electrical signals and fast physiological
changes induced by these signals can be modified by the long-term actions of stressors; however, this
question has been little investigated. Our work was devoted to the investigation of the parameters of
burning-induced electrical signals and their influence on photosynthesis under soil water shortage in
pea seedlings. We showed that soil water shortage decreased the amplitudes of the burning-induced
depolarization signals (variation potential) and the magnitudes of photosynthetic inactivation (de-
creasing photosynthetic CO2 assimilation and linear electron flow and increasing non-photochemical
quenching of the chlorophyll fluorescence and cyclic electron flow around photosystem I) caused by
these signals. Moreover, burning-induced hyperpolarization signals (maybe, system potentials) and
increased photosynthetic CO2 assimilation could be observed under strong water shortage. It was
shown that the electrical signal-induced increase of the leaf stomatal conductance was a potential
mechanism for the burning-induced activation of photosynthetic CO2 assimilation under strong
water shortage; this mechanism was not crucial for photosynthetic response under control condi-
tions or weak water shortage. Thus, our results show that soil water shortage can strongly modify
damage-induced electrical signals and fast physiological responses induced by these signals.

Keywords: electrical signals; local burning; soil drought; water shortage; photosynthetic CO2 assimi-
lation; non-photochemical quenching; linear electron flow; cyclic electron flow around photosystem I;
leaf stomatal conductance

1. Introduction

Long-distance electrical signals (ESs), which are induced by local actions of stres-
sors and propagate into non-irritated zones, are an important mechanism of induction of
systemic adaptation response in plants [1–8]. Three types of electrical signals including
variation potential (VP), action potential (AP), and system potential (SP) are often consid-
ered to be present in higher plants [6–8]. VP is a long-term “depolarization signal” (minutes
and tens of minutes) [9,10] which is induced by local damage and has irregular shape (long-
term depolarization, fast initial depolarization, and “AP-like” spikes can be observed); its
parameters are dependent on the distance from the damaged zone. A transient inactivation
of H+-ATPase in the plasma membrane is considered to be the main mechanism of VP
generation [9,10]. AP is a short-term depolarization signal (mainly, seconds and tens of
seconds) [4,11–13] which is induced by stimuli with weak and moderate intensity and has
a spike shape; its parameters are not dependent on the distance from the irritated zone. The
generation of AP is mainly related to transient activation of calcium, anion, and potassium
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channels [12,14,15]; however, a short-term inactivation of H+-ATPase can also participate
in this electrical response [16]. SP is a long-term hyperpolarization signal (mainly, minutes
and tens of minutes) [7,17,18] which often accompanies VP and is caused by transient
activation H+-ATPase.

ESs can strongly influence physiological processes in plants [1,2,7,8]. It is probable
that AP and VP induce similar physiological changes [7,8]: the stimulation of expression of
defense genes [19–23], activation of production of stress phytohormones including abscisic
acid, jasmonic acid, salicylic acid, and ethylene [23–29], modification of stomata opening,
transpiration, and water content [30–34], activation of respiration [35–37], suppression of
phloem loading [38,39] and phloem mass-flow [40–42], increasing ATP content [43], and
many others. Photosynthesis is an important target of influence of AP and VP [44]. It is
known that ESs decrease the CO2 flux into mesophyll cells [45] and suppress photosyn-
thetic dark reactions [46,47], increase the non-photochemical quenching of the chlorophyll
fluorescence (NPQ) [46–50], decrease the photosynthetic linear electron flow (LEF), and
stimulate the cyclic electron flow around photosystem I (CEF) [51]. Inactivation of H+-
ATPase [52,53] and changes in intra- and extracellular pH [54–56], which are related to VP
and AP generation, are the probable mechanism of the induction of these photosynthetic
changes. Increase of the plant tolerance to actions of stressors is an important result of ES-
induced physiological changes [57–64]; ES-induced photosynthetic changes are probable to
participate in this increase of plant tolerance [56,62,65,66].

Influence of SP on physiological processes (particularly, photosynthesis) has been
little investigated. There are few works (e.g., [32,67]) which show that ESs with different
directions (depolarization or hyperpolarization signals induced by different stimuli) induce
changes in photosynthetic CO2 assimilation (ACO2) with different directions; alternatively,
photosynthetic responses can be absent at a specific direction of the electrical signal [68].
These results show that specific photosynthetic responses, which differ from AP- and
VP-caused responses, can be induced by SP. In contrast, other works [69] show that ESs
with different directions induce similar suppression of ACO2; the last result is in a good
accordance with our previous theoretical conclusion [7] based on apoplastic alkalization
during SP [17]. Relations between the generation and propagation of SP and changes in
plant tolerance to stressors have also been weakly investigated; earlier, we speculated
that SP can positively influence plant tolerance [7] but the hypothesis requires further
investigations.

