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ABSTRACT: Dedolomitization is an important diagenetic process that can yield information on the history of paleo-fluids in a
given aquifer or outcrop, and by extension it offers a window into past hydrologic conditions. Dedolomitization is also relevant
economically as it can alter the porosity and permeability of carbonates, thus affecting reservoir quality. Despite considerable
research, the process of dedolomitization is still not entirely understood. Here, new findings from the central Oman Mountains
highlight the importance of dolomite chemistry and fluctuating climate on dedolomitization. Petrographic, mineralogical, and
geochemical data from both altered and pristine dolomite hosted in Jurassic carbonate rocks from the Sahtan Group and
outcropping at Wadi Mistal in the Jebel Akhdar tectonic window reveal two dolomite bodies with different characteristics,
stratabound and fault-related dolostone. The (ferroan) dolomite crystals are larger in the fault-related dolostone, whereas the
(non-ferroan) dolomite crystals are smaller in the stratabound dolostone. Petrography reveals a complex suite of alteration
textures, including pristine dolomite, recrystallized dolomite, and calcitized dolomite (dedolomite). Iron oxides are present
pervasively in the altered rocks, and different alteration textures co-occur in the same sample. Relative to unaltered dolomite in
this outcrop, the recrystallized dolomite is characterized by similar positive carbon isotope values but less negative oxygen
isotope values, and the calcitized dolomite is characterized by even less negative oxygen isotope values and more negative
carbon isotope values. Based on field data and petrography, two phases of alteration are evident, an earlier dedolomitization
event affecting the stratabound dolomite only, and a more pervasive Pleistocene–Holocene alteration phase associated with
surface weathering that affected both the fault-related dolomite and to a lesser extent the stratabound dolomite. Stable isotope
results further suggest that the more recent subaerial weathering phase happened under two alternating climate regimes:
dedolomitization was triggered by meteoric fluids that interacted with soil-related carbon during humid climatic period(s),
whereas recrystallization of ferroan fault-related dolomite happened during more arid climatic period(s) with less developed
soils and lower fluid–rock interaction. These results suggest that weathering of ferroan fault-related dolomite can lead to
formation of goethite and recrystallized, non-stoichiometric dolomite (with a reset stable oxygen isotope signature), and
sometimes to dedolomitization.

INTRODUCTION

Von Morlot (1847) introduced the term ‘‘dedolomitization’’ to refer to

the process of dolomite replacement by calcite via the interaction with

fluids with a high Ca2+/Mg2+ ratio, i.e., calcitization of dolomite. The

product of dedolomitization is commonly referred to as ‘‘dedolomite’’

(Back et al. 1983). In addition, the process of dedolomitization can lead to

the formation of calcitic cements filling both veins and the pore space of

the host rock (Back et al. 1983).

Dedolomitization is a fundamental and understudied process that has

far-ranging implications for water quality and reservoir-rock properties

(Cantrell et al. 2007), and that can help unravel the evolution of fluid flow

in a given region (Back et al. 1983). For instance, dedolomitization can be

a major factor controlling the evolution of the chemical composition of

basinal fluids, groundwaters, or surface waters (Back et al. 1983; Deike

1990). Because dedolomitization commonly involves interaction with

meteoric fluid, dedolomite chemistry can yield important information on

the climate and hydrology of a region. Dedolomitization also can impact

the petrophysical properties of dolomite, thus affecting reservoir quality

by changing porosity and permeability (Al-Hashimi and Hemingway
1973; Ayora et al. 1998). To better assess the global impact of dedolo-
mitization, regional studies exploring fundamental controls on dedolo-
mitization are needed.
Several studies have been devoted to understanding the process of

dedolomitization. Nonetheless, the controlling mechanisms of dedolomi-
tization are not completely understood, and different dedolomitization
modes, different diagenetic environments, and different mechanisms
and fluid types responsible for dedolomitization have been suggested.
Dedolomitization has been reported in a range of diagenetic environ-
ments. Most studies propose that dedolomitization is a near-surface
process, either recent or related to a paleosurface (e.g., Goldberg 1967;
Braun and Friedman 1970; Magaritz and Kafri 1981; Kenny 1992; Sanz-
Rubio et al. 2001), consistent with the findings of De Groot (1967). The
latter author found that (1) a high fluid flow rate to remove Mg2+ and
keep the Ca2+/Mg2+ ratio elevated, (2) a low CO2 partial pressure, similar
to that of the atmosphere, and (3) a temperature below 50uC are needed
for effective dedolomitization. However, Budai et al. (1984) suggested
that some dedolomitization may be of deep burial origin on the basis of
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isotopic evidence and the presence of replacement calcite intergrown

within stylolite seams. Dedolomitization has been explained mostly by

one of the two following models: (1) interaction with calcium-sulfate-rich

fluids, commonly related to dissolution of gypsum or anhydrite (Von

Morlot 1847; Shearman et al. 1961; Evamy 1963; Goldberg 1967;

Folkman 1969; Bischoff et al. 1994), and (2) oxidation of ferrous iron in

dolomite under subaerial conditions (Katz 1971; Al-Hashimi and

Hemingway 1973; Frank 1981). These two models are thought to involve

a one-step dedolomitization process, i.e., pseudomorphic replacement

of dolomite by calcite, whereby dolomite dissolves simultaneously with

precipitation of calcite (Al-Hashimi and Hemingway 1973; James et al.

