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Influence of Carrier and Gear Manufacturing Errors on the

Static Load Sharing Behavior of Planetary Gear Sets∗

Ajit BODAS∗∗ and Ahmet KAHRAMAN∗∗∗

In this paper, a state-of-the-art contact mechanics model of a planetary gear set is em-
ployed to study the effect of a number of manufacturing and assembly related carrier and
gear errors on the load sharing amongst the planets. Three different groups of errors are
considered: (i) time-invariant, assembly-independent errors such as carrier planet pinhole
position errors, (ii) time-invariant, assembly-dependent errors such as planet tooth thickness
errors, and (iii) time-varying, assembly-dependent errors such as gear run-out errors. With
such errors present, planet load sharing characteristics of an n-planet system (n = 3 to 6) is
investigated for different piloting configurations under quasi-static conditions. Load sharing
behavior as a function of key manufacturing errors is quantified and design guidelines are
proposed for better planet load sharing behavior.
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1. Introduction

In an n-planet planetary gear system, the input torque
applied should theoretically be shared equally by each
planet, i.e. each planet should carry 1/n of the total input
torque. When certain manufacturing errors and assembly
variations are present, such an ideal load sharing condition
is often not possible. Each of these errors and variations
influence the position of the planet tooth flanks that mesh
with the sun gear and the internal gear. If the errors or
variations are such that a certain planet is pushed ahead of
the rest in its relative tangential position within the carrier,
it is likely that it will carry more load than the others.

As a large number of manufacturing errors can influ-
ence the planet load sharing characteristics(1), they can be
classified in three distinct groups. The first of these groups
include time-invariant, assembly independent errors. Such
errors maintain their value as the planet carrier rotates. Ex-
amples of these type errors include the planet pinhole posi-
tion errors and pinhole diameter errors. The second group
is formed by time-invariant, assembly dependent errors.
These errors, once the planetary gear set is assembled,
maintain their value as the carrier rotates. Planet tooth
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thickness errors, planet bore diameter errors, planet bear-
ing needle diameter errors and planet pin diameter errors
are of this type. Finally errors such as pitch line run-outs
of the sun gear, planets and the internal gear effect the load
sharing amongst the planets in a time-varying manner at
different levels based on the way they are clocked during
the assembly. These errors will be called as time-varying,
assembly dependent errors.

Figure 1 illustrates how the positions the profiles of
a planet are changed as a function of these three types
of manufacturing errors. First, to represent the time-
invariant, assembly dependent errors, apply a certain tooth
thickness error et that moves a given point A on the “per-
fect” planet flank contacting internal gear to A′ in the tan-
gential direction by an amount et/2 while keeping the cen-
ter of the planet at its nominal position O. Next, consider a
time-invariant, assembly independent error such as a car-
rier pinhole position error of magnitude ec to move the
center of the planet from O to O′′, as a result, moving point
A′ to A′′ on the tooth flank. Finally, a planet run-out error
of magnitude er (a time-varying and assembly dependent
error) is applied to effectively move the center of planet
from O′′ to O′′′ causing A′′ to move to A′′′. The same is
true for a point B on the flank that is in contact with the
sun gear. The radial and tangential components of the to-
tal position error of planet-i in Fig. 1 can be represented
by e(i)

rad and e(i)
tan respectively as (i=1,2, . . . ,n)

e(i)
rad = eci cosγci+eri cos(γri+θp/c), (1.a)
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Fig. 1 Influence of different types of manufacturing errors and assembly variations on the
position of planet tooth contact surfaces

e(i)
tan= eci sinγci+

eti

2
+eri sin(γri+θp/c). (1.b)

There are a limited number of published studies on
planet load sharing. Perhaps to most complete of these
studies is a series of papers by Hidaka et al. (2) – (4) who
studied the static and dynamic behavior of a three-planet
system using lumped mass models. He specifically fo-
cused on the motions of floating central members such as
the sun gear and the internal gear in the presence of gear
run-out errors to align themselves in order to distribute the
load equally amongst the three planets. Hidaka showed
both experimentally and theoretically that a perfect load
sharing in a three-planet gear set is achievable provided
that at least one central member is allowed to float con-
firming other formulations such as Ref. (5). Hidaka and
Terauchi(2) also demonstrated that deformations of the car-
rier and the gears can help improve load sharing amongst
the planets. Similar studies by others(6) – (9) reinforce the
importance of the gear support (piloting) conditions on
planet load sharing. Hayashi et al. (10) performed an exper-
imental study to demonstrate that load sharing improves
with the increase in torque.