Thus, ESs (especially, VP and AP) are the important mechanism of fast plant responses
on actions of stressors. This result can be used for development of new methods of re-
vealing actions of stressors on plants based on both direct measurements of their electrical
activity [70–79] and measurements plant reflectance which is strongly related to the physio-
logical responses induced by ESs [34,80–82]. It can be expected that long-term changes in
environmental conditions can modify the parameters of propagation of electrical signals
and their influence on physiological processes. There are some works showing modification
of ESs and the physiological responses under actions of specific environmental factors
(e.g., [83] shows that ESs in plants are modified under action of ionizing radiation); however,
the influence of many other long-term factors on the parameters of ESs and physiological
responses has been weakly investigated.

In the current work, we investigated the parameters of burning-induced ESs and pho-
tosynthetic responses, which were caused by these electrical signals, in pea seedlings under
a soil water shortage because the water shortage can strongly influence photosynthesis
and productivity in plants [84–87]. Burning-induced ESs were analyzed because these
signals and their influence on photosynthesis in pea seedling under control conditions
(well irrigated plants or plants cultivated in hydroponic medium) had been investigated in
detail in our earlier works [50–52,55].
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2. Results
2.1. Influence of Soil Water Shortage on Photosynthetic Parameters and Leaf Stomatal Conductance
without Induction of Electrical Signals

The influence of soil water shortage on photosynthetic parameters and leaf stomatal
conductance without induction of ESs was analyzed at the first stage of investigation
(Figure 1). Soil water shortage was induced by termination of irrigation; in accordance
with our previous results [88,89], this termination induced fast water loss by using a sand
substrate for cultivation of the plants and can be used as a model of soil drought.
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Figure 1. Influence of soil water shortage on the photosynthetic CO2 assimilation (ACO2) (a), leaf
stomatal conductance (gH2O) (b), maximal quantum yield of photosystem II (Fv/Fm) (c), non-
photochemical quenching of the chlorophyll fluorescence (NPQ) (d), photosynthetic linear electron
flow (LEF) (e), and cyclic electron flow around photosystem I (CEF) (f) in pea seedlings (n = 6). n was
the quantity of investigated seedlings. Water shortage was initiated by the termination of irrigation of
plants. Parameters were measured in the second mature leaf. ACO2 was calculated as the difference
between CO2 assimilation (A) under light and dark conditions. *, the parameter significantly differed
from the one in control pea seedlings (p < 0.05, Student’s t-test).
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It was shown that most of the investigated parameters were not significantly changed
after 2 days of water shortage (Figure 1) excluding the maximal quantum yield of photo-
system II and non-photochemical quenching; these parameters were decreased. In contrast,
the photosynthetic CO2 assimilation, leaf stomatal conductance, maximal quantum yield of
photosystem II, and linear electron flow were suppressed after 4 days of water shortage and
non-photochemical quenching was increased, i.e., there were typical stress changes in the
photosynthetic processes in the plants [85,90–95]. It was interesting that CEF, which could
be also stimulated by the actions of stressors [85,96–99], was not significantly influenced by
soil water shortage.

2.2. Influence of Soil Water Shortage on Parameters of Burning-Induced Electrical Signals in Pea
Seedlings

The influence of the soil water shortage on the parameters of burning-induced ESs
in pea seedlings was analyzed at the second stage of the investigation (Figure 2) by using
extracellular measurements of electrical activity.
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Figure 2. Records of burning-induced electrical signals in control pea seedlings (a), seedlings after 2
days of water shortage (b), and seedlings after 4 days of this shortage (c,d). Extracellular measure-
ments in the stem near to the first mature leaf (E1), the stem near to the second mature leaf (E2),
and leaflet of the second mature leaf (E3) are shown. Arrow marks the time of the burning of the
first mature leaf. Figure 2c shows the hyperpolarization electrical signal in the second leaf which
was observed in two peas from six plants after 4 days of water shortage; Figure 2d shows a weak
depolarization electrical signal in the second leaf which was observed in four peas from six plants
after 4 days of water shortage. Only depolarization signals were observed in control plants and plants
after 2 days of water shortage.
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It was shown (Figure 2a) that the local burning induced typical VP (the depolariza-
tion signal) in pea seedlings under control conditions: duration was more than 20 min,
shape was irregular, and amplitude was decreased on increasing the distance from the
damage zone [7,10]. The burning-induced ESs, which were observed after 2 days of soil
water shortage, were similar to the control depolarization signal. In contrast, ESs were
modified after 4 days of water shortage; there were two types of signals: hyperpolarization
signals (Figure 2c) and depolarization signals (Figure 2d) with decreased amplitude. The
hyperpolarization signals were similar to SP [17]; e.g., strong hyperpolarization and large
duration were observed. Analysis of the averaged amplitudes of the burning-induced ESs
showed absence of a significant difference from amplitudes in control plants after 2 days of
soil water shortage and a significant decrease of ES amplitude after 4 days of this shortage
(Figure 3).
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Figure 3. Influence of soil water shortage on the amplitudes of the burning-induced electrical signals
in the stem near to the first mature leaf (A1) (a), the stem near to the second mature leaf (A2) (b), and
leaflet of the second mature leaf (A3) (c) in pea seedlings (n = 6). The water shortage was initiated by
the termination of irrigation of the plants. It was assumed that negative amplitudes corresponded to
the hyperpolarization signal. *, the amplitude significantly differed from the one in the control pea
seedlings (p < 0.05, Student’s t-test).