1993). A third model explains dedolomitization as a two-step process,

involving complete dissolution of metastable dolomite (for example

dissolution of Ca-rich dolomite by meteoric groundwater) followed

by precipitation of cavity-filling calcite during the same overall process

(Kenny 1992) or from a different solution at a different time (Jones et al.

1989; James et al. 1993).

This paper focuses on alteration of dolomite and the process of

dedolomitization at Wadi Mistal (Oman Mountains) by investigating

alteration textures and elemental and stable isotope composition of

dolomite, calcitized dolomite, altered dolomite (including iron hydrox-

ides), and calcite cements, all collected from the same Jurassic

(8 m 3 12 m scale) outcrop. The paper presents a new case study for

dedolomitization and aims at improving fundamental understanding of

this process. As will be shown here, the alteration textures of the dolomite

in the outcrop studied in Oman are peculiar and the alteration product is

not always dedolomite. As such, Wadi Mistal offers a unique opportunity

to understand what controls the abundance of dedolomite in a single

outcrop. The goal of this study is to provide more insight into the

alteration processes of dolomite by exploring how controlling factors

affect alteration textures. The results of this study clearly illustrate that

certain dolomite properties determine its susceptibility to alteration and

that climate can control the type of alteration process.

Geological Setting

The study area of Wadi Mistal is situated in the Jebel Akhdar tectonic

window of the central part of the Oman Mountains (Figs. 1, 2). The

Oman Mountains are an arcuate mountain belt 40 km to 150 km wide by

700 km long extending from the Musandam Peninsula in the north to the

Batain coast in the southeast. The Oman Mountains developed as part

of the Alpine Orogeny in response to northeast-directed subduction of

Arabia below the Eurasian Plate (Hilgers et al. 2006). Jebel Akdar is one

of the regional tectonic windows opening through the oceanic allochthon

of the Hawasina volcano-sedimentary nappe complex and the overlying

Semail ophiolite (Poupeau et al. 1998). The Hawasina Nappes are

remnants of the distal part of the south Neotethyan continental margin,

whereas the Arabian Platform corresponds to its shallow-water (neritic)

proximal part (Searle and Graham 1982; Béchennec et al. 1988). The low-

grade greenschist-facies Late Proterozoic rocks in the Jebel Akhdar dome

are unconformably overlain by weakly metamorphosed middle Permian

to Cenomanian carbonates. The carbonates, forming a succession 2.5 km

thick, were deposited on the subsiding southern passive margin of the

Tethyan ocean (Hanna 1990; Rabu et al. 1990; Mann et al. 1990; Pratt

and Smewing 1993; Masse et al. 1997, 1998; Hillgärtner et al. 2003). This

succession is known as the Hajar Supergroup and includes, from bottom

to top, middle–Late Permian fusulinid limestone (Saiq Formation),

Triassic calc-dolomites (Mahil Formation), Jurassic limestone and

siliciclastic red beds (Sahtan Group), and lower Cretaceous–Cenomanian

limestone (Kahmah and Wasia Groups; Saddiqi et al. 2006). The

Jurassic–Cretaceous limestone is disconformably topped by the

Turonian–Santonian clastic marls and olistostromes (Muti Formation

or lower Aruna Group), which correspond to foredeep deposits

(Robertson 1987; Rabu et al. 1990) and generally form the footwall of

the Tethyan nappes. Post-nappe, shallow-water sediments were deposited

over the ophiolite front in the foredeep as early as in the late
Maastrichtian and continued during the Tertiary (Saddiqi et al. 2006).

The host-rocks of the studied dolomite body in Wadi Mistal are Jurassic
in age and belong to the Sahtan Group (Fig. 2).

METHODOLOGY

A total of 34 samples were collected in the outcrop in Wadi Mistal
(Fig. 3): 11 samples come from the brick-red, fault-related dolostone

body (‘‘Fault-Related Dolostone,’’ hereafter FRD), 20 samples come

from the host-rock, which is composed of bluish gray limestone and
brown, stratabound dolomitized limestone and dolostone (‘‘StrataBound

Dolostone,’’ hereafter SBD), and three samples capture the contact

between the brick-red dolostone and the Jurassic host-rock limestone.
All samples were analyzed by microscopic, cathodoluminescence (CL)

microscopic, X-ray diffraction (XRD), elemental geochemical, and stable
isotope techniques. A subset of seven samples was analyzed further with

the scanning electron microscope to look at high-resolution altered

dolomite features.

Rock slabs were finely polished and etched using 1M HCl. Rocks slabs

and half of each thin-section were stained with Alizarin Red S and
potassium ferricyanide to distinguish calcite and dolomite and their

ferroan equivalents following a procedure modified from Dickson (1966).

Transmitted-light microscopy was carried out on 42 thin-sections using a
Zeiss Axioskop 40 microscope. For cathodoluminescence (CL) petrogra-

phy, a CITL Cathodoluminescence Mk5-2 stage mounted on a Nikon

Eclipse 50i microscope was used with an attached Nikon DS-Fi1c digital
camera. Operating conditions were about 270 mA and 14 kV. The same 42

thin-sections used for normal microscopy were also used for CL
microscopy; luminescence color descriptions are based on unstained

thin-section halves.