As above studies mostly focused on three-planet sys-
tems, Kahraman(11), (12) focused on planet load sharing
characteristics of a four-planet system as such systems are
more common in automotive applications. He first used
a simplified lumped mass model to study the influence of
carrier pin hole and planet run-out errors on planet load
sharing under dynamic conditions to state that dynamic
load sharing factor is simply a product of a static load shar-
ing factor and a dynamic load factor. Later, Kahraman(12)

employed a simplified planet load-sharing model to deter-
mine the static planet load sharing of four-planet systems
and presented an experimental study for validation of the
model predictions.

1. 1 Scope and objectives
The previous models have major shortcomings orig-

inating from the simplicity of the models employed. As
the deformations of the gears and the carrier can change
the planet load sharing drastically, use of a deformable

body contact model like the ones published recently(13), (14)

should be more suitable to study load sharing. Secondly,
these studies investigated certain aspects of load sharing
on a given planetary gear set. Many conclusions reached
do not serve as design guidelines as they might change
once the configuration is altered by changing design pa-
rameters such as number of planets, planet spacing and
internal and sun gear mounting conditions.

The main objective of this study develop a de-
formable body contact mechanics model of a single-stage
planetary gear set with n planets to perform a complete
study of the planet load sharing under static conditions.
Systems with three to six planets will be considered to
study the influence of three distinct types of manufactur-
ing errors and assembly variations on planet loads. Pilot-
ing conditions of the sun gear and the carrier, and mount-
ing conditions of the internal gear will also be invesitaged
in detail. A set of design guidelines representing best prac-
tices will be proposed and simplified design formulas will
be supplied, whenever possible, for calculating the planets
loads as a function of manufacturing errors present.

2. Computational Model

There are major difficulties with the use of general
purpose, finite element (FE) packages for the gear con-
tact problem resulting often in inaccurate predictions and
unacceptably high computational times. The model em-
ployed here is designed specifically for the analysis of
gear-like contacts eliminating the difficulties associated
with conventional FE analysis. Only the most critical fea-
tures of this model will be summarized here as the details
of this model can be found in Refs. (15), (16) and two re-
cent applications(13), (14).

The deformation of the planetary system under load
is modeled using a combination of finite element and sur-
face integral techniques. The complex shapes of gears of
the planetary system are best modeled by the FE method.
However, the contact zones are typically extremely small,
and are typically two orders of magnitude smaller than
the working depths of the gear teeth requiring a large de-
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gree of freedom concentrated inside the contact zone in
order for contact equations to be well conditioned. In ad-
dition, the contact zone is not stationary, and moves along
the surface of a gear tooth. Therefore, using a pure FE
model would require either a mesh that is extremely re-
fined, or a scheme that refines the mesh only in the con-
tact zone and re-meshes for every contact position. Semi-
analytical deformation models based on the half-space so-
lution for a concentrated load, and numerically integrated
over the contact zone do not suffer from the problem of
ill conditioning. They can accurately capture the steep
displacement gradients inside the contact zone. However,
they cannot easily model the shape of the gear teeth. The
model used in this study(15) is based on the use the FE
models only to compute relative deformation and stresses
for points that are away from the contact zones. For points
within the contact zone, we use semi-analytical techniques
to compute the relative deformations and stresses. The
‘near field’ semi-analytical solution and the ‘far field’ fi-
nite element solutions are matched at a ‘matching surface’.

The FE model implemented here uses separate inter-
polation schemes for the displacements and coordinates.
The tooth surfaces are modeled by elements that have a
very large number of ‘coordinate nodes’, and can therefore
accurately represent the involute shape and surface mod-
ifications. In the fillet region, the elements have a large
number of ‘displacement nodes’ to correctly capture the
steep stress gradients. A hierarchical representation of the
system was used, in which the system is built from many
substructures, with each substructure in turn being com-
posed of many substructures. The processes of stiffness
decomposition and load vector back-substitution makes it
possible to keep CPU requirements down to a few seconds
per time step while the memory requirements are reduced
down significantly.

