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Abstract We evolved multiple clones of populations of
digital organisms to study the effects of chance, history, and
adaptation in evolution. We show that clones adapted to a
specific environment can adapt to new environments quickly
and efficiently, although their history remains a significant
factor in their fitness. Adaptation is most significant (and the
effects of history less so) if the old and new environments are
dissimilar. For more similar environments, adaptation is
slower while history is more prominent. For both similar and
dissimilar transfer environments, populations quickly lose the
ability to perform computations (the analogue of beneficial
chemical reactions) that are no longer rewarded in the new
environment. Populations that developed few computational
“genes” in their original environment were unable to acquire
them in the new environment.

1 Introduction1

One of the central tenets of standard evolutionary theory is that characteristics of
evolved populations can be explained by the process of adaptation, and thus that
phenotypic differences, for the most part, have an adaptive value. That all of biological
diversity is due to adaptation has been challenged in modern expositions of Darwinian
theory. Kimura [4], for example, proposes that there is a strong component of chance
in evolution, and Gould and Lewontin [3] stress the importance of history and contin-
gency. Effects of chance are usually due to genetic drift and random mutations without
value to the organism. History can become important if certain genetic changes (of
adaptive value in the past) constrain or promote some evolutionary outcomes over
others. To disentangle these effects, Gould [2] has proposed to “replay the tape” of
evolution to test its repeatability. Travisano, Mongold, Bennett, and Lenski [8] were the
first to perform a rigorous experiment of this sort, albeit on a shorter time scale and
with E. coli bacteria adapting to simple, artificial environments. The trait undergoing
evolution in these experiments was fitness (measured as the Malthusian parameter).
As a control, bacterial size (which in these environments is selectively neutral) was
also monitored. This study found that adaptation contributed most significantly to the
evolutionary changes, often resulting in convergent evolution of fitness. The evolution
of bacterial size, on the contrary, was influenced much more strongly by chance and
history, as expected.

∗ Present address: Keck Graduate Institute for Applied Life Sciences, 535 Watson Drive, Claremont, CA 91711.

1 This article appeared previously in modified form in the 2000 Proceedings of the 7th International Conference on Artificial Life,

M. A. Bedau, J. S. McCaskill, N. H. Packard, & S. Rasmussen (Eds.), (pp. 216–220). Cambridge, MA: MIT Press.
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To date, this experiment has not been repeated with any other organism, nor could
it be determined whether the relative effects of chance, history, and adaptation are
constant throughout evolutionary time. The advent of digital organisms opens the door
to experiments much more akin to “replaying the tape of life,” and also to test the
validity of Travisano et al.’s results across organisms.

Digital organisms have been studied in a variety of experiments pertaining to evolu-
tion. They offer a tantalizing glimpse into the characteristics of living systems that do not
share any ancestry with biochemical life on earth. These organisms are self-replicating
strands of computer code competing for resources in a user-defined environment (the
artificial “Petri dish”) within a computer’s memory. Our digitals live in a world created
and controlled through the Avida software developed at Caltech [6, 1, 5].

In the experiments reported here, we essentially follow the protocol of Travisano et
al., measure similar phenotypic characteristics, and perform the same statistical analysis
on the data obtained. However, due to the ease of these experiments with Avidians (as
compared to E. coli experiments), we are able to collect data much more frequently,
allowing the observation of changes in the relative importance of chance, history, and
adaptation as a function of time. Whereas Travisano et al. used bacteria that had
adapted to using glucose as their primary sugar, and studied their re-adaptation to a
maltose environment, populations of digital organisms are transferred to new environ-
ments, which award differing computational tasks. As the replication speed of digitals
is mainly due to their computational prowess on random numbers in their environment
(see [1, 6]), we can change landscapes simply by changing the set of computations
that result in extra CPU time for the organism that achieves them. Thus, we adapt
our digitals to one landscape first, then transfer them to another and monitor their re-
adaptation. Such immigrant populations are expected to have a lower fitness in their
new environment than populations that are native to that environment. We investigate
how well the immigrants are able to recover from this initial disadvantage, and whether
in their new environment they carry with them long term effects from their evolutionary
history preceding the transfer. In addition to fitness we also observe genome length,
a phenotypic trait that we expect to be selectively neutral as far as the differences be-
tween our landscapes is concerned. This variable thus substitutes for the role played
by bacterial size in Travisano et al.

2 Materials and Methods

We studied the effects of adaptation and history by evolving populations in one of
three distinct environments. L0 is the standard landscape used in most experiments
using this version of Avida [6], rewarding a total of 76 different two- and three-input
logical operations on random numbers. We split these logical operations into two
orthogonal sets, which are used to define the landscapes LT and L⊥. We give a definition
of the landscapes in terms of their rewarded tasks in Tables 1 and 2. We test the
significance of history and adaptation in transfers L0→LT (similar landscapes) as well
as L⊥→LT (transfer to a dissimilar one). In each experiment, we evolve eight separate
populations in their environment of origin until they are well adapted, after which
the entire populations are cloned fivefold and propagated in their transfer landscape.
Genome length and parameters reflecting the average fitness of the populations are
measured at various stages during evolution in the new environment, in order to be
compared to the values at the time of the transfer.