Small stubs of rock samples were coated with Au-Pd and studied under
a LEO 1455 VP scanning electron microscope (SEM). The SEM was

operated at EHT of 20 kV.

One to two grams of bulk rock samples were prepared for X-ray

diffraction (XRD) by sawing a small piece of sample, cleaning it with

distilled water, drying it overnight, and then crushing it into a powder
using an agate mortar and pestle. The samples were spiked with halite to

serve as an internal standard. The analyses were performed on a Philips
PW 1830 diffractometer system using CuKa radiation at 45 kV and

40 mA. The XRD system is fitted with a PW 1820 goniometer and a

graphite monochromator. The powders were scanned over a sampling
range of 2.5 to 70u 2h with a sampling interval of 0.01u 2h per step and a

scan speed of 2 seconds per step. Artificial mixtures of calcite and

dolomite with internal halite standard were run to calibrate the XRD
system and quantify the abundance of calcite and dolomite present in the

samples. Maximum error of calculated percentages at the 95% confidence
interval is about 2% where there is up to 10% of a component present and

about 7% for higher percentages of a component. Stoichiometry of

dolomite is determined using the equation of Lumsden (1979), after
correction for the shift in d104 peak associated with the iron concentration

in the ferroan dolomite.

Bulk powders for elemental analysis were prepared in a manner similar

to XRD samples. An aliquot of 250 mg of bulk carbonate powder was

dissolved in 50 ml of a 5% HNO3 solution. For this process, the acid is
added to the carbonate powder in four steps, two of 5 ml and two of

10 ml. The solutions then are heated to about 80uC for one hour.

Subsequently, the solutions are filtered and acid is added until a volume
of 50 ml is obtained. Element concentrations (Ca, Mg, Mn, Fe, Na, Sr, K,

Al) are measured in these solutions by ICP-AES. Analytical precision at
the 95% confidence level determined on replicate analyses is about 15%
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for Ca, Mg, Al, Na, and Sr, and 10% for Fe and Mn. A powdered
dolomite standard (GBW07114) was used for internal calibration of the

method, and prepared in the same way as the samples.

In samples where the dolomite fraction represented 40% or more of the

total carbonate, the dolomite fraction was separated and its elemental
composition was measured. For this separation, calcite was dissolved

from the bulk powders by reacting the sample with a buffered solution
composed of 5% acetic acid with ammonium acetate added to obtain a
pH of 5. A 1 or 2 gram aliquot of bulk powder was shaken for two hours

in 100 or 200 ml, respectively, of this solution. The solution was then
filtered and the filter let to dry overnight in an oven set at 50uC. The

residue (representing the dolomite fraction and non-carbonate) was
collected. Part of the residue was used for XRD to verify that there was
no calcite left in the sample. Subsequently, the residue was processed for

elemental composition as explained above for the bulk carbonate
samples.

Stable carbon and oxygen isotope analyses were carried out on
carbonate powders that were drilled with a dental drill. This micro-
sampling approach targeted specific diagenetic phases, namely pristine

dolomite, altered dolomite, and dedolomite. However, three samples of
altered FRD and all SBD samples were analyzed for stable isotopes by

taking the separated dolomite fractions prepared for elemental analysis.
In addition, tests of dolomite and goethite mixtures were carried out to
verify that no goethite dissolved in acid or affected the stable isotopic

results in any other way. Tests were also performed on the dolomite
standard (GBW07114), which was analyzed both as bulk and as extracted
dolomite fraction using the chemical procedure explained above, to verify
that this chemical treatment has no effect on the stable isotope signature
of the dolomite. The samples (100 to 150 mg) were reacted with
phosphoric acid in a Thermo Scientific automated Kiel IV carbonate
device and the resulting CO2 gas was analyzed on a MAT253 mass
spectrometer. All values are reported in per mil relative to the Vienna Pee
Dee Belemnite (VPDB). Drifts in the values were corrected using the
National Bureau of Standards 19 (NBS19, d13C value of +1.95% and a
d
18O value of 22.20%) and an internal laboratory standard (Imperial
College Carrara marble, ICCM). The oxygen isotope composition of
dolomite was corrected for acid fractionation using the fractionation
factors given by Rosenbaum and Sheppard (1986). Reproducibility was
checked by replicate analysis of laboratory standards and NBS19 and was
better than 0.04% for d13C (1s) and 0.08% for d18O (1s).

PETROGRAPHY

Host-Rock and Dolomite Types D1 and D2

The Jurassic Sahtan Group in Wadi Mistal comprises bluish gray to
brown host-rocks. The bluish gray lithologies are limestone, some
containing centimeter-size calcite nodules. The brown lithologies are
partially dolomitized limestone or dolostone that are parallel to the

FIG. 1.—Geological map of northern Oman
(after Le Métour et al. 1993). Inset figure shows
part of the Middle East, locating Oman (indi-
cated in orange), with the green box delineating
the Jebel Akhdar area presented on the geolog-
ical map.
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bedding and are termed here stratabound dolostone (SBD). A third

lithology, a brick-red dolostone with iron oxides, follows a fault, hence is

referred to as fault-related dolostone (FRD). This dolostone zone extends

a few meters away from the fault along stratigraphic layers (Fig. 3). A few

reddish veins crosscut limestone and SBD; these veins are filled with

brick-red dolomite as in FRD. This crosscutting relationship illustrates

that the FRD is younger than the SBD.