Additionally, we analyzed the correlation coefficients (R) between the amplitudes of
ESs in different parts of the plants, which were calculated on the basis of the electrical
signals in all experimental seedlings. It was shown that R was 0.82 for the amplitudes
in the stem near to the first leaf (A1) and ones in the stem near to the second leaf (A2), R
was 0.52 for A1 and amplitudes in the second leaf (A3), and R was 0.50 for A2 and A3; all
correlation coefficients were significant. This result showed that the parameters of ESs were
very similar in the stem, but the electrical signals were changed after their propagation
into leaves; it was in a good accordance with our previous results, which showed that the
amplitudes of ESs were strongly decreased in leaves [43].
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2.3. Influence of Soil Water Shortage on Parameters of Burning-Induced Changes in Photosynthetic
Parameters and Leaf Stomatal Conductance

Figure 4 shows the records of the burning-induced changes in the photosynthetic
parameters and leaf stomatal conductance in control pea seedlings and seedlings after 2
and 4 days of soil water shortage. It was shown that the local burning induced typical
photosynthetic responses under control conditions (the decrease of CO2 assimilation and
LEF and the increase of NPQ and CEF [51]). Magnitudes of changes in NPQ, LEF, and CEF
were moderately decreased after 2 days of soil water shortage and were strongly decreased
after 4 days of this shortage. Magnitude of suppression of the CO2 assimilation after 2 days
of soil water shortage was similar to the control; in contrast, the local burning induced
slow stimulation of the CO2 assimilation after 4 days of water shortage. It was additionally
shown that the local burning induced large changes in gH2O; however, the directions of
these changes were different in the various experimental plants.
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Figure 4. Records of burning-induced changes in CO2 assimilation (A), leaf stomatal conductance
(gH2O), non-photochemical quenching (NPQ), photosynthetic linear electron flow (LEF), and cyclic
electron flow around photosystem I (CEF) in control pea seedlings (a), seedlings after 2 days of soil
water shortage (b), and seedlings after 4 days of this shortage (c) (n = 6). Parameters were measured
in the second mature leaf. Arrow marks the time of the burning of the first mature leaf.
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The analysis of the averaged magnitudes supported these results (Figure 5). It was
shown that the local burning induced a significant decrease of ACO2 (∆ACO2) under con-
trol conditions and after 2 days of soil water shortage, and a significant increase of this
parameter after 4 days of this shortage (Figure 5a). The magnitudes of changes in NPQ
(∆NPQ) (Figure 5c), LEF (∆LEF) (Figure 5d), and CEF (∆CEF) (Figure 5e) were significantly
decreased after 2 days (moderate decrease) and after 4 days (strong decrease) of soil water
shortage. It was important that the averaged magnitude of changes in gH2O (∆gH2O) had
large error and did not differ from zero; the local burning induced an increase of gH2O after
only 4 days of soil water shortage (tendency).
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Figure 5. Influence of the soil water shortage on the burning-induced changes in photosynthetic
CO2 assimilation (∆ACO2) (a), leaf stomatal conductance (∆gH2O) (b), non-photochemical quenching
(∆NPQ) (c), photosynthetic linear electron flow (∆LEF) (d), and cyclic electron flow around photo-
system I (∆CEF) (e) in pea seedlings (n = 6). The water shortage was initiated by the termination of
irrigation of the plants. Parameters were measured in the second mature leaf; the first mature leaf
underwent burning. *, the parameter significantly differed from the one in control pea seedlings
(p < 0.05, Student’s t-test).
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Considering our earlier investigations of the influence of the burning-induced electri-
cal signals on photosynthesis in pea seedlings [50–52,55], it was probable that ESs were a
link between the burned zone and the photosynthetic responses in the non-damaged leaf of
plant. Analysis of the correlations between the amplitudes of ESs in the second mature leaf
(A3) and the magnitudes of changes in photosynthetic parameters (Figure 6) supported the
influence of ESs on the photosynthetic parameters in the current variant of experiments. It
was shown that these amplitudes were strongly correlated to ∆ACO2 (Figure 6a) and mod-
erately correlated to ∆NPQ (Figure 6b) and ∆CEF (Figure 6d); all investigated correlation
coefficients (excluding the weak correlation coefficient between A3 and ∆LEF, Figure 6c)
were significant. The maximal absolute value of the correlation coefficient between A3 and
∆ACO2 was in a good accordance with our hypothesis about participation of inactivation of
photosynthetic dark reactions in the induction of the photosynthetic response caused by
ESs [7,44].
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Figure 6. Dependences of burning-induced changes in photosynthetic CO2 assimilation (∆ACO2) (a),
non-photochemical quenching (∆NPQ) (b), photosynthetic linear electron flow (∆LEF) (c), and cyclic
electron flow around photosystem I (∆CEF) (d) on amplitudes of electrical signals in the leaflet of the
second mature leaf (A3) in pea seedlings. Results of measurements in control pea seedlings, seedlings
after 2 days of soil water shortage, and seedlings after 4 days of this shortage were analyzed together
(n = 18). It was assumed that negative amplitudes corresponded to the hyperpolarization signal. R is
the linear correlation coefficient.
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Figure 6 additionally supports that the hyperpolarization signals and depolarization
signals with small amplitudes (<15 mV) were related to the stimulation of the photo-
synthetic CO2 assimilation; in contrast, depolarization signals with moderate and large
amplitudes were related to the inactivation of this assimilation. It was probable that the
changes in direction of ESs under water shortage (changes from VP to SP) could be the
reason for the changes in direction of the response of ACO2 (changes from decrease of ACO2
to increase) after local burning under this shortage.