To ascertain that the observed effects are not due to peculiarities of the landscapes
we constructed, we check that LT , L⊥, and L0 are equally challenging. The comparison
of award rates (a measure reflecting fitness introduced below) for populations adapting
to LT , L⊥, and L0, depicted in Figure 1, shows that this is so.
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Table 1. Multiplicative merits for two-input logic functions.

L0 LT L⊥

Operation 1st 2nd 1st 2nd 1st 2nd

A ∧ B 1.2 1.1 — — 1.5 1.3

A ∨ B 1.25 1.1 — — 1.5 1.3

A ∨ B 1.2 1.1 1.5 1.3 — —

A ∧ B 1.25 1.1 1.5 1.3 — —

A ∨ B 1.3 1.1 — — 1.5 1.3

A ∧ B 1.15 1.1 — — 1.3 1.2

A �= B 1.5 1.1 — — 1.8 1.5

A = B 1.5 1.1 1.8 1.8 — —

Table 2. Multiplicative merits for three-input logic functions.

L0 LT L⊥

Nos. 1st 2nd 1st 2nd 1st 2nd

Odd 1.5 1.1 — — 2.2 1.5

Even 1.5 1.1 2.0 1.4 — —
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Figure 1. Award rates and average genome lengths attained by populations in their native landscape after 20,000
updates. Each cross represents a population. For the purpose of comparison across landscapes, in this plot (only),

all c
(L)
t

’s have been set to unity. Averages and their uncertainties are indicated by filled circles with error bars.
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Figure 2. Impact on measured fitness of five cloned populations after re-insertion into their original landscape. In
this re-transfer control, no adaptation occurs while the original fitness is recovered by Avida.

For Avidians as for bacteria, average fitness can usually be measured directly and
used as an indicator of the extent of adaptation. Here, we had to forgo this direct
approach because the fitness of the transferred population is not well reflected in the
measurements right after the transfer, simply because the Avida software cannot, at
present, accurately monitor a genome’s performance in a new environment until at
least one replication cycle has been completed. As a consequence, the average fitness
is incorrectly measured for a few hundred updates2 (see Figure 2). This measurement
error masks adaptive events occurring early after transfer and as a consequence would
severely compromise the analysis.

Instead, we study the award rate, a variable closely related to average fitness. The
award rate A(L)(p) of a population p in a landscape L is defined as

A
(L)(p) =

∑

t

c
(L)
t Ft (p),

where Ft (p) is the fraction of creatures in p that perform task t , and the coefficients

c
(L)
t are unity for tasks that are rewarded in landscape L, and zero for all other tasks.

As opposed to average measured fitness, the award rate is not significantly affected by
the cloning operation.

Following [8], we plot the derived (or adapted) value of the characteristic versus the
ancestral one at the time of transfer, in order to study the effects of chance, history,
and adaptation on the evolution of a population’s characteristics (see Figure 3). Eight
populations were evolved for 20,000 updates in each of the landscapes L0, LT , and L⊥,
and cloned.3 In both transfer experiments, cloned populations were propagated for an
additional 10,000 updates of re-adaptation.

2 Time is measured in arbitrary units called updates; every update represents the execution of an average of 30 instructions per

individual in the population. A typical generation takes 5–10 updates.

3 We checked that propagation for an additional 10,000 updates in their native landscapes produced no significant further increase

of award rate, so the populations can be said to be at or near equilibrium in their particular environments.
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Figure 3. Derived versus ancestral values of hypothetical traits, the evolution of which is chiefly determined by
adaptation (left panel), history (middle panel), and chance (right panel). Note that the effects of chance are demon-
strated for a set of clones of a single ancestral genotype, whereas adaptation and history are illustrated for several
independent ancestors. Adapted from [8].

The relative contributions of adaptation, history, and chance to the evolution of traits
such as fitness and genome length can be disentangled by studying the variance of the
respective observable trait. A nested ANOVA [7] is used to determine what fraction of
the variance (after evolution) should be attributed to the elements of history and chance.
The contribution of adaptation is obtained from the average difference between derived
values and ancestral values.

Award rate and genome length for each population are sampled over a range of 30
updates every 1,000 updates. The spread within these samples is used as the measure-
ment error. This does not reflect the intra-population spread of the parameter under
consideration, but only their natural short-time variability. Populations that had award
rates less than 0.002 (as measured in their old landscapes) at the time of the trans-
fer were excluded from the analysis.4 For the transfer L⊥→LT , two out of eight sets
of clones were excluded, while only one set of clones was excluded for the transfer
L0→LT . None of the excluded populations attained a derived award rate significantly
above 0.002 after transfer and propagation. The lowest recorded derived award rate
for any of the other populations was 0.23 ± 0.05.

