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Abstract
Chitosan is one of the most abundant biopolymers in nature with high economic value due to its biocompatibility, biodeg-
radability, lack of toxicity, and antifungal activity. In this study, chitosan was extracted from three different sources: Blaps 
lethifera (CSB), Pimelia fernandezlopezi (CSP), and Musca domestica (CSM). The ash content (AC), moisture content (MC), 
fat binding capacity (FBC), water binding capacity (WBC), and deacetylation degree (DD) were determined for the prepared 
chitosans. The effect of the DD of chitosan on the antibacterial activity of gram (positive/negative) bacteria and the azo dyes 
(methylene blue, MB) removal from wastewater was also investigated. Chitosan extracts showed good antibacterial activity 
against Listeria innocua, Bacillus subtiliis, Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas aeruginosa. 
The MB dye removal of CSB-chitosan, CSP-chitosan, and CSM-chitosan reached 37%, 87%, and 26%, respectively, at a 
contact time of 2 h, a low initial dye concentration MB of 13 ppm, a solution temperature of 25 °C, and a pH = 7.

Keywords Chemical extraction · Deacetylation degree · Ash content · Water binding capacity · Fat binding capacity · 
Antibacterial assay · Azo dye removal

1 Introduction

Chitosan is a linear polysaccharide composed of randomly 
distributed N-acetyl-D-glucosamine and β-linked D-glu-
cosamine. Chitosan is a deacetylated form of chitin (which 

may be variously deacetylated) and is soluble (sometimes 
with difficulty) in acidic solutions [1–3]. Chitin, which can 
be extracted from fungi [4], crustaceans [5], and insects 
[6], can be deacetylated to produce chitosan. This process 
makes chitin more acid soluble and improves its biological 
properties, especially its antibacterial activity [7, 8]. The 
ratio of the two monomer units determines the molecular 
weight and degree of deacetylation of chitosan, which sig-
nificantly affects the antibacterial activity of chitosan [7, 
9]. However, chitosan’s solubility severely limits its ability 
to function. Chitosan has three different forms of reactive 
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functional groups: -NH2 at C-2, -OH at C-6, and -OH at C-3. 
It is frequently used to boost chitosan’s bioactivity and water 
solubility as well as to combine it with other compounds to 
broaden its range of applications [10]. The -NH2 group at 
C-2 distinguishes chitosan from chitin (by less than 50%) in 
terms of its physical, chemical, and biological activities. The 
amino group at C-2 and the -OH group at C-6 are the two 
main chemical alterations that are made to chitosan [2, 11]. 
The metric determining the molar percentage of monomeric 
glucosamine units in chitosan is its degree of deacetylation.

Chitosan is a fibrous biopolymer that can reduce the 
body’s absorption of fat and cholesterol from food [12]. It 
also helps blood clot when applied to wounds [13]. As a 
delivery carrier, it has great potential and cannot be com-
pared with other polymers [14]. The Food and Drug Admin-
istration (FDA) has approved chitosan as GRAS (generally 
recognized as safe). Several antimicrobial drugs containing 
chitosan have been approved by the FDA [10]. Chitosan is 
partly soluble in water at DD of 70–85% and readily soluble 
in water at DD of 95–100% but such DD levels are diffi-
cult to achieve. Chitosan exhibits an intrinsic antibacterial 

activity, inhibiting bacteria growth. The rupture of the cell 
and changes in membrane permeability are brought on by 
the chitosan chain’s attachment to the negatively charged 
bacterial cell wall. The next step is binding to DNA, which 
inhibits DNA replication and results in cell death. Thus, 
chemical modifications of chitosan such as quaternary 
ammonium salinization, phosphorylation, sulfonation, and 
carboxylation can significantly alter its antibacterial capa-
bilities [10].