Petrographic study of thin-sections of the host-rocks identified several

carbonate textures. The textures of bluish gray limestone vary between

mudstone to wackestone and packstone with peloids or calcite-cemented

fenestrae, and the rocks contain nodules or fossil relicts (such as

echinoids) generally 100 to 1000 mm in length (Fig. 4A), although larger

shell or coral fragments occur. The larger nodules (several centimeters in

diameter) in the limestone are filled mainly with coarse gray and white

FIG. 2.—Geological map of the Jebel Akhdar tectonic window (after Le Métour et al. 1993). Location of the Wadi Mistal outcrop is indicated.

FIG. 3.—Photograph of the sampled outcrop
of Jurassic rocks. The picture shows the bluish
gray limestone (Lmst), the brown stratabound
dolomite layers (SBD), and the red fault-related
dolomite body (FRD). The numbers indicated
on the picture refer to the sample numbers and
show their locations. The two white lines indicate
the bedding (B) and fault (F) orientation.
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FIG. 4.—Microphotographs of thin-sections of the different rock types. Scale bars are 500 mm.A) Stained thin-section of host-rock limestone containing some small dolomite
rhombs. B) Stained thin-section of nodule-bearing limestone, showing recrystallized limestone matrix and highly deformed calcite crystals in nodule with crosscutting and bent
cleavage twin planes. Small brown D1 dolomite crystals are concentrated at the rim of the nodule and in clusters inside the nodule and in the host-rock. An irregular calcite vein
crosscuts the dolomite and calcite in the nodule.C)Unstained thin-section of limestone, showing someD1 dolomite rhombs, of which a few seem corroded by the stylolite. Note
that the top of the layer is oriented to the left. D) Same view as part C but under cathodoluminescence. Note that the midtones were lightened by a factor of 2 to make
luminescent features visible in this photograph. The dolomite rhombs are nonluminescent to the naked eye, whereas the limestone host-rock is dull dark red. E)Unstained thin-
section from brown stratabound dolostone with planar-s to planar-e D1 dolomite. The dolomite rhombs have a dark brown outer core, and some rhombs have also a thin clear
rim. The former pore space between the dolomite rhombs is filled with clear calcite.F) Stained thin-section of coarse fault-relatedD2 dolomite. The blue shade due to the staining
suggests this dolomite has a high iron concentration. Some dark brown zones due to alteration are present, mainly at the rims of the crystals.
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calcite and occasionally minor brown dolomite and white quartz cement.

The cement in the nodules is deformed strongly, with crosscutting and

bent cleavage twins in the calcite crystals (Fig. 4B). These calcite crystals

are nonluminescent or show a dull dark reddish orange luminescence

under CL. Quartz crystals are nonluminescent, and dolomite is mainly

nonluminescent under CL but can show dull reddish zones. The limestone

can contain small (30 to 150 mm) subhedral to euhedral dolomite crystals

(hereafter referred to as ‘‘D1’’) and, more rarely, a few diagenetic quartz

crystals. The D1 dolomite rhombs occur scattered in the limestone but are

more abundant along stylolites and stylolitic seams. The D1 rhombs

commonly have a dark brown rim (Fig. 4C). The D1 dolomite crystals

are commonly nonluminescent under CL (Fig. 4D), but in a few cases

they can display a reddish weakly luminescent rhomb-shape lining in the

core of the crystal. In general, the limestone is strongly recrystallized,

which transformed the original muddy matrix to a coarser crystalline

texture and recrystallization also partly obliterated fossil relict structures

(Fig. 4A). The calcitic matrix is nonluminescent to dull dark red with

some brighter greenish orange luminescent crystal rims under CL.

The brown SBD lithologies are partially to completely dolomitized,

and the dolomite can be classified as planar-s to planar-e dolomite with

crystals of 50 to 200 mm in diameter; in some cases, a few small zones

contain coarser subhedral crystals of up to 500 mm in diameter. Some D1

crystals in SBD have a dark brown outer core or a thin clear dolomite rim

(Fig. 4E) and are nonluminescent or dark red under CL. Intercrystalline

pore space between D1 crystals can be filled with dark brown material or

with clear calcite. The dark brown material between the crystals can

display some dull reddish luminescence under CL, especially near the

dolomite crystal borders. In a few samples, the D1 rhombs are cut by

bedding-parallel stylolites. This light brown dolomite is similar to the

small dolomite rhombs in the limestone, hence it is also classified as

‘‘D1.’’

In thin-section, the brick-red FRD includes coarser (200 to 1500 mm

diameter) ferroan dolomite (determined based on blue color upon

staining; Fig. 4F), hereafter referred to as ‘‘D2.’’ The D2 dolomite

crystals can be rhombic, but most are anhedral and can be saddle

dolomite where the crystals occur adjacent to pore spaces or calcite

cement. It includes many reddish brown to dark brown zones, besides

small D1 dolomite rhombs similar to those present in the host-rocks.

