Influence of Capacity Constraints on Airline Fleet Mix

Mark M. Hansen Geoffrey D. Gosling

National Center of Excellence for Aviation Operations Research University of California at Berkeley

Study Objectives

- Q Examine recent trends in aircraft size and market composition at LAX
- Q Assess the prospects for accommodating growth in travel demand through the use of larger aircraft

¥ Analyze impact of delays and capacity constraints on aircraft size and loads

- ¥ Analyze operational impacts of current fleet mix
- **Q** Assess policy implications

5

Regional Airline Markets

7

Major Western U.S. Markets

Changes in Average Aircraft Size

	Seats					
Destination	1988	1999				
Las Vegas	131	136				
San Francisco	142	130				
Phoenix	128	131				
Oakland	118	132				
Denver	175	187				
San Jose	117	130				
Seattle	152	144				
Salt Lake City	166	184				
Sacramento	117	132				
Portland	135	136				
Overall	136	139				

Market Trends LAX-Seattle

Airline Response to Delay

Statistical Modeling of Average Aircraft Size and Load

- Q Studied flight segments involving 18 large East and West Coast airports
- Q Regressed average aircraft size and passenger load against
 - ¥ Distance
 - ¥ Density (pax per day)
 - **¥** Concentration (HHI of airline traffic shares)
 - ¥ Average arrival delay at endpoint airports
 - ¥ Slot control status

Estimated Aircraft Size Elasticities

% Increase High Density (>300 PPD) Low Density in A/C Size from 1% 300 SM 1000 SM 2500 SM All Increase in: 0.20 Density 0.12 0.12 0.06 Concentration 0.13 0.19 0.21 0.12 0.38 0.87 Delay $Adj R^2$ 0.56 0.56 0.46 0.47

Operational Impacts of Current Fleet Mix

During Peak Periods, Flights Generate Significant Incremental Delays

Delay Impact Ratio (DIR)

- **Q** Weighs delay impact against convenience
- Q Numerator is congestion delay impact (CDI) of a flight (in seat-hrs)
- Q Denominator is extra schedule delay if flight did not occur, and passengers had to take previous flight from same origin on same airline (SDI)
- Q Any flight with DIR>1 is of dubious social value

Some Flights Have Very High DIRs

				Previous Flight					
				Time of	Flight	Time of			
Flight	Type	Seats	Origin	Departure	Number	Departure	SDI	CDI	DIR
US3 4759	J31	18	SAN	9:50	4707	9:35	5	247	55.0
US3 4734	J31	18	FAT	9:45	4729	9:25	6	282	47.0
US3 4707	J31	18	SAN	9:35	4793	9:10	8	292	38.9
US3 4793	J31	18	SAN	9:10	4768	8:30	12	398	33.2
UA3 5218	EM2	30	SAN	9:00	5216	8:30	15	425	28.4
UA3 5220	EM2	30	SAN	9:30	5218	9:00	15	261	17.4
OE 7338	J31	18	OXR	9:55	7336	8:50	20	308	15.8
UA3 5222	EM2	30	SAN	10:00	5220	9:30	15	228	15.2
OE 7017	J31	18	SNA	9:45	7015	8:30	23	338	15.0
UA3 5224	EM2	30	SAN	10:30	5222	10:00	15	217	14.5
US3 4789	J31	18	SAN	20:10	4741	19:25	14	191	14.2
UA3 5468	EM2	30	PSP	9:05	5466	8:05	30	409	13.6

Policy Implications

- **Q** Rationale for intervention
 - **¥** Economic efficiency
 - **¥** Airport development costs
 - **¥** Consumer protection
- **Q** Intervention strategies
 - **¥ Voluntary programs**
 - **¥** Pricing
 - ¥ Size / frequency regulation

Conclusions

- Q No significant increase in average aircraft
 size in LAX markets over past ten years
 - **¥** Little overall increase by large airlines
 - ¥ Significant increase by regional airlines, offset by replacement of large airline service
- **Q** Modest potential for self-correction
 - ¥ Delay costs alone may not be enough to offset the competitive advantages of flight frequency
- Q Airport intervention should be framed in the context of long-term development strategy

Acknowledgement

Q The research described in this presentation was supported by the Los Angeles World Airports