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The equilibrium conductance of LaAlO3/SrTiO3 (LAO/STO)-heterointerfaces was investigated

at high temperatures (950 K-1100 K) as a function of ambient oxygen partial pressure (pO2).

Metallic LAO/STO-interfaces were obtained for LAO grown on STO single crystals as well as on

STO-buffered (La,Sr)(Al,Ta)O3 substrates. For both structures, the high temperature sheet carrier

density nS of the LAO/STO-interface saturates at a value of about 1� 1014 cm�2 for reducing

conditions, which indicates the presence of interfacial donor states. A significant decrease of nS is

observed at high oxygen partial pressures. According to the defect chemistry model of donor-doped

STO, this behavior for oxidizing conditions can be attributed to the formation of Sr-vacancies as

charge compensating defects. VC 2012 American Institute of Physics. [doi:10.1063/1.3679139]

The metallic conductivity of the heteroepitaxial inter-

face between LaAlO3 (LAO) and SrTiO3 (STO) has gener-

ated enormous scientific interest.1 The underlying physical

mechanisms, however, are still under controversial

debate.2–4 In particular, the impact of crystal disorder and

defects on the electrical properties of the LAO/STO-inter-

face has become the central aspect of the ongoing discussion.

In this context, lanthanum ions on strontium sites ðLa�SrÞ
5–10

and oxygen vacancies ðV��O Þ within the STO substrate11–15

have been proposed as predominant defects at the LAO/

STO-interface since both types of defects can cause n-type

conductivity in STO. High temperature equilibrium measure-

ments show an oxygen partial pressure (pO2) independent

interface conductance in a certain pO2 regime.6 This sup-

ports the model of immobile donors and excludes mobile

V��O as origin of the electronic charge carriers. However, the

charge compensation mechanism in donor-doped STO is

more complex than in conventional semiconductor materials.

Intrinsic acceptor-like defects such as Sr-vacancies ðV00SrÞ
can form in STO and act as electron traps (ionic compensa-

tion).16 Thus, an increased amount of V00Sr will result in a

decrease of the electron density, and at the extreme, in a

change from n-type metallic to insulating behavior. In previ-

ous studies, the conductivity of the LAO/STO-interface has

been related to the formation of donor-type defects, i.e., V��O
and La�Sr. However, an additional, complementary influence

of acceptor-type defects has not been considered so far.

This aspect will be addressed in the present study

which investigates the high temperature equilibrium con-

ductance (HTEC) of two types of LAO/STO-interfaces in-
situ as a function of ambient oxygen partial pressure

(10�23 bar< pO2< 10�2 bar) in the temperature range from

950 K to 1100 K (see Ref. 6 for experimental details). With

this method, the pO2-dependent defect equilibria at the

LAO/STO-interface can be studied in well-defined thermo-

dynamical equilibrium conditions.

The LAO/STO-interface has been achieved by a stand-

ard pulsed laser deposition (PLD) of 8 unit cells (uc) LAO

on a TiO2 -terminated STO single crystal (sc) substrate

(T¼ 850 �C, pO2¼ 2� 10�3 mbar).11 Additionally,

(La,Sr)(Al,Ta)O3 (LSAT) has been used as an alternative

substrate material for the epitaxial PLD-growth of 10 uc

STO (T¼ 850 �C, pO2¼ 0.1 mbar) and 10 uc LAO

(T¼ 850 �C and pO2¼ 3� 10�5 mbar)17. In the following,

these two heterostructures will be denominated HS1 (LAO/

STO) and HS2 (LAO/STO/LSAT), respectively. A lower

deposition pressure was used for the sample grown on LSAT

in order to achieve a low temperature conductance and a

room temperature sheet carrier density (nS� 1� 1014 cm�2)

similar to the ones measured in the HS1 sample.17 For the

HTEC measurements, a STO sc, a LSAT sc (both 0.5 mm

thick), and a 10 uc thick STO film on LSAT (STO/LSAT)

grown at similar conditions as for HS2 were investigated

as reference samples. The HTEC characteristics of HS1

and HS2 are then discussed as the sum of the LAO/STO-

interface contribution and the corresponding substrate

contribution.