Polished and stained hand samples from FRD (Fig. 5) illustrate

macroscale textures. The white parts (under transmitted polarized light)

of the ferroan D2 dolomite are nonluminescent under CL and the dark

brown and reddish brown zones (under transmitted polarized light) are

either nonluminescent or display dull or bright dark red and reddish

orange luminescence. The reddish brown and dark brown zones also

FIG. 5.—Macrophotographs of polished and stained samples. Coin has a diameter of 2.3 cm. A) Calcitized sample. B) Partially altered dolomite sample with alteration
front; blue-stained Fe-rich zone with pristine dolomite and red-brown zone with dolomite, goethite, and some calcitized parts. C) Slightly calcitized altered red brown
dolomite sample. D) Blue-stained Fe-rich pristine dolomite with some altered noncalcitized red-brown dolomite at the sample rim.
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include goethite, which forms radiating clusters of prismatic crystals

(Fig. 6). XRD analyses indicate up to 5% goethite in the samples from the

red dolomite body. However, thin-section analysis supports a small
amount of goethite within more extensive reddish brown zones.

Intercrystalline porosity between the coarse D2 crystals commonly is

filled by calcite that can be nonluminescent under CL, dull brown
luminescent, bright orange luminescent, or that can display a zoned

luminescence pattern with alternating nonluminescent, dull brown and

bright yellowish orange luminescent zones.

Alteration Textures

Replacement of dolomite by calcite is indicated by rhombs in stained

thin-sections that were originally dolomitic that take a pink stain,

indicating calcite, and by XRD analyses (based on the typical dolomite
rhomb crystal shape and XRD-confirmed abundance of dolomite in less

altered or unaltered samples and higher abundance of calcite in more

altered samples from the same outcrop). These dedolomites include
several alteration textures. As discussed below, alteration can occur in

different degrees, whereby dolomite may be oxidized (with the formation

of goethite) or affected by calcitization (i.e., dedolomitization).

In the limestone, D1 crystals can be calcitized either partially or

completely, resulting in two main textures (Fig. 7). There is no difference

in spatial concentration of one texture versus the other. The two textures
occur in similar abundance, and both textures can be present in a single

sample or thin-section. The first texture consists of rhombs that are
characterized by calcitized patches commonly at the corners or the rims of

the rhombs (Fig. 8A). Calcitized zones in D1 rhombs are nonluminescent

under CL; they commonly are not distinguishable from the nonlumines-
cent dolomite unless they crosscut the dull reddish luminescent small

rhomb lining in the core of the crystal. The second texture consists of

rhombs that are calcitized completely. The rhombs are composed of
either fine crystalline calcite, appearing similar to the recrystallized

limestone, or medium crystalline calcite. The edges of the rhombs can be

accentuated by a dark brown rim or by a black coating, especially where
the rhombs occur close to stylolites (Fig. 8B). The rhombs are

nonluminescent under CL, whereas the dark brown rims can display a

dull reddish luminescence.

Relative to the limestone, the brown SBD lithologies are slightly less

altered. Most samples show dedolomitization textures similar to those in
the small dolomite rhombs in the limestone, as discussed above. The

calcitized rhombs or partial rhombs can include nonluminescent cleavage-

twinned calcite crystals (Fig. 8C, D). Some samples, however, are not
affected by calcitization, but display a dark brown zone at the core-rim

interface or a dedolomitization-altered rim. This dark brown zone can

display a very weak dull dark red luminescence under CL.

The most altered part of the outcrop is the brick-red FRD body (Figs. 3,

5). It is clear that alteration zones in this brick-red FRD body are
concentrated at the rock surface and along fractures. A series of textures

are evident in the FRD, each of which includes different degrees of
alteration (Fig. 9). A texture close to the original D2 dolomite is marked by

coarse iron-rich D2 dolomite crystals that are barely affected by alteration
(Fig. 8E). TheseD2 crystals are mainly white in color, but can display a few

brown patches at crystal borders or growth zones or cleavage planes
(Fig. 9B). The unaffected part of D2 is nonluminescent under CL, whereas

the dark brown patches are bright reddish orange luminescent (Fig. 8F).
Commonly, D2 is affected by alteration, which has led to several textures of

brownish altered zones. These zones can have the following textures:

(1) Calcitized nonluminescent zonation in brown coarse crystals
(Figs. 9C, 10A).

(2) Small, thin colloform brown bands in calcitized zones (Figs. 9D,
10B). No cathodoluminescence zonations are evident under CL,

but these include a homogeneous dull to bright red luminescence.

(3) Dark brown or reddish brown homogeneous millimeter-scale area

containing several crystals (Fig. 9E) or subhedral crystals in veins

(Fig. 10C). Crystals in these areas or veins are mainly nonlumi-
nescent under CL, but some contain dull dark brown luminescent

patches. In rare cases, however, the dark brown zones can display
a dull to bright red luminescence under CL (Fig. 10D).

(4) Reddish brown fishbone-like calcitized texture with preserved
small D1 rhombs (Figs. 9F, 10E). Dark brown zones are

nonluminescent to dull dark brown luminescent under CL,
whereas reddish brown and clear calcite patches display a bright

orange luminescence (Fig. 10F). Preserved small D1 rhombs are
nonluminescent to dull dark brown luminescent under CL, but

some display a dull luminescent rhomb lining in the core.