Adsorption was found to be a very effective and cheap 
method among all available wastewater treatment methods. 
Due to the high concentration of –OH and  NH2- groups in 
the polymer skeleton of chitosan and its derivatives, they 
are environmentally friendly polymers for the adsorption 
of drugs, dyes, and heavy metals [15]. In this study, chi-
tosan was extracted from three different local sources: Blaps 
lethifera (CSB), Pimelia fernandezlopezi (CSP), Musca 
domestica (CSM), and the ash content (AC), moisture con-
tent (MC), fat binding capacity (FBC), and water binding 
capacity (WBC) of the produced chitosan were determined. 
The effect of DD of chitosan on antibacterial activity and 

Fig. 1  Schematic presentation 
showing extraction steps of 
chitosan from various insects
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elimination of azo dyes from wastewater was investigated. 
The factors of operation and medium, including chitosan 
source, contact time, dye concentration, and pH, were also 
investigated. The most critical change is that wastewater 
containing AZO dyes is extremely difficult to treat because 
the AZO dyes are refractory molecules that are stable to 
oxidants and resistant to aerobic digestion. Treating waste-
water containing low concentrations of AZO dye molecules 
is another challenge.

2  Materials and methods

2.1  Materials

Acetic acid  (CH3COOH; 98%), sodium hydroxide 
(NaOH,97%), hydrochloric acid (HCl, 99%), hydrogen per-
oxide  (H2O2, 98%), dimethyl sulfoxide (DMSO, 99%), and 
methylene blue  (C16H18ClN3S, 82%) were purchased from 
Biochem Chemophara. A Bioscan Industrie Algeria provided 
the Mueller–Hinton agar. Insects (Blaps lethifera, Pimelia fer-
nandezlopezi, Musca domestica) were employed as a variety 
of local resources to extract chitosan. The insects used in this 
study are widely distributed worldwide and in Algeria and 
were not endangered or protected species in the field study. 
The specimens (insects) were acquired in a dead and dry state, 
and no special permit was required for access to the site.

2.2  Extraction of chitosan

Chitosan was obtained from different insects (Blaps lethif-
era, Pimelia fernandezlopezi, Musca domestica) and pre-
pared according to the method of Kaya [16], as shown in 
Fig. 1, with a slight modification. Briefly, 1 M HCl was 
applied with 30 g of each insect powder for 1 h at 40 °C. 
After demineralization, deproteinization steps were per-
formed for 2 h of 1 M NaOH at 80 °C and then washed with 
water until neutral, and decolorization was performed by 
treating the obtained polymer with 10 v/v %  H2O2 for 30 at 

50 °C. The obtained chitin was then subjected to deacetyla-
tion with 50 w/v% NaOH, which was repeated to achieve a 
higher DD in the chitosan. The resulting chitosan was then 
dried for 24 h in a vacuum oven at 50 °C.

2.3  Physicochemical characterization

After drying, the chitosan was weighed and its water 
yield was calculated according to the following proce-
dure: Yield (%) = (weight of chitosan dried, g)/(weight 
of insect, g) × 100. By using FTIR spectroscopy, the 
DD of chitosan was calculated using the following for-
mula:DD(%) = 100 −

[

100 ×
(

A
1655

∕A
3450

)

∕1.33
]

 , where: 
 A1655 and  A3450  cm−1 are, respectively, the absolute heights 
of the amide and hydroxyl groups’ absorption bands. 
where the ratio  A1655/A3450 for fully N-acetylated chi-
tosan is indicated by the factor of 1.33 [17]. The follow-
ing equation was used to calculate the chitosan ash (AC) 
according to a technique described by R.H. Rdde et al. 
[18]: Ash (%) =  (W1/  W2) × 100, where  W1 and  W2 are 
the weight of the sample and residue, respectively. Deter-
mined was the moisture content (MC) by vacuum-drying 
the prepared chitosan for 24 h at 110 °C. Moisture con-
tent (MC,%) =  (W1-W2/  W1) × 100,  W1 and  W2 are where 
the weights of the chitosan samples before and after dry-
ing, respectively [19]. The extracted chitosan samples’ fat 
binding capacity (FBC) and water binding capacity (WBC) 
were measured using a modified method of Wang and Kin-
sella [19] approach. WBC% = (water bound, g)/(weight of 
sample, g) × 100 and FBC (%) = (fat bound, g)/(weight of 
the sample, g) × 100 were used to compute the WBC and 
FBC [19]. The absorption spectra were recorded using 
ultraviolet–visible spectroscopy (UV–Vis, UV-2450 Shi-
madzu) after 0.1 mg of chitosan was dissolved in 2 mL of 
acetic acid. The crystal structure of chitosan was examined 
using an X-ray diffractometer (XRD, Rigaku D/Max-2000, 
Tokyo, Japan) and a Fourier transform infrared spectro-
photometer (FTIR, Perkin-Elmer 1725 ×). The morphol-
ogy of the various chitosan samples was examined using a 