It should be noted additionally that the linear correlation coefficients between ∆ACO2
and ∆NPQ, ∆ACO2 and ∆LEF, and ∆ACO2 and ∆CEF, calculated on the basis of all measure-
ments, were −0.81, 0.70, and 0.69, respectively (Figure S1); all coefficients were significant.
Similar significant correlation coefficients were between ∆NPQ and ∆LEF (R = −0.91) and
∆NPQ and ∆CEF (R = 0.88) (Figure S2).

2.4. Analysis of Participation of Changes in the Leaf Stomatal Conductance in Changes of the
Photosynthetic CO2 Assimilation

Finally, we analyzed the participation of changes in gH2O in the induction of changes
in ACO2. The first question was: Why were there different directions of burning-induced
changes in the leaf stomatal conductance? Earlier, we showed that the direction of ES-
induced changes in the transpiration were related to the relative air humidity [33]. In the
current experiment, this humidity was constant (about 70%); however, it was possible that
variability in the initial gH2O could be the additional factor influencing the direction of the
response of the leaf stomatal conductance.

It was shown (Figure 7a) that initial gH2O was significantly correlated with ∆gH2O in
control pea seedlings, in seedlings after 2 days of soil water shortage, and in all investigated
seedlings. However, this correlation was moderate and non-significant in seedlings after
4 days of water shortage.
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Figure 7. Correlation coefficients between the leaf stomatal conductance (gH2O) and its burning-
induced changes (∆gH2O) (a) and between the amplitudes of the burning-induced electrical signals
in the second mature leaf (A3) and ∆gH2O (b) in control pea seedlings (n = 6), seedlings after 2 days
of soil water shortage (n = 6), seedlings after 4 days of this shortage (n = 6), and all investigated
seedlings (n = 18). It was assumed that negative amplitudes corresponded to the hyperpolarization
signal. *, the correlation coefficient was significant.



Plants 2022, 11, 534 10 of 21

Analysis of correlations between ∆gH2O and A3 showed the opposite result (Figure 7b):
a large and significant correlation between these parameters was only observed in seedlings
after 4 days of soil water shortage (R = −0.95). These results showed that the variability of
the initial values of gH2O could be the main factor influencing the direction of the burning-
induced changes under control conditions and moderate water shortage; in contrast, strong
water shortage contributed to an increase of gH2O after propagation of the electrical signals.

Considering a strong relation between the amplitudes of ESs and the magnitudes of
changes in gH2O after 4 days of soil water shortage, we supposed that an increase of the
leaf stomatal conductance could be the mechanism of activation of photosynthetic CO2
assimilation after 4 days of water shortage. Correlations between ∆gH2O and ∆ACO2 were
investigated to check for this supposition (Figure 8).
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Figure 8. Dependences of burning-induced changes in the photosynthetic CO2 assimilation (∆ACO2)
on changes in the leaf stomatal conductance (∆gH2O) in control pea seedlings (n = 6) (a), seedlings
after 2 days of soil water shortage (n = 6) (b), seedlings after 4 days of water shortage (n = 6) (c), and
all investigated seedlings (n = 18) (d). R is the linear correlation coefficient.

It was shown that changes in the leaf stomatal conductance were positively and
significantly related to changes in photosynthetic CO2 assimilation in all variants of analysis
(Figure 8). However, these relationships did not influence ∆ACO2 in a qualitive manner
under control conditions and after 2 days of soil water shortage, because stimulation of this
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assimilation was completely absent in these variants (Figure 8a,b). In contrast, increasing
gH2O was strongly related to increasing ACO2 in pea seedlings after 4 days of soil water
shortage: ∆ACO2 was about zero at low ∆gH2O and ∆ACO2 was large and positive at large
and positive ∆gH2O (Figure 8c).