(5) Reddish brown fishbone-like calcitized texture with calcitized

small D1 rhomb relicts (Fig. 9G, 10G). This dedolomitization
pattern has the same characteristics as the previous texture except

that the small rhombs are calcitized, not preserved, D1; the
rhombs are nonluminescent under CL.

FIG. 6.—SEM photographs of two examples of altered fault-related dolomite (FRD) with dissolution textures of dolomite and precipitated goethite needles and calcite.
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(6) Mottled dark brown pattern in partially calcitized reddish brown
zone (Fig. 9H, 10H). Dark mottles are nonluminescent in a dull
reddish luminescent zone under CL.

CARBONATE GEOCHEMISTRY

Major-Element and Minor-Element Geochemistry

The concentrations of Fe, Mn, Ca, andMg vary in the samples from the
bluish gray limestone, the brown SBD and the red FRD (Table 1).
Elemental data from SBD bulk carbonate represent a signature of D1
dolomite influenced by the presence of both non-dolomitized limestone and
calcitized D1, whereas the signature of the FRD bulk carbonate shows the
signature of mainly D2 (and traces of D1) affected mainly by the presence
of calcitized D2 (Table 1). Since the FRD dolomite fraction is composed
mainly of D2 and because potential D1 traces do not have a marked
influence on the total chemical composition of the FRD dolomite fraction,
the FRD dolomite fraction will be referred to as D2 in the text below.

The Mg concentration varies over a wide range in the bulk carbonate
samples, but it is restricted to a narrower range in the limestone and D1

and D2 (Fig. 11A). The Mg concentration is very low (0.1–0.7 wt%) in the
limestone, whereas higher concentrations are found in D2 (8.5–11.1 wt%)
and the highest Mg concentrations are measured in D1 (11.4–13.8 wt%).
The highest Fe (5–9 wt%) and Mn (0.3–0.4 wt%) concentrations are
evident in FRD samples that are least affected by alteration. The other

FRD samples have Fe and Mn concentrations that show some overlap
with the generally lower Fe and especially lower Mn concentrations of the
limestone, D1, and SBD bulk carbonate samples (Fig. 11A, B).

Dolomite Stoichiometry

Most D1 samples have a nearly stoichiometric composition (50–51mol%
CaCO3, Table 1). Similarly, the well-preserved white coarse ferroan D2
have about 50 mol% CaCO3. However, the majority of D2 samples are
affected by alteration (with goethite formation) and the altered reddish D2

samples are composed of 56–57 mol% CaCO3 (Fig. 12).

FIG. 7.—Alteration textures of dolomite
rhombs in the bluish gray limestone. The original
rock texture is presented in fabric I. Rock
textures resulting from some degree of alteration
are shown in fabric IIa, with a dark brown
coating developed along the rims of the dolomite
rhombs, and fabric IIb, whereby part of the
dolomite is calcitized. Completely calcitized
textures can occur as fabric IIIa, whereby the
rhomb is filled with fine-crystalline calcite that
has the same appearance as the surrounding
recrystallized limestone, or fabric IIIb, where the
rhomb is filled by calcite that is coarser than the
surrounding recrystallized limestone.
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FIG. 8.—Microphotographs of alteration textures in stained thin-sections. Scale bars are 250 mm. A) D1 dolomite rhombs that are partially replaced by calcite in a
recrystallized limestone. B) Recrystallized limestone with D1 rhomb relicts after alteration. C) D1 dolomite in stratabound dolomite zone with some recrystallized
limestone zones. Partially calcitized dolomite rhomb in center with cleavage twins in the replacing calcite. D) Same view as part C but under cathodoluminescence. With
the naked eye, all is nonluminescent and the digital image has been reworked and brightened. The cleavage-twinned dedolomite is darker (less luminescent) than the
dolomite rhombs. E) Subhedral coarse D2 dolomite with minor dark brown patches and calcite fill in former pore space between the dolomite crystals. F) Same view as
part E but under cathodoluminescence. The coarse dolomite is nonluminescent, whereas the dark brown patches are bright orange luminescent. The pore-filling calcite
displays a zoned pattern of dull and bright orange luminescent zones.

INFLUENCE OF CLIMATE AND DOLOMITE COMPOSITION ON DEDOLOMITIZATION 185J S R



FIG. 9.—Alteration textures of fault-related
dolomite fabric. A) Pristine dolomite fabric with
orange brown dolomite rhombs representing D1
and gray-brown coarser dolomite representing
D2. B) Well-preserved texture with coarse iron-
rich D2 dolomite crystals that can display a few
brown patches at crystal borders or growth
zones or cleavages. C) Brown and calcitized
zonations and darker and lighter brown irregular
mottles in the coarse D2 crystals. D) Small thin
colloform brown bands and calcitized zones.
Part of the D2 dolomite may be better preserved;
also D1 crystals may or may not be calcitized.
E) Dark brown or reddish brown homogeneous
large zone in D2 dolomite, whereas D1 dolomite
rhombs may be preserved. F) Reddish brown
fishbone-like calcitized texture with preserved
small D1 rhombs. G) Reddish brown fishbone-
like calcitized texture with calcitized small D1
rhomb relicts. H) Mottled dark brown pattern in
partially calcitized reddish brown zone and some
preserved D1 dolomite rhombs.
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Stable Carbon and Oxygen Isotope Ratios