Table 1  Characteristics of 
various sources of chitosan 
extracts

The findings are displayed as mean ± SD (n = 3)

Chitosan characteristics Sources chitosan extracts

Blaps lethifera Pimelia fernandezlopezi Musca domestica

Yield (Y) 50.0 ± 0.3% 41.7 ± 0.5% 57.9 ± 0.2%
Moisture content (MC) 14.3 ± 0.3% 17.2 ± 0.2 7.8 ± 0.1%
Ash contents (AC) 1.5 ± 0.1% 2.0 ± 0.1 8.2 ± 0.2%
Water binding capacity (WBC) 515.1 ± 6.5% 287.0 ± 5.8 301.1 ± 4.3%
Fat binding capacity (FBC) 296.7 ± 14.5% 433.5 ± 11.3 455.1 ± 13.2%
Degree of deacetylation (DD) 87.1 ± 0.2% 88.2 ± 0.1% 84.1 ± 0.3%
Crystallinity index (CrI) 84.0 ± 0.1% 73.0 ± 0.4% 81.0 ± 0.2%
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scanning electron microscope (SEM, Leo Supra 55-Zeiss 
Inc., Germany).

2.4  Antibacterial bioassay

The agar well diffusion technique was used to investigate 
the antibacterial activity of chitosan against a variety of 
bacterial species, i.e., Listeria innocua (CLIP74915), 
Bacillus subtiliis (ATCC6633), Staphylococcus Aureus 
(ATCC6538), Salmonella typhimuruim (ATCC14028), 
and Pseudomonas aeruginosa (ATCC9027). Wells with 
a diameter of 6 mm were made in each of the agar plates 
used with a sterile stainless steel cork borer. The culture 
plates were prepared and sprayed with 100 L of a 24 h 
matured broth culture of bacterial strains. Chitosan was 
used to test antibacterial activity at different concentra-
tions (1 w/v%, 4 w/v%, and 8 w/v% in acetic acid). The 
samples’ antibacterial efficacy was assessed using cipro-
floxacin (CIP-5) as a reference. The plates were titrated 
with 5 µL chitosan solution. The plates were titrated with 5 
µL chitosan solution. Figure 6 shows the inhibitory zones 
after the plates were incubated at 37 °C for 24 h.

2.5  Dye removal experiment

To evaluate the absorption capacity of chitosan, the dye 
MB (methylene blue) was used as a model pollutant [18]. In 
an experiment, the MB dye (13 ppm) was stirred with the 
appropriate amount of chitosan (400 mg) for 2 h to achieve 
maximum absorption of MB. Then a UV–Vis spectrometer 
is used to monitor the evolution of the reaction at different 
time points. Under UV illumination, the experiment of a 
complete reduction reaction was carried out. It is easy to see 
that the intense blue hue of the reaction mixture gradually 

fades and eventually becomes colorless. The centrifu-
gal solution and removal of chitosan were used to cut off 
absorption. Using a UV–Vis spectrometer, the absorbance 
was evaluated for MB dye at 663 nm, which is an indication 
of the removal efficiency of MB. The difference between 
the MB dye concentration in the aqueous solution before 
and after absorption was used to quantify the adsorbed  (qe):

where  qe is the equilibrium concentration of the dye on the 
adsorbent (mg.g−1);  C0 and  Ce are the initial and equilibrium 
concentrations of the dye solutions, respectively (mg.L−1); 
V is the volume of the dye solution (L), and m is the weight 
of the chitosan (g). Dye removal efficiency (%) was obtained 
using Eq:

qe =

(

C
0
− Ce

)

V

m
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Fig. 2  UV–Vis spectra of the chitosan from insects (CSB, CSP, 
CSM)
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Fig. 3  FTIR spectra of the chitosan from insects: a wavenumber 
between 4000 and 2000  cm−1 and b wavenumber between 2000 and 
400 cm.−1
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where  Ce is the immediate concentration and  C0 is the initial 
concentration of MB.