A Revised Simplex solver is used in this formulation
ensures convergence within a predetermined number of
iterations unlike the commercial FE packages that use a
non-linear equation solver. In the planetary gear system,
many rigid body type degrees of freedom or mechanisms
are constrained only by the contact conditions often result-
ing in singular stiffness matrices when a non-linear finite
element code with ‘gap elements’ is used. The approach
used here is to attach a reference frame to each individ-
ual component, and to carry out the finite element com-
putations for each individual component separately in its
own reference frame. As long as each finite element mesh
is sufficiently well constrained to its reference frame, the
stiffness matrices are well behaved. The Revised Simplex
based contact solver can take into account any free mech-
anisms in the system while computing the contact loads in
a very natural manner.

Fig. 2 FE contact mechanics model

Table 1 Parameters of the example system used in this study.
All dimensions are in N and mm unless specified.

3. Parametric Studies

3. 1 Example system
An example planetary gear set whose FE model is

shown in Fig. 2 is considered in this study. The design
parameters of this system are listed in Table 1. Here, the
carrier, the sun gear and the internal gear are the input,
output and the reaction members, respectively. An input
torque of Tin = 1 500 Nm is applied to the system. The
baseline configuration in Fig. 2 has a floating sun gear (not
supported radially) while the carrier is rigidly supported
(piloted). The planetary gear set has four planets n=4 and
the internal gear is held in a rigid housing by 16 equally
spaced straight splines as shown in Fig. 2.

3. 2 Definition of the planet load sharing factor
The load sharing factor of a given planet-i, Li, (i = 1

to n), is defined as the ratio of the load carried by this
planet to the total load. Different methods of estimat-
ing Li have been reported based on gear root stresses(12).
Here, planet bearing forces are used instead to determine
Li. Planet bearing forces Fbi at a certain carrier pin hole
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Fig. 3 Planet bearing forces for configuration A at Tin =

1 500 Nm

error configuration is shown in Fig. 3. The tangential bear-
ing forces on the bearings of diametrically opposed plan-
ets 1 and 3 are equal to each other since the sun gear is al-
lowed to float(11), (12) and fluctuate about an average value
of F̄b1 = F̄b3. The same condition is valid for planets 2 and
4, F̄b2 = F̄b4. Since at any given rotational angle, the total
of the bearing forces is constant, the average value of the
load sharing factor of planet-i, Li, can be defined as (i= 1
to n)

Li =
F̄bi

F(tot)
b

, (2)

F(tot)
b =

n∑

i=1
Fbi=Tc/(rs+rp) (3)

where n is the total number of planets in the gear set and
Tc is the torque on the carrier (equal to Tin for the example
case considered), and rs and rp are the pitch circle radii
of the sun gear and the planet gear, respectively. In Fig. 3,
F(tot)

b = 1 924 N, F̄b1 = F̄b3 = 648 N and F̄b2 = F̄b4 = 314 N
resulting in L1 = L3 = 0.34 (34 percent) and L2 = L4 = 0.16
(16 percent).

3. 3 Influence of manufacturing errors and assem-
bly variations

Carrier planet pin hole position errors are considered
first as time-invariant, assembly independent errors. A to-
tal 2n parameters fully define the carrier pin hole position
errors of an n planet system: magnitudes, ec1 to ecn, and
position angles, γc1 to γcn, where subscript c denotes a
carrier pin hole position error. These error parameters are
illustrated in Fig. 4 for a four-planet system. A large num-
ber of different configurations of pinhole position errors
listed as configurations A to F in Table 2 with |eci| ≤50 µm
are applied to the example planetary gear set. These con-
figurations A to F defined in Table 2 involve only the tan-
gential pin hole position errors with γci = π/2 or 3π/2 re-
sulting in e(i)

rad = 0 as the investigation of errors in radial
direction showed that their impact is negligible.