3. Discussion

ESs are an important mechanism of induction of the fast systemic physiological
response under local actions of stressors [7,8]. The response can include fast changes in the
expression of defense genes [19–23], production of stress phytohormones [23–29], water
exchange [30–34], respiration [35–37], phloem transport [38–42], ATP content [43], and
photosynthesis [44–56]. The result of these changes is an increase of the plant tolerance to
the action of stressors [57–66]; it means that ESs can participate in the plant adaptation to
changeable environmental factors. Modification of the parameters of ESs and ES-induced
physiological changes under the long-term action of environmental stressors seems to be
very probable because it can play an adaptive role; however, this problem has been weakly
investigated. Earlier, we showed that plant electrical signals and ES-induced physiological
changes can be modified by the long-term action of ionizing radiation [83]. The current
work was devoted to analysis of the influence of soil water shortage, which was a model of
soil drought (one of the key environmental factors for photosynthesis and productivity of
plants [84–87]), on the burning-induced ESs and photosynthetic responses caused by these
signals.

There are several important points which are demonstrated in the current work
(Figure 9). First, we showed that soil water shortage can strongly influence the parameters
of burning-induced ESs including induction of inversion of direction of these electrical
signals (Figure 2). There are several works [17,18,32,67–69] which show induction and
propagation of hyperpolarization signals through the plant body. In accordance with
Zimmermann et al. [17,18], these signals are system potentials which are related to the
transient activation of H+-ATPase in the plasma membrane. It is important that these
hyperpolarization signals can be observed under the actions of damages inducing typical
depolarization signals. For example, local burning is known as an effective inductor of VP
(the depolarization signal) in various plant species (see, e.g., [50–52,55,56] for pea, [47] for
geranium, [100] for wheat, [54] for maize, [101] for mimosa, [26] for tobacco, [40] for Vicia
faba, etc.); however, some works show that local burning can induce a hyperpolarization
signal in maize [32,68] or poplar [69]. Moreover, the type of ES can be dependent on the
localization of the burning [69]: a depolarization signal is observed after burning of the
fourth leaf and a hyperpolarization signal is observed after burning of the first leaf. Our
current results show that (i) the probability of propagation of the hyperpolarization signal
can be stimulated by strong water shortage (however, depolarization signals can also be
observed in some plants in this case) and (ii) the depolarization signal in the plant stem can
be transformed into a hyperpolarization signal in the plant leaf. These results show that
the type of ESs induced by the local damage (burning) in plants (the hyperpolarization or
depolarization signals) is dependent on intricate mechanisms.
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Section 3). See works [7,44] for details of ES influence on photosynthesis in irrigated plants; details
of the ES influence on photosynthesis under water shortage are discussed in the text. pHap is the
apoplastic pH.

Propagation of the wave of increased water pressure through xylem (a hydraulic
signal), which transiently inactivates H+-ATPase in the plasma membrane (probably, by
means of activation of mechanosensitive Ca2+ channels and influx of calcium ions into the
cytoplasm), is mainly considered to be the potential mechanism of propagation of burning-
or heating-induced variation potentials [1,9,10,102–105]. It is known [106,107] that water
shortage (drought) decreases hydraulic pressure in plants; this decrease of initial pressure
can decrease the value of the maximum hydraulic pressure after local burning. Additionally,
the decrease of water content in plants under water shortage can decrease the magnitude
of the burning-induced changes in the hydraulic pressure because the burning-induced
water flux from the cells to xylem should be decreased (this flux is caused by efflux of
osmolytes from damaged cells [105] and is dependent on the water content in the nearest
cells). Considering the relation between the magnitude of the pressure increase and the
amplitude of VP [102], this decrease of the pressure maximal value and magnitude of the
pressure change should decrease the amplitude of VP under soil water shortage probably
through a decrease of the magnitude of inactivation of H+-ATPase, which is the main
mechanism of VP [1,2,7–10].

This mechanism explains a part of our results (decreased amplitude of VP under
water shortage, Figures 2 and 3); however, the inversion of ES direction in leaf under
strong water shortage requires an additional explanation. Activation of H+-ATPase at low
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magnitudes of the hydraulic signal and its inactivation at moderate and high magnitudes
seem to be the mechanism which can explain the induction of both the depolarization
and hyperpolarization signals. There are some arguments supporting this hypothesis.
(i) It has been shown that the increased pressure can activate H+-ATPase in the root cells
of trees [108]. (ii) Ca2+ influx is the probable mechanism of influence of the hydraulic
signal on the activity of H+-ATPase [10]. (iii) The increased Ca2+ concentration suppresses
the activity of H+-ATPase [109]; however, there are works [110,111] showing that Ca2+

can induce the transition from inactive to active state of H+-ATPase (at least, under salt
stress). (iv) The hypothesis about the two-phase dependence of activity of H+-ATPase on
Ca2+ concentration (activation under moderate concentrations and inactivation under high
concentrations) effectively explains the influence of a low-frequency magnetic field on the
plant electrical activity [112].