A cross-plot of the stable carbon and oxygen isotope ratios of the
various sampled phases (Fig. 13) reveals that bulk limestone samples have
a wide range of d18O values (between 29.3 and 24.5%) and d

13C values
(between 21.8 and +2.4% VPDB). These d

13C values are similar to
Jurassic marine signature (Veizer et al. 1999), and d

18O values are more
negative. The pristine D2 samples have d

18O values between 29.8 and
27.6% and d

13C values between +1.5 and +2.1% VPDB. The D1 samples
have a less negative d

18O signature (25.0 to 21.8% VPDB) and a d
13C

signature (+2.0 to +2.7% VPDB) close to that of D2. The altered, red,
noncalcitized D2 samples have less negative d18O values, compared to the
pristine D2, and the altered, rusty, noncalcitized D2 samples have the
least negative d18O signature of this study. The degree of alteration of the
dolomite samples coincides thus with a shift towards more positive d

18O
values. In D2 samples in which dolomite was replaced by calcite
(‘‘calcitized D2’’), a decreasing trend in the d

13C value (from an average
of +1.0 to 24.8% VPDB) is evident, whereas the d

18O is slightly lower
than the altered noncalcitized D2. The values of the altered red dolomite
veins fall close to a mixing line correlating altered, red, noncalcitized D2
and calcitized D2.

DISCUSSION

Composite Textures Originating from both Dolomitization and Alteration

A wide variety of textures was documented that must reflect (part of)
the diagenetic history of the rocks. In outcrop, most stratigraphic layers
contain some small dolomite rhombs (D1 dolomite), whereas the D2
dolomite seems to be associated only with fault zones. Presenting a model
of how the dolomite formed is not the focus of this study, and thus the
discussion is limited to dolomite characteristics, as far as it is relevant to
understanding the alteration processes. One important fact is that there
are two dolomite types, i.e., stratabound D1 and fault-related D2, each
marked by different characteristics. The petrographic difference is crystal
size, i.e., fine D1 versus coarse D2, and also texture, i.e., subhedral to
euhedral D1 rhombs and a variety of euhedral but mainly anhedral and
saddle dolomite D2. Similarly, the geochemical characteristics are
different. D1 is non-ferroan, whereas D2 is ferroan, and the stable
oxygen isotope composition in pristine D2 is about 5% more negative
than that in D1. Based on the fact that stratabound D1 dolomite layers
are crosscut by veins with D2 dolomite, and that small D1 dolomite
rhombs are surrounded or enclosed by D2 dolomite, D2 must have
formed after D1.

The alteration textures and presence of calcitized dolomite indicate that
at least one major phase of alteration and dedolomitization took place. In
addition, some petrographic observations can be interpreted as evidence
for another, earlier phase of dedolomitization preceding the main event.
Calcitized D1 rhombs can be composed of fine-crystalline calcite, similar
to the composite calcite rhombohedra texture (Shearman et al. 1961;
Evamy 1967). However, it is possible that this fine-crystalline texture is
not the original dedolomite texture in the studied rocks, since the fine-
crystalline calcitized D1 rhombs have the same texture as the surrounding
recrystallized limestone. The similarity with the recrystallized limestone
texture and, in addition, the occurrence of cleavage twins in coarser
crystalline calcitized D1 rhombs point to burial recrystallization of
dedolomitized D1 in the SBD. Calcitization under burial conditions is
possible, and limited dissolution of dolomite during burial was recorded
in Cretaceous rocks of the Zagros Mountains of Iran (Sharp et al. 2010).
For dedolomitization to occur, an increase in the Ca/Mg ratio or a
decrease in the salinity of the pore fluids (Khalaf and Abdal 1993) would
be expected.

Evidence for burial dedolomitization is present only in D1, whereas the
alteration of D2 testifies to a second and major alteration and
dedolomitization phase that is interpreted as a late post-uplift surface

weathering process based on the depleted stable isotope signature (both

d
18O and d

13C) of calcitized D2 typical of rain-water oxygen and soil-

related carbon (e.g., Sanz-Rubio et al. 2001; Cantrell et al. 2007; Nader et

al. 2008; see more extensive discussion in the next section). This phase of

weathering and dedolomitization affected D2 extensively but spared some

D1 in all lithologies (i.e., limestone, SBD as well as FRD). The fact that

D2 was more altered, and thus less stable during the second

dedolomitization event than D1, would be consistent with a near-surface

origin for the second alteration phase, as previous authors have reported

that Fe- and Mn-rich dolomite similar to D2 is less stable in the near-

surface environment (e.g., Al-Hashimi and Hemingway 1973), whereas

nonferroan dolomite (such as D1) is more stable at surface conditions. It

is clear based on mineralogy that D2 was affected by oxidation of the

unstable dolomite, generating iron oxides and hydroxides, recrystalliza-

tion of dolomite, and calcitization of dolomite. The association of iron

oxides with dedolomitized carbonate rocks is common (Shearman et al.

1961; Folkman 1969; Katz 1971; Frank 1981). Evamy (1963) interpreted

that the excess of ferrous iron was expelled during dedolomitization and

precipitated as colloidal ferric hydroxide under specific physicochemical

conditions. However, oxidation of ferroan dolomite is not necessarily

accompanied by calcitization of dolomite. Subaerial exposure can convert

ferroan dolomite into iron oxide grains or aggregates by oxidation and

pseudomorphic replacement (Zeidan and Basyuni 1998; Grosz et al.