Fig. 1(a) shows the HTEC characteristic of the single

crystalline substrates, STO and LSAT, plotted on double log-

arithmic scales. As a result of oxygen exchange, STO shows

the characteristic V-shaped curve with enhanced n-type and

p-type conductance in reducing and oxidizing atmospheres,

respectively.6,16,18 The LSAT sc shows a similar p-type

behavior in oxidizing conditions, while a negligible increase

of the conductance is observed in the reducing regime. In

general, LSAT exhibits a significantly lower conductance

than STO over the entire investigated pO2-range. Thus,

LSAT is expected to substantially diminish the substrate

contribution in the HTEC measurements compared to STO.

Fig. 1(b) shows the HTEC characteristic of HS1 (GHS1,

filled symbols) in comparison to the STO sc (GSTO, open

symbols). Both characteristics deviate significantly for inter-

mediate pO2 due to the additional, temperature- and pO2-in-

dependent conductance contribution of the metallic LAO/a)Electronic mail: f.gunkel@fz-juelich.de.
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STO-interface (GIF).6 In the reducing regime as well as in

the oxidizing regime, GIF is concealed by the dominating

substrate contribution GSTO.

The HTEC characteristics of HS2 (GHS2, filled symbols)

and the STO thin film on LSAT (GSTO/LSAT, open symbols)

are illustrated in Fig. 1(c). Compared to the bare LSAT sc

(Fig. 1(a)), the HTEC characteristic of the STO/LSAT-sam-

ple shows an additional conductance upturn due to the STO-

layer in strongly reducing atmosphere. Accordingly, the

STO/LSAT-data have to be taken as a reference for HS2. A

clear impact of the metallic LAO/STO-interface is observed

below 10�4 bar where HS2 shows a significantly enhanced

conductance compared to the STO/LSAT-stack. For reduc-

ing conditions, the LAO/STO-interface of HS2 exhibits a

plateau-like conductance behavior with very weak depend-

ence on temperature and pO2 which resembles the behavior

of the standard LAO/STO-interface in HS1. Approaching

oxidizing conditions (pO2> 10�12 bar), however, a deviation

from the constant behavior is observed. This pO2-depend-

ence of the interface conductance will be further discussed.

For the pO2 -regions, in which the heterostructures exhibit

a significantly higher conductance than the corresponding ref-

erence samples, the conductance contribution of the LAO/

STO-interface GIF can be calculated as (GHS1 � GSTO) and

(GHS2 � GSTO/LSAT), respectively. The corresponding sheet

carrier density nS¼GIF/eln can then be determined by a proper

estimation of the electron mobility ln. For the investigated

temperature range above 900 K, ln is limited by phonon scat-

tering resulting in a power law type temperature dependence.

Reference data for ln, obtained from a 5at. % La-doped STO

sc, showed a good agreement with the temperature dependence

reported in Ref. 16 (ln¼ 3.95� 104�T[K]�1.62 cm2/Vs).

Therefore, this value was applied to calculate the interfacial

sheet carrier density of HS1 and HS2. These results are shown

in Fig. 2.

In the pO2-independent plateau region, nS approaches a

value of 1� 1014 cm�2 for both samples, which is consistent

with the carrier densities obtained from Hall measurements17

as well as from spectroscopic investigations.19 For oxidizing

conditions, HS2 shows a steep decrease of nS with a slope of

approximately (�1/4) in the double logarithmic plot. In this

region, the temperature dependence of nS follows an

Arrhenius-type law with an activation energy (EA) of about

1 eV (see inset of Fig. 2). HS1 shows a similar tendency of a

decreasing nS with increasing pO2 above 10�8 bar. Due to

the large STO substrate contribution at oxidizing conditions,

however, this tendency is concealed above 10�4 bar.

The measured HTEC characteristics of the LAO/STO-

interfaces resemble the HTEC behavior of donor-doped STO

(Ref. 16) and can, therefore, be discussed within the corre-

sponding defect chemistry model. Donor-doped STO shows

a pO2-independent region in its HTEC characteristic for

which the charge neutrality condition n¼ [D�] is valid (full

electronic compensation). Here, n denotes the electron con-

centration and [D�] the concentration of ionized extrinsic

donors. In this plateau region, the concentration of mobile

oxygen vacancies ½V��O � is much smaller than [D�],16 so that n
is unaffected by oxidation or reduction reactions. According

to this model, the plateau-like region in the HTEC character-

istics of HS1 and HS2, observed for reducing conditions,

indicates the presence of donor dopants at the LAO/STO-

interface provided for example by cation-intermixing.