Second, we show that water shortage can strongly influence ES-induced changes in
the photosynthetic CO2 assimilation (Figures 4 and 5). This influence is probably based
on water shortage-induced changes in the amplitude of ESs (Figure 6). It is important that
the inversion of direction of ESs or a strong decrease of their amplitude is accompanied
by the inversion of the direction of changes in ACO2 (activation of the photosynthetic CO2
assimilation is observed at hyperpolarization signals or depolarization signals with small
amplitudes). This result supports the idea about the direct relation between the direction of
ESs and photosynthetic changes, which is based on several works [32,67,68]; additionally,
it is in a good accordance with our results about linear correlations between amplitudes of
ESs and the magnitudes of photosynthetic changes [44]. In contrast, this result contradicts
the data of work [69] which shows a decrease of photosynthetic CO2 assimilation after
both the depolarization and hyperpolarization signals. Our results show that the increase
of the leaf stomatal conductance is the potential mechanism of this activation of ACO2
in seedlings after 4 days of soil water shortage (Figure 8c). However, ∆gH2O does not
crucially influence photosynthetic CO2 assimilation in the control seedlings (Figure 8a)
and seedlings after 2 days of water shortage (Figure 8b); moreover, changes in gH2O are
weakly related to the amplitude of ESs in these cases (control and 2 days of water shortage)
(Figure 7). The result can be explained by the low initial value of gH2O after 4 days of
soil water shortage—transport of CO2 through stomata is not the main limiting factor
for photosynthesis under watered conditions or under weak water shortage [113,114];
however, it can be the limiting factor under strong water shortage and strong stomata
closing. It means that the activation of ACO2 after propagation of the hyperpolarization
signals can be absent under other conditions (without water shortage), and other responses
(e.g., inactivation of ACO2 [69]) can be observed.

Third, our results show that the magnitudes of ES-induced changes in the parameters
of the photosynthetic light reactions (NPQ, LEF, and CEF) are strongly decreased with
the development of water shortage (Figures 4 and 5). This result can be explained by
both the decrease of the amplitudes of the depolarization signals under water shortage
(amplitudes of ESs are significantly correlated to ∆NPQ and ∆CEF, Figure 6) and the
decrease of the initial values of the parameters (at least, the linear correlation coefficient
between LEF and ∆LEF is significant and equals –0.63, data not shown). It should be noted
that the correlations between ∆ACO2 and the parameters of photosynthetic light reactions
(Figure S1) are stronger than the correlations of these parameters with the amplitudes of
ESs; correlations between the parameters of photosynthetic light reactions (Figure S2) are
stronger than the correlations of these parameters with ∆ACO2. This result shows that ESs
primarily influence photosynthetic CO2 assimilation; after that, changes in this assimilation
influence the photosynthetic light reactions. This chain of events is in good accordance with
one of the ways of ES influence on photosynthesis, which has been shown in plants under
irrigated conditions [7,43,44,46,47,51,52]: local damage, the generation and propagation of
VP (the decrease of the H+-ATPase activity), the alkalization of the apoplast, the decrease
of CO2/HCO3

- ratio, the decrease of the CO2 flux into mesophyll cells and suppression of
photosynthetic dark reactions, the increase of ratios of ATP/ADP and NADPH/NADP+,



Plants 2022, 11, 534 14 of 21

the suppression of activity of H+-ATP-synthase in the thylakoid membrane, the increase of
the luminal concentration of protons in the thylakoids of chloroplasts, the suppression of
LEF, and stimulation of CEF and NPQ. It means that the suppression of ES-induced changes
in NPQ, LEF, and CEF under soil water shortage can be mainly caused by the decrease of
the magnitude of the ACO2 suppression in this case—participation of the direct influence of
ESs on the photosynthetic light reactions in these water shortage-induced modifications is
not probable.

It is considered [6–8,44,57–60] that ESs increase plant tolerance to environmental stressors.
Particularly, ES induced adaptive changes in photosynthetic processes [6–8,44] including an
increase of NPQ and CEF and a decrease of LEF and ACO2; the last response contributes
to an increase of the ATP content in leaf and can be important for reparation of the pho-
tosynthetic machinery [43,91]. It can be expected that these changes are not crucial under
stress conditions (soil water shortage in our work) because these protective mechanisms
are activated earlier by a direct action of stressors (increased NPQ and decreased LEF and
ACO2 are observed under water shortage conditions, Figure 1). Thus, our results show that
a direct action of stressors (soil water shortage) can suppress ES-induced photosynthetic
response; the result is in a good accordance with our previous work [83]. Additionally, the
following is not clear: Can the activation of photosynthetic CO2 assimilation under strong
water shortage, participate in the plant protection to stressors? We cannot fully exclude
that the ES-induced activation of CO2 assimilation during the suppression of this process
by strong water shortage can participate in an increase of plant tolerance to stressors (e.g.,
through additional synthesis of organic compounds including, maybe, osmotically active
agents). However, this problem requires further investigation.

4. Materials and Methods
4.1. Pea Cultivation and Water Shortage Induction

Seedlings of 2–3-week-old pea (Pisum sativum L., cultivar “Albumen”, Central Experi-
mental and Production Facility of Roika, Roika, Russia) were investigated. The seedlings
were cultivated in 400 mL pots with a sand substrate (about 350 g) in a growth room under
16/8 h (light/dark) photoperiod at 24 ◦C. There were six pea seedlings per pot. Plants were
irrigated by 50% Hoagland–Arnon medium every 2 days (about 50 mL).