The first configuration in Table 2 is formed by in-
troducing a pinhole position error of magnitude up to
50 µm on planet 1 alone in tangential direction while all

Fig. 4 Graphical representation of carrier pinhole errors of a
4-planet system

Table 2 Different configurations of manufacturing errors con-
sidered in this study.
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Fig. 5 Variation of Li with ec1 for configuration A

Fig. 6 Variation of maximum Li with ec1 for configurations A
to F

other planet pinholes are at their nominal positions, i.e.
ec2 = ec3 = ec4 = 0. It is also assumed that no other man-
ufacturing errors are present. As shown in Fig. 5 for con-
figuration A that the load on planet 1 decreases linearly as
ec1 is reduced. Planet pairs p1/p3 and p2/p4 carry equal
loads primarily due to floating sun gear. Here the value
of L1 = L3 is as large as 34 percent for ec1 = 50 µm and
as low as 16 percent for ec1 = −50 µm. Meanwhile for
ec1 = 50 µm, planets 1 and 3 experience higher stresses
than planets 2 and 4.

In Fig. 6, maximum values of Li for configurations A
to F in Table 2 are plotted against ec1. Configuration B
in Table 2 is similar to Configuration A except ec1 =−eci,
i= 2 to 4, suggesting that effective ec1 is now twice as in
configuration A. In Fig. 6, maximum Li values for con-
figuration B are higher than those of Configuration A. At
ec1 = 50 µm, maximum Li is around 36 percent. In con-
figuration C with ec1 = ec2, γc1 = γc2 and ec3 = ec4 = 0, the
load sharing is perfect. Configurations D with ec2 = −ec1

and E with ec1 = ec3 and γc1 = γc3 yield exactly the same
results as Configuration B. The worst case amongst con-
figurations A to F in Table 2 is found to be Configura-
tion F with ec1 = ec3 = −ec2 = −ec4. In Fig. 6, maximum
L1 = L3 increases to 38 percent for ec1 = 50 µm indicating
that planets 2 and 4 each carry about 12 percent of the total
load that is less than half of the ideal planet load.

Fig. 7 Variation of maximum Li with et1 for configurations G
to L

Secondly, average planet tooth thickness errors (time-
invariant, assembly-dependent) considered where eti is the
deviation of the average tooth thickness from the nominal
value. A positive eti implies that the planet tooth is thicker
than its nominal value. For an n-planet system, n parame-
ters are sufficient to define the overall error configuration.
A number of different configurations G to L shown in Ta-
ble 2 are considered here as planets with a tooth thick-
ness larger than the nominal tooth thickness are depicted
by larger circles and visa versa. For instance, the results
for configurations G to L are compared in Fig. 7 within
the range et1 within −30 to 30 µm. Configuration K rep-
resents the tooth thickness arrangement yielding the worst
load sharing condition, as two diametrically opposed plan-
ets are the largest while the other two are the smallest. It is
worth noting that configuration K with |eti|=30 µm results
in the same maximum Li values (35 percent) for configu-
ration F in Fig. 6 with ec1 = 15 µm demonstrating that eti

influence the load sharing the same way as eci in accor-
dance with Eq. (1).

One last observation from Table 2 and Fig. 7 can be
made to demonstrate assembly dependence of the tooth
thickness variations. Configuration L in Table 2 is ob-
tained from configuration K (the worst case) by simply
switching the positions of two adjacent planets resulting in
et1 = et2=−et3=−et4. The resultant change in load sharing
is rather phenomenal as the worst case of load sharing is
reduced to an ideal load sharing as shown in Fig. 7. This
suggests that given n planets with certain eti can cause sig-
nificantly different planet loads depending on the sequence
they are assembled in a planetary gear set.

Planet run-out errors in configurations M to P in Ta-
ble 2 are considered to demonstrate the influence of time-
varying and assembly dependent errors. Here, the high
point of the run-out of a planet rotates with the planet as
its component in the tangential direction given by Eq. (1)
varies harmonically making it a rotation (time) depen-
dent error. A total of 2n parameters define completely the
planet run-out errors on an n-planet system, magnitudes,
eri, and the initial orientation angle of high point, γri, de-
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Fig. 8 Variation of Li with er1 for configuration M at Tin=

1 500 Nm

fined positive in counter clockwise direction from the out-
ward radial axis as shown in Fig. 4. Once a planetary gear
set is assembled the relative orientations γri are fixed, yet
given a set of n planets with given eri can be clocked in
any arbitrary γri in assembly making these errors assem-
bly dependent as well.