3  Results and discussion

3.1  Characteristics of chitosan

Table 1 displays the findings of the present study, which 
demonstrated that the dry weights of chitosan isolated from 
insects (CSB, CSP, and CSM) were 50.0%, 41.6%, and 
57.9%, respectively. The difference in chitosan yield was due 
to the chitosan source and the process of removing proteins 

Removal efficiency (%) =

(

C
0
− Ce

)

C
0

× 100

and impurities during the deacetylation and precipitation 
process. The WBC value was 515.1% for CSB followed by 
CSP-chitosan (287.0%) and CSM-chitosan (301.1%). The 
range of WBC found in CSP-chitosan and CSM-chitosan 
was slightly lower than that reported by Chu et al. [19] 
(458–805%), but the value of CSB-chitosan was in agree-
ment with that found. The FBC of the CSB-chitosan was 
296.7%, followed by CSP-chitosan with 433.5% and CSM-
chitosan with 455.1%. The range of FBC-chitosan in this 
study (363.3 to 516.9%) was slightly similar to the value 
reported by Cho et al. and the value observed by Li et al. 
from 217 to 403% [20]. Ash is the inorganic residue left 
when chitosan is completely decomposed by heating in the 
presence of air. The ash content of chitosan is a key indicator 
of the effectiveness of calcium carbonate removal and the 
demineralization stage. High-quality chitosan should have 
an ash content of less than 1% [21]. As indicated in Table 1. 
The chitosan obtained from CSM had the greatest ash con-
centration (8.2%), followed by CSP-chitosan (2%) and CSB-
chitosan (1.5%), indicating that the chitosan obtained from 
CSB has the highest quality. Chitosan isolated from CSP 
(MC) had a moisture content of 17.2%, followed by CSB 
(14.3%) and CSM (7.8%).

3.2  UV–Vis spectroscopy analysis

The UV–Vis spectra of chitosan extracted from different 
insects are shown in Fig. 2. The UV–Vis spectra of CSB-
chitosan, CSP-chitosan, and CSM-chitosan each show dis-
tinctive absorption bands at 338 nm, 261 nm, and 346 nm, 
respectively. The absorption spectrum of UV–Vis is sim-
ilar to the absorption maximum at 300–370 nm reported 
in previous publications for chitosan [22–24]. The band at 
300–360 nm gives the absorption related to the direct elec-
tronic π-d orbitals and is called the Soret band [23, 25]. The 
sharp UV bands shown for chitosan in the UV range prove 
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Fig. 4  XRD diffraction pattern of the chitosan from insects

Fig. 5  SEM analysis of the chitosan: a CSB-chitosan, b CSP-chitosan, c CSM-chitosan
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strong’s absorption and their potential applications in Waste-
water treatment and nanoparticle production [26, 27].

3.3  FTIR spectroscopy analysis

Figure 3 compares the functional groups and displays the 
FTIR spectra profiles of isolated chitosan from various 
sources. Analysis of these spectra shows a broader band at 
3100–3500  cm−1 related to the stretching vibrations of free 
-NH2 groups and water molecules with the—OH and -NH 
atoms, respectively. The C-H stretching was responsible for 
the absorption peak at about 2850–2950  cm−1. Due to the 
elimination of the acetyl group, the band at 1623  cm−1 was 
an amide I formed by interactions between hydrogen and 
hydroxyl groups (deacetylated chitin). FTIR analysis was 
used to determine the chitosan’s DD, The value of the DD 
depends on several factors such as the source of the sam-
ple, the method of preparing the sample, the type of devices 
used in the analysis, and the method and technique of analy-
sis. The relative DD % for CSB, CSP, and CSM are 87.1%, 
88.1%, and 84.2%, respectively (Table 1).