In order to maintain charge neutrality, a decrease of n
below the donor level [D�] requires the formation of addi-

tional compensating defects which carry a negative net

charge. Predominately, Sr-vacancies ðV00SrÞ are considered as

acceptor-type cationic defects in STO. These can be reversi-

bly created and annihilated16 according to the reaction

FIG. 1. (Color) HTEC characteristics of (a) a STO and LSAT single crystal, (b) the standard LAO/STO-heterostructure (HS1, filled symbols) in comparison to

the STO substrate (open symbols), and (c) the LAO/STO/LSAT-heterostructure (HS2, filled symbols) in comparison to the STO/LSAT-stack (open symbols)

at various temperatures: 950 K (n), 1000 K (�), 1050 K (~), and 1100 K (!).

FIG. 2. (Color) The sheet carrier density nS at the LAO/STO-interface as a

function of pO2 at various temperatures (950 K (n), 1000 K (�), 1050 K

(~), and 1100 K (!)). HS1 corresponds to LAO/STO, HS2 to LAO/STO/

LSAT. Inset: Arrhenius-plot of nS at pO2¼ 10�5 bar for HS2.
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V00Sr þ ðSrOÞsp Ð Srx
Sr þ 1=2 O2 þ 2e0: (1)

Here, (SrO)sp denotes a Sr-rich secondary phase and e0 a free

electron. The corresponding law of mass action leads to the

expression

pO
1=2
2 � n2

V00Sr

� � / exp � HV

kBT

� �
; (2)

where HV is the reaction enthalpy. For a given temperature,

it follows from Eq. (2), that ½V00Sr� increases with increasing

pO2. Hence, an increasing fraction of donors is compensated

by Sr-vacancies when the ambient pO2 is increased. In case

of a full ionic compensation of the extrinsic donors

ð½V00Sr� ¼ 1=2½D�� ¼ const:Þ, n becomes proportional to

pO
�1=4
2 . The characteristic slope of (�1/4), which results on

double logarithmic scales, is also observed for HS2. This

indicates that the decrease of nS at the LAO/STO-interface

for oxidizing conditions originates from a self-compensation

mechanism caused by Sr-vacancies. It follows for HS2, that

½V00Sr� has to reach a value of about 1.3� 1020 cm�3 within

the 10 uc thick STO-layer in order to compensate for an

interfacial donor concentration of 1� 1014 cm�2. The reac-

tion enthalpy HV can be calculated from EA, which was

determined for HS2 at oxidizing conditions, via

HV¼ 2EA� 2 eV. This value obtained for the LAO/STO-

interface differs significantly from the value for bulk STO

(3.6 eV).16 Although a clear (�1/4)-behavior cannot be

observed for HS1, the evolving decrease of nS above

10�8 bar suggests that a similar charge compensation effect

is present at the interface of the standard LAO/STO-hetero-

structure. Compared to sample HS2, however, the decrease

of nS is shifted towards higher pO2-values indicating an

effect of the particular STO-environment in a single crystal

(HS1) and a (more defective)20 thin film (HS2), respectively.

In conclusion, the in-situ study of the HTEC of LAO/

STO-heterostructures emphasizes the importance of crystal

disorder for the electronic properties of the LAO/STO-inter-

face. The observed pO2- and temperature-independence of

the sheet electron density for reducing conditions supports

the idea of a donor-type conduction mechanism at the LAO/

STO-interface such as provided by cation-intermixing. Fur-

thermore, the decrease of nS in oxidizing conditions indicates

a complex charge compensation mechanism in the vicinity

of the interface which involves the formation of Sr-vacancies

at high oxygen partial pressures. This implies that oxygen

annealing after the growth of LAO/STO-heterostructures,

which is commonly thought to merely remove oxygen

vacancies from the STO substrate, can also result in an

increased cation vacancy concentration at the interface.

These additional defects can reduce the electron density and,

moreover, can act as scatter centers at low temperatures.

As pivotal result of this study, it has been shown that in

the vicinity of the LAO/STO-interface exchange reactions in

the cation sublattice, i.e., formation and annihilation of stron-

tium vacancies take place at typical growth temperatures and

have to be considered in the discussion of the LAO/STO-

interface.
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