Figure 8 shows the variation of maximum Li with ro-
tation angle of the planets relative to carrier θp/c for con-
figuration M in Table 2 for er1 = 25 µm with other eri = 0.
Given an initial position γri = 0, e(i)

tan = 0 in Eq. (1) at
θp/c =0 resulting in Li =25 percent. As the pinions rotate,
planets 1 and 3 carry larger share of the load reaching their
maximum value of nearly 32 percent at θp/c =

π
2 . This is

the position at which the high point of the run-out of planet
1 is in the tangential direction and e(1)

tan is maximum. At
θp/c=π and 2π, again all Li =25 percent since e(1)

tan =0, and
at θp/c=3π/2, L1 =L3 are minimum. The curve for L2 =L4

follows the same exact shape except it is the mirror image
of the curve for L1 =L3 about the ideal load sharing line at
25 percent. The same load sharing trends are observed for
configuration N, only the load sharing is more severe due
to the fact that planets 1 and 3, both have the same amount
of run out error in the same direction. The maximum Li

values plotted in Fig. 9 as a function of eri indicate that
maximum Li is as high as 32 and 35 percent for configu-
rations M and N, respectively.

Configuration P in Table 2 is obtained by applying the
same amount of run-out error to each planet eri = 20 µm,
i=1 to 4 at initial angles γr1=γr2=γr3+π=γr4+π. In this
case, all Li remain at 25 percent. This perfect load sharing
behavior changes significantly when the same system is
reassembled to change the initial positions of planets 2 and
3 as shown in Table 2 to obtain configuration Q. Here, the
maximum value of Li is about 36 percent representing the
worst assembly configuration of planet run-out errors.

Different cases are analyzed for sun gear and the in-
ternal gear run out errors were also considered to show
that for a case with at least one of the central members
floating, run-out errors of central member (sun gear, car-
rier and internal gear) have very limited influence on the

Fig. 9 Variation of maximum Li with er1 for configurations M
and N

way the load distributed to the planets.
3. 4 Influence of piloting conditions on planet load

sharing
The effect of sun gear and carrier piloting condi-

tions and internal gear mounting conditions on the planet
load sharing characteristics is investigated here. It was
reported previously that the load sharing characteristics
could change drastically when the piloting conditions are
varied(3), (4), (17). A sun gear or the carrier that is allowed
to float radially has the ability to move to a new center to
improve on load sharing amongst the planets. Here, given
the present splined internal gear mounting condition of the
example four-planet system, following four piloting con-
ditions are possible: (1) floating sun and carrier (FF), (2)
floating sun and piloted carrier (FP), (3) piloted sun and
floating carrier (PF), and (4) piloted sun gear and carrier
(PP).

All of the results presented up to this point correspond
to the piloting condition FP condition. Cases FP, PF and
FF are achieved by removing the bearing constraint from
that respective member while a piloted condition is ob-
tained by a support stiffness matrix representing a typical
rolling element bearing. In Fig. 10 for configuration A of
Table 2, the same results are obtained for when at least one
of the two members is allowed to float (cases FF, PF and
FP). When both central members are piloted (case PP),
the load sharing is the poorest as there is no room for any
central member to adjust its radial position to distribute
the total load equally amongst the planets. For instance,
for ec1 = 50 µm, the maximum load on planet 1 is nearly
47 percent. The loads on the diametrically opposed plan-
ets are no longer equal, L1 � L3 and L2 � L4. For the same
error, floating at least one member reduces the value of
L1 to 34 percent and diametrically opposed planets carry
the same amount of load. This suggests that piloting both,
the sun gear and carrier, could not be an acceptable design
practice. At least one central member must be allowed to
float radially.
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3. 5 Influence of number of planets
The example equally spaced, four-planet system