Termination of the irrigation of experimental seedlings was used for fast induction
of soil water shortage; control seedlings were irrigated. In accordance with our previous
results, which were shown in similar conditions [88,89,115], this termination induced a
decrease of the relative water content in the sand substrate (calculated as the ratio of
the difference between fresh and dry weights of sand to its fresh weight) from 10–12%
(irrigated pots) to less than 0.5% after 2 and 4 days of water shortage. It was previously
shown [89,115] that this water shortage decreased the relative water content in leaves by
about 2% after 2 days of water shortage and by about 10% after 4 days of water shortage.
Visual estimation showed that seedlings had decreased turgor in the leaves after 4 days of
water shortage.

Electrical signals, photosynthetic processes, and leaf stomatal conductance were inves-
tigated in seedlings after 2 and 4 days after termination of irrigation. It should be noted
that control seedlings were irrigated on the days above before the measurements.

4.2. Local Burning and Measurements of Electrical Signals

The local burning of the first mature leaf (open flame, 3–4 s, about 1 cm2) was used for
induction of ESs (Figure 10) in accordance with our previous works (e.g., [34,43,52,55,56]). This
burning was induced after a 1.5 h adaptation of the plants in the experimental set because
this adaptation duration (about 1.5 h) was considered to be enough for the induction of
electrical signals and photosynthetic responses in pea seedlings [43,50–52,55,56].
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LEF and CEF were calculated based on Equations (1) and (2) [50,51,53]: 

Figure 10. Scheme of measurements of surface electrical potentials, photosynthetic parameters, and
leaf stomatal conductance in pea seedlings under control conditions and after 2 and 4 days of soil
water shortage. ACO2 is the photosynthetic CO2 assimilation; gH2O is the leaf stomatal conductance;
Fv/Fm is the maximal quantum yield of photosystem II; NPQ is the non-photochemical quenching;
LEF is the photosynthetic linear electron flow; and CEF is the cyclic electron flow around photosystem
I. E1, E2, and E3 are the measuring electrodes; ER is the reference electrode. The water shortage was
initiated by termination of irrigation of the plants. The red arrow marks the local burning of the first
mature leaf (flame, 2–3 s).

ESs were measured using extracellular Ag+/AgCl electrodes (RUE Gomel Measuring
Equipment Plant, Gomel, Belarus), a high-impedance IPL-113 amplifier (Semico, Novosi-
birsk, Russia), and a personal computer. The measuring electrodes were contacted to the
stem near to the first mature leaf (E1), the stem near to the second mature leaf (E2), and
the leaflet of the second mature leaf (E3). The electrodes were contacted to a plant by
cotton threads wetted with a standard solution (1 mM KCl, 0,5 mM CaCl2, 0,1 mM NaCl)
in accordance with our previous works [29,83]. The reference electrode (ER) was contacted
to the growth substrate.

4.3. Measurements of Photosynthetic Parameters and Leaf Stomatal Conductance

A GFS-3000 gas analyzer (Heinz Walz GmbH, Effeltrich, Germany), Dual-PAM-100
Pulse-Amplitude-Modulation (PAM)-fluorometer (Heinz Walz GmbH, Effeltrich, Ger-
many), and Dual-PAM gas-exchange Cuvette 3010-Dual common measuring head (Heinz
Walz GmbH, Effeltrich, Germany) were used for investigations of photosynthetic pa-
rameters and leaf stomatal conductance (Figure 10). Photosynthetic measurements were
performed on the second mature leaf.

The concentration of CO2 in the measuring cuvette, relative humidity, and temperature
were 360 ppm, 70%, and 23 ◦C, respectively. Blue actinic light (460 nm, 240 µmol m−2s−1)
was used in the investigation. Photosynthetic measurements were initiated after 20 min
dark intervals; the initial and maximum levels of photosystem II fluorescence (F0 and
Fm, respectively) and maximum light absorption by photosystem I (Pm) were measured
after dark adaptation. The current levels of fluorescence (F), maximum fluorescence level
after the preliminary illumination (Fm’), current light absorption by photosystem I (P), and
maximum light absorption by photosystem I after the preliminary illumination (Pm’) were
measured for each saturation pulse; saturation pulses were generated every 30 s. These
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parameters were used for the calculation of NPQ and the quantum yields of photosystem I
(ΦPSI) and photosystem II (ΦPSII) in accordance with the standard equations [116–118].

LEF and CEF were calculated based on Equations (1) and (2) [50,51,53]:

LEF = β× PAR × dII × ΦPSII (1)

CEF = β× PAR × [(1 − dII)× ΦPSI − dII × ΦPSII] (2)

where PAR is the intensity of the actinic light, β is the fraction of the actinic light absorbed
by the leaves equal to 0.88 in accordance with [51], dII is the fraction of the absorbed light
distributed to photosystem II, and (1–dII) is the fraction of the absorbed light distributed to
photosystem I. In accordance with the earlier proposed method [50,51], dII was calculated
as ΦPSI

ΦPSI+ΦPSII
, where both ΦPSI and ΦPSII were measured under a low intensity of actinic

light.
GFS-3000 (Heinz Walz GmbH, Effeltrich, Germany) was used for the measurements of

CO2 assimilation and leaf stomatal conductance which were automatically calculated by
GFS-3000 software. ACO2 was calculated as the difference between CO2 assimilation (A)
under light and dark conditions.