Experiments reported here were performed with version 1.3.1 of the Avida software,
which can be obtained from http://dllab.caltech.edu/avida/versions.shtml. We used
populations of 60 × 60 organisms, using the standard instruction set, and using the re-
moval of the oldest as the birth method. Genomes were subject to a copy mutation rate
of 0.7% per instruction copied, and an insert/delete probability of 5% per generation.
Rewards for performing logical functions were set as shown in Tables 1 and 2.

Note that merits for landscape L⊥ are consistently higher than for landscape LT .
This was done because a variant of landscape L⊥ with lower merits turned out to be
unlearnable. The merits for the trivial (one-input) operations were set to 1.05 for all
landscapes. For calculating the award rates, however, only the two- and three-input
logic functions are taken into account. Any non-unity merit caused that task to be
counted with a weight ct = 1.

3 Results

We found that adaptation is the dominant component of evolutionary changes of fitness
in digital organisms, mirroring the results of Travisano et al. obtained for E. coli. This

4 Due to a special feature in the present physics of the Avida world, genomes can evolve that cannot alter their size, preventing

any further adaptation. These cases can be considered anomalous, as their adaptation cannot be measured. We plan to alter the

physics of replication in future versions of Avida to avoid such contaminations.
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Figure 4. Award rates (top) and average genome length (bottom) for populations transferred from landscape L0 and
L⊥ to landscape LT : values at 10,000 updates after the transfer plotted against values at the time of the transfer.
Middle panels show the non-award rate.

can be seen even without statistical analysis by noting that the award rates in Figure 4
are consistently higher after adaptation to a new landscape than upon transfer, inde-
pendently of whether the transfer landscapes are similar to the ancestral one or not.
Genome length did not change significantly as a result of re-adaptation, confirming
that this trait is selectively neutral. Plotting the relative contributions of adaptation,
chance, and history as a function of time (Figures 5, 6) reveals that adaptation of fitness
is always more important than chance. It is dominated by history at first, but ultimately
becomes the principal component of evolutionary change. Conversely, chance and
history were dominant in the evolution of genome length. This indicates that genome
length indeed does not discriminate between the different landscapes, that is, that the
amount of information in the environments is similar.

The adaptation effects on award rate and non-award rate (the rate at which tasks
are performed which are not rewarded in the landscape) mostly take place in the
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Figure 5. Contributions of adaptation (lines), history (dashes), and chance (dash-dotted) to variance in award rate
(top), non-award rate (middle), and genome length (bottom) in populations transferred from landscape L0 (left) and
L⊥ (right) to landscape LT .

first 1,000 updates (see Figures 5, 6). After 10,000 updates the award rates of the
transferred clones do not differ significantly from the award rates of populations that
evolved de novo in landscape LT for 20,000+10,000 updates, indicating convergent
evolution.

Note that the dominance of adaptation and history over chance after 10,000 updates
is statistically highly significant (see confidence limits in Figure 7), whereas the domi-
nance of adaptation over history is not. The significance of this dominance should be
ascertained in experiments in which the period of adaptation is extended.

4 Conclusions and Outlook

We have found that populations of digital organisms propagated within an artificial
world created by the Avida software are able to adapt to a new environment even
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Figure 6. Expanded view of the early history (the first 1,000 updates) of adaptation shown in Figure 5. Award rates
and genome lengths for updates earlier than 200 updates may be affected by the transfer (although no long term
effects persist).

though they are already well adapted to another environment, and even if the new
landscape is orthogonal to the old one in terms of rewarded behavior. The fitness of
organisms in the new landscape continues to be strongly influenced by their history in
the old landscape, more so than in the bacterial experiments with E. coli referred to
above, and this influence does not appear to decrease after 10,000 updates. However,
the effect of adaptation was still increasing when each of the experiments was termi-
nated. This suggests that follow-up experiments with longer adaptation in the transfer
environment might be required to completely assess the influence of adaptation. As a
significant part of the adaptation was found to take place in the first 1,000 updates after
the transfer, it is imperative to repeat these experiments studying the actual average
fitness of the population instead of the award rate, and verify the present results.

The high speed of adaptation after transfer indicates that populations are able to
change the tasks they perform, and so (as it were) rearrange their metabolism that
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Figure 7. Confidence limits for the relative contributions of history, chance, and adaptation at 10,000 updates after
transfer. “Initial H” is the initial spread of the variable due to history in the original landscape. This value is extremely
low for the L⊥→ LT award rate due to the very low initial fitness of these populations, as landscapes LT and L⊥ are
orthogonal.

provides the energy for their replication, by simple mutations only. This suggests that,
although the organisms were highly adapted to their native landscape, they retained a
significant amount of plasticity, which allowed them to thrive in changed environments
without much effort. The plasticity of genes in molecular biology is the subject of much
discussion, in particular with the advent of whole genomes in the age of bioinformatics.
That it can also be observed in the evolution of digital organisms suggests that it may
be a universal feature of evolution.
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