shown in Fig. 2 is modified first to obtain 3, 5 and 6 planet
versions of the same system. The spacing of the plan-
ets are kept as uniform as possible, as allowed by the
least mesh angle. The same input torque value as before
is maintained in this analysis with a floating sun gear, a
splined internal gear and the same error configuration A
from Table 2. The maximum Li values are compared for
the systems with n= 3, 4, 5 and 6 in Fig. 11. First of all,
the three planet system has a constant Li = 33.3 percent,
i= 1 to 3, independent of ec1 indicating that load sharing
amongst the planets is not an issue for a three planet sys-
tem with at least one floating central member. For n = 4,
the maximum Li values are consistently less than those for
n=3. The difference is the largest when there is no error in
the system (Li,n=4/Li,n=3 =3/4) while this advantage of the
four-planet system erodes significantly as ec1 is increased.
For instance, at ec1=50 µm, Li,n=4/Li,n=3 =1.02 suggesting
that the maximum planet load on the four-planet system is
larger that that of a three-planet counterpart.

Similar behavior is evident for n=5 and n=6 as well.
For n= 6, Li,n=6/Li,n=3 = 0.5 when there is no error, mean-

Fig. 10 Variation of maximum Li with ec1 for configuration A
and piloting conditions FF, FP, PF and PP

Fig. 11 Variation of maximum Li with ec1 for systems having
different number of planets n

ing that the maximum planet load is reduced to half by
doubling the number of planets. When ec1 = 50 µm, how-
ever, Li,n=6/Li,n=3 is only 0.87 suggesting that the reduc-
tion in maximum planet load obtained by doubling n to 6
is only 13 percent. Figure 11 shows clearly that the load
sharing gets worse and the impact of manufacturing errors
on planet loads becomes more important as n is increased.

4. Discussion of Results

Results presented here state that not only the manu-
facturing errors and assembly variations but also a number
of system level planetary gear set design parameters influ-
ence the load carried by each individual planet. Especially,
the load sharing characteristics are uniquely different for
systems with different number of planets. For n= 3, per-
fect load sharing conditions are ensured regardless of type
or magnitude of error, provided that one central member is
floating. For n= 4 with a floating central member, diago-
nally opposed members carry equal amounts of load while
differences between two adjacent planet loads is strongly
dependent on manufacturing errors and assembly varia-
tions. For systems with larger number of planets (n = 5
or n= 6), the total load is shared rather poorly wiping out
most of the expected reductions in planet loads especially
when the gear or carrier errors are excessive.

While the load sharing mechanism is quite complex
for n≥5, there exists a simple relationship for any system
with n = 4. This relationship that is arrived heuristically
states that manufacturing errors acting on each planet can
be used to define an effective planetary error parameter E

E=
∣∣∣∣
(
e(1)

tan+e(3)
tan

)
−
(
e(2)

tan+e(4)
tan

)∣∣∣∣ (for n=4 only) (4)

that alone defines maximum Li. In order to test the above
hypothesis, E is calculated for each error configuration
in Table 2 and plotted against Li as shown in Fig. 12.
Here, regardless of the type of the error and configura-
tion at which it is applied, Li is defined by the corre-
sponding E value. This way, a design curve like Fig. 12

Fig. 12 Variation of maximum Li with effective error E for a
system having four planets
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can be constructed by analyzing the same four-planet sys-
tem under a small number of error conditions representing
different levels of E. This curve can then be used as a
design curve to determine the maximum Li from which
the maximum excess planet load can be determined as
Texcess = (Li− 1

4 )Tin.

5. Conclusions

In this paper, a state-of-the-art contact mechanics
model of a planetary gear has been employed to study
the effect of a number of manufacturing and assembly re-
lated carrier and gear errors on the load sharing amongst
the planets. Three different groups of errors considered
are: (i) time-invariant, assembly-independent errors such
as carrier planet pinhole position errors, (ii) time-invariant,
assembly-dependent errors such as planet tooth thickness
errors, and (iii) time-varying, assembly-dependent errors
such as gear run-out errors. With such errors present,
planet load sharing characteristics of an n-planet system
(n = 3 to 6) have been investigated for different piloting
configurations under static conditions. Finally, the load
sharing behavior as a function of key manufacturing er-
rors and design parameters has been quantified including
design formulas for better planet load sharing behavior.
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