The actinic light was initiated at 2 min after the start of the generation of the saturation
pulses. The local burning was induced after 108 min of illumination; photosynthetic
parameters without ESs were measured before the local burning (after about 107 min of
illumination). ∆ACO2, ∆NPQ, ∆LEF, and ∆CEF were calculated as the difference between
the extremes of these parameters and their values before the induction of the ESs.

4.4. Statistics

Different seedlings were used for each experiment; n was their quantity which equaled
6 for each experimental variant and 18 for the correlation analysis on the basis of all the
experimental variants. Averaged values, standard errors, representative records, scatter
plots, and linear correlation coefficients (Pearson correlation coefficients) were presented.
The linear correlation coefficients (and linear regressions describing the scatter plots) were
used because they were the simplest criteria of the relations between the investigated
parameters and were suitable for comparison between different relations. The significance
of differences was estimated using the Student’s t-test (for p < 0.05). Microsoft Excel 365
was used for statistical analysis.

5. Conclusions

The current work was devoted to analysis of the influence of soil water shortage on the
burning-induced electrical signals and ESs-induced changes in photosynthetic parameters.
Three important points were illustrated. First, development of soil water shortage decreased
the amplitudes of the burning-induced ESs and, even, contributed to the propagation of
the hyperpolarization signals under strong water shortage. Second, development of soil
water shortage decreased the ES-induced response of photosynthetic CO2 assimilation
which was strongly related to the amplitudes of the electrical signals in investigated leaves.
The direction of this response was changed under strong water shortage (inactivation of
CO2 assimilation was observed in control seedlings and seedlings after 2 days of water
shortage and activation of this assimilation was observed in seedlings after 4 days of water
shortage). Activation of photosynthetic CO2 assimilation was probably caused by the
ES-induced increase of leaf stomatal conductance under strong water shortage. Third, the
soil water shortage development decreased the magnitudes of changes in the parameters
of the photosynthetic light reactions (the non-photochemical quenching, linear electron
flow and cyclic electron flow around photosystem I) induced by the local burning and
propagation of ESs.

Thus, our results show that long-term action of environmental stressors (soil water
shortage) can modify the damage-induced electrical signals and photosynthetic responses
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caused by these signals. These modifications can be an additional mechanism adaptation
for higher plants to the changeable environmental conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11040534/s1, Figure S1: Dependences of burning-induced
changes in non-photochemical quenching (∆NPQ) (a), photosynthetic linear electron flow (∆LEF)
(b), and cyclic electron flow around photosystem I (∆CEF) (c) on burning-induced changes in the
photosynthetic CO2 assimilation (∆ACO2); Figure S2: Dependences of burning-induced changes in
the photosynthetic linear electron flow (∆LEF) (a), and cyclic electron flow around photosystem I
(∆CEF) (b) on burning-induced changes in non-photochemical quenching (∆NPQ).
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signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. New Phytol. 2017, 213, 1818–1835.
[CrossRef]

29. Ladeynova, M.; Mudrilov, M.; Berezina, E.; Kior, D.; Grinberg, M.; Brilkina, A.; Sukhov, V.; Vodeneev, V. Spatial and temporal
dynamics of electrical and photosynthetic activity and the content of phytohormones induced by local stimulation of pea plants.
Plants 2020, 9, 1364. [CrossRef]

30. Kaiser, H.; Grams, T.E. Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals
in Mimosa pudica. J. Exp. Bot. 2006, 57, 2087–2092. [CrossRef]

31. Grams, T.E.; Koziolek, C.; Lautner, S.; Matyssek, R.; Fromm, J. Distinct roles of electric and hydraulic signals on the reaction of
leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ. 2007, 30, 79–84. [CrossRef]

32. Vuralhan-Eckert, J.; Lautner, S.; Fromm, J. Effect of simultaneously induced environmental stimuli on electrical signalling and gas
exchange in maize plants. J. Plant Physiol. 2018, 223, 32–36. [CrossRef]

33. Yudina, L.M.; Sherstneva, O.N.; Mysyagin, S.A.; Vodeneev, V.A.; Sukhov, V.S. Impact of local damage on transpiration of pea
leaves at various air humidity. Russ. J. Plant Physiol. 2019, 66, 87–94. [CrossRef]

34. Sukhova, E.; Yudina, L.; Gromova, E.; Nerush, V.; Vodeneev, V.; Sukhov, V. Burning-induced electrical signals influence broadband
reflectance indices and water index in pea leaves. Plant Signal. Behav. 2020, 15, 1737786. [CrossRef] [PubMed]
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