3.4  Crystallinity and crystalline structure

The crystalline structure of chitosan depends strongly on 
its deacetylation process as well as on its amorphous chitin 
form. The XRD pattern of CSB-chitosan shows two dif-
fraction peaks occurring at (10.7 and 19.9°), and at 11.5° 
and 20.4° in CSP. For CSM-chitosan, two peaks at 10.5 
and 20.2° are shown in Fig. 4. The following equation 
is used to calculate the chitosan crystallinity index (CrI) 
[28]:

Iam is the greatest intensity in the corresponding amor-
phous area at 2 θ ≈ 11°, while  I110 is the maximum inten-
sity at 2 θ≈20°. The crystallinity index values of chitosan 
obtained from the CSB, CSP, and CSM were 84%, 73%, 
and 81% respectively, Whereas in other studies, the CrI 
value of chitosan isolated from other insects, includ-
ing beetles, cuttlefish, shrimp, and silkworms (B. mori), 
ranged from 36 to 95% [28–30].

3.5  Electron microscopy for scanning (SEM)

The chitosan produced from Blaps lethifera, Pimelia 
fernandezlopezi, and Musca domestica was selected for 
examination by SEM (Fig. 5), SEM images of CSB-chi-
tosan showed that the surface has become a smooth poly-
mer, (Fig. 5a) [31, 32], and it is observed by a fibrous 
structure with a rough surface of the structure of CSP-
chitosan (Fig. 5b), and a similar observation was reported 

CrI =
(

I
110

− Iam
)

∕I
110
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Fig. 6  Antibacterial activity of a CSB-chitosan, b CSP-chitosan, c 
CSM-chitosan at various concentrations against different bacteria
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by Zainab. et al. [33]. The extracted CSM-chitosan was 
observed to have lumps on the surface polymer, as in the 
study of Mohammed et al. [34].

3.6  Antibacterial activities

Bacterial cell membranes are negatively charged due to 
the presence of highly electronegative groups on their con-
stituent lipopolysaccharides and phospholipids. Chitosan 
can adhere to the surfaces of negatively charged cells and 
decreases the permeability of the cell membrane; as a result, 
leading to cell death. Type of bacteria, growth stage, chi-
tosan Mwt, chitosan concentration, medium temperature, 
and pH are the main factors that influence the antibacteiral 
activity of chitosan [35]. Figure 6 shows that the extracted 
chitosans exhibit strong antibacterial activity against gram-
negative bacteria (Salmonella typhimurium and Pseu-
domonas aeruginosa) and gram-positive bacteria (Bacillus 
subtiliis, Staphylococcus aureus, and Listeria innocua). The 
results also show that the higher the DD, the greater the 
positive charge after amino-protonation of chitosan, and the 
stronger its antibacterial activity [36]. This explains why 
CSP-chitosan (88.2% DD) shows the strongest antibacterial 
activity, followed by CSB-chitosan (87.1% DD), then CSM-
chitosan (84.1% DD). Moreover, the antibacterial activity of 
chitosan increases with increasing chitosan concentration 
from 0 to 8% [37].

One proposed mechanism for the bactericidal effect of 
chitosan is its direct blocking ability, which prevents nutri-
ents and oxygen from entering the intracellular space. This 

mechanism is suitable for higher molecular weight chitosan, 
which forms a polymer membrane on the surface of the bac-
terial cell [30]. However, due to the different composition 
of gram-positive and gram-negative cell walls, the interac-
tion of chitosan with these two types of bacteria is different. 
Some studies reported that the bactericidal effect of chi-
tosan is stronger in gram-negative bacteria than in gram-
positive bacteria, due to the higher affinity of amino groups 
for anionic radicals in the cell wall [38, 39]. In other studies, 
gram-positive bacteria were thought to be more sensitive to 
the antimicrobial activity of chitosan, which is due to the 
gram-negative outer membrane barrier.

Previous studies reported that chitosan showed higher 
antibacterial activities than chitosan oligomers and signifi-
cantly inhibited the growth of most bacteria tested, although 
the inhibitory effects differed with the MW of the chitosan 
and the bacterium [40]. The influence of Mwt and concentra-
tion of chitosan against E. coli was studied by Nan et al. [37], 
who studied different types of chitosans (Mwt from 5,5104 
to 15,5104 KDa) and concentrations (20 to 1000 ppm). The 
authors reported that at high concentrations (> 200 ppm), 
chitosan has a direct blocking ability to prevent nutrients and 
oxygen from reaching the intracellular space. All chitosan 
samples with Mwt between 5.5 104 and 15.5 104 Da showed 
this property. This indicates that this mechanism works best 
with chitosan of higher molecular weight [41]. Low Mwt 
chitosan has more ability to penetrate the cell membranes 
and interacts with DNA in a subsequent bactericidal step and 
prevents the synthesis of mRNA and proteins after it enters 
the nucleus of bacteria [42].

Fig. 7  Schematic presenta-
tion showing the chemical and 
physical interaction between 
chitosan and MB dye
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3.7  Adsorption of methylene blue

The adsorption method is considered the best solution for 
the removal of industrial dyes from wastewater. The high 
content of amino functions in chitosan provides new adsorp-
tion properties for many metal ions and organic dyes. As 
shown in Fig. 7, the deacetylated amino groups in chitosan 
can be protonated, and the polycationic properties of chi-
tosan are expected to contribute to charged interactions with 
MB, a basic dye. MB molecules can interact with the chi-
tosan functional groups through covalence, electrostatic, and 
hydrogen bonding. Modification of the chitosan molecule 
by increasing the degree of acetylation, grafting (inser-
tion of functional groups), or crosslinking reactions with 
other polymers may result in better adsorption capacity for 
hazardous pollutants in wastewater and good resistance to 
extreme media conditions. DD of chitosan is important, as 
the adsorption capacity of chitosan is high when the value 
of DD is increased. This can be seen in Fig. 8, where the 
chitosan- CSP with the highest DD (88.2%) has the high-
est adsorption capacity (1.7 mg.g−1), compared to 1 mg.g−1 
for the CSB chitosan and 0.8 mg.g−1 for the CSM chitosan. 
Under optimal conditions, the MB removal efficiencies of 
CSB-chitosan, CSP-chitosan, and CSM-chitosan reached 
37%, 87%, and 26%, respectively, within 120 min. Similar 
results were reported by Dhanasekaran and colleagues [42]. 
Table 2 shows the AZO dye removal efficiency of chitosan 
obtained from different sources compared to this work.

4  Conclusion

Insects can be considered important resources for chitin 
and chitosan. Studies show that the chitin content of vari-
ous insect species is up to 40% of the exoskeleton on a dry 
basis. In this study, chitosan was extracted from three dif-
ferent sources: Blaps lethifera (CSB), Pimelia fernandezlo-
pezi (CSP), and Musca domestica (CSM). Chitosan yield 
was greatest in Musca domestica, 57.9% on a dry basis, 
followed by Blaps Lethifera and Pimelia Fernandezlopezi 
with yields of 50.0% and 41.6%, respectively. The degree of 
deacetylation (DD) for chitosan from CSB, CSP, and CSM 
were 87.1%, 88.2%, and 84.1%, respectively. The chitosan 

isolated from Blaps Lethifera possessed the highest crystal-
linity, according to X-ray powder diffraction (XRD). Chi-
tosan extracts showed good antibacterial activity against 
gram-positive and gram-negative bacteria including Listeria 
innocua, Bacillus subtiliis, Staphylococcus aureus, Salmo-
nella typhimuruim, and Pseudomonas aeruginosa. Due 
to the high concentration of –OH and  NH2- groups in the 
polymer skeleton of chitosan, it has shown high adsorption 
capacity for azo dye (methylene blue, MB). The adsorption 
capacity values for chitosan were approximately 1 mg·g−1 
for Blaps lethifera (CSB-chitosan), 1.7 mg·g−1 for Pimelia 
fernandezlopezi (CSP-chitosan), and 0.8 mg·g−1 for Musca 
domestica (CSM-chitosan) at neutral pH = 7, contact time 
of 120 min, and initial MB dye concentration of 13 ppm. 
These results indicate that the selected insects can be used 
for chitosan extraction, saving many tons of insect waste as 
sustainable resources for environmental and pharmaceutical 
applications.
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Table 2  AZO dye removal 
efficiency of chitosan extracted 
from different sources compared 
to this work

Adsorbent Source Dye Dye removal Ref

Chitosan Fenneropenaeus indicus MB 93.2% [43]
Chitosan/zeolite shrimp MB 84.9% [44]
Chitosan/MgO Commercial Methyl orange 90.9% [45]
CSB-chitosan Blaps lethifera MB 37% This work
CSP-chitosan Pimelia fernandezlopezi MB 87% This work
CSM-chitosan Musca domestica MB 26% This work
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