2006). The fact that goethite is formed rather than hematite (no relicts or

pseudomorphs of hematite are present) is also consistent with conditions

of low temperature and pH found at surface conditions, high water

activity [H2O], and low iron supply rates (Yapp 2001). The interpreted

surface weathering textures can be grouped into two end products: (1)

goethite–dolomite fabric, resulting from oxidation of dolomite with the

formation of iron oxides and texture-preserving recrystallization of

dolomite, and (2) goethite–calcite fabric, resulting from a combination of

oxidation of dolomite and calcitization (or pseudomorphic replacement

of dolomite by calcite, i.e., dedolomitization). The two fabrics occur

intimately mixed in the outcrop.

New Insights on the Dedolomitization Process and the Influence of Climate

Stable isotope ratios of oxygen in carbonate phases depend on the

precipitation temperature and the composition of the fluid from which

the carbonate precipitates. Stable carbon isotope compositions in near-

surface carbonate cements, such as speleothems, reflect input from (i) soil

CO2, which is controlled by atmospheric CO2, plant respiration, and

organic-matter degradation and (ii) bedrock carbonate that is dissolved

during seepage (Genty et al. 2006). In some dedolomitization studies,

isotopic compositions were presented as a strong argument to prove that

dedolomitization happened near the surface by meteoric fluids (low d
18O

of 211 or 26% VPDB and low d
13C of about 26 to 28% VPDB as in

Cantrell et al. 2007; Nader et al. 2008). Stable isotope results here show

two clusters of data, one for the goethite–calcite fabric and one for the

goethite–dolomite fabric. Similarly to previous studies that suggested that

dedolomitization is driven by surface meteoric fluids (e.g. Sanz-Rubio

et al. 2001; Cantrell et al. 2007; Nader et al. 2008), calcite resulting from

pseudomorphic replacement of D2 (indicated as ‘‘calcitized D2’’ in

Fig. 13) has a signature of both depleted d
18O and depleted d

13C, typical

of rain-water oxygen and soil-related carbon. As mentioned in the

previous section, the depleted isotopic signature of the calcitized D2 is

one of the main arguments to interpret the second dedolomitization phase

as being associated with surface weathering. In this context, low carbon

isotope values for the calcitized dolomite would be indicative of a high

percentage of carbon input from soil CO2 in comparison with carbon

input from the surrounding rock. An alternative model to explain the

depleted isotopic values of the calcitized D2 would be to associate

dedolomitization with deep burial (low d
18O due to higher temperature of
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FIG. 10.—Microphotographs of alteration textures in FRD samples. Scale bar is 500 mm. A) Dark brown and lighter brown zonations in coarse D2 dolomite. B) Dark
brown and lighter brown colloform bands. C) Unstained thin-section showing dark brown subhedral D2 dolomite crystals. D) Same view as in part C but under
cathodoluminescence. The dark brown zones are dull to bright red luminescent, whereas the unaltered white dolomite zones and crystals are nonluminescent. The calcite
covering the dolomite crystals displays a zoned luminescence pattern of alternating nonluminescent and bright orange luminescent zones. E) Fish-bone dedolomitization
texture on unstained thin-section with small D1 dolomite rhomb relicts. F) Same view as part E but under cathodoluminescence. Small D1 dolomite rhombs are
nonluminescent, and so are the dark brown mottles. In contrast, the lighter brown and calcite zones are bright reddish orange luminescent. G) Stained thin-section,
showing a part in the hand sample where also the small D1 dolomite rhombs are calcitized. H) Example of mottled dark brown pattern in dedolomitized rock (stained
thin-section). Small D1 dolomite rhomb relicts occur between the dark brown mottles and the more homogeneous lighter brown zone.

TABLE 1.—Major-element and minor-element data of bulk carbonate and separated dolomite fraction of the samples studied. The elemental concentrations
of the fractions are expressed as for 100% of dolomite or total carbonate, and the IR is the insoluble residue (noncarbonate) in the bulk rock. Also X-ray
diffraction data are presented with dolomite percentage in total carbonate, dolomite stoichiometry (corrected for iron concentration, expressed in mol%

CaCO3) and identification of noncarbonate minerals present in the bulk rock samples analyzed.

Sample Fraction Ca (%) Mg (%) Fe (ppm) Mn (ppm) IR%
Dolomite

(%)
Dolomite Mol%

CaCO3

Noncarbonate
minerals

Bluish gray limestone host rock

MIST2 Bulk rock 39.0 0.3 1834 724 2.6 2
MIST6 Bulk rock 40.7 0.2 43 22 4.6 0
MIST12 Bulk rock 40.1 0.7 393 151 8.3 6 quartz
MIST16 Bulk rock 40.4 0.7 834 351 5.9 4
MIST17 Bulk rock 40.5 0.4 269 114 5.8 2
MIST19 Bulk rock 40.8 0.2 345 291 5.0 2
MIST20 Bulk rock 39.8 0.4 469 224 2.4 3
MIST22 Bulk rock 38.8 0.1 820 441 1.7 0
MIST24 Bulk rock 38.4 0.2 2190 1139 4.4 1 goethite
MIST25 Bulk rock 38.0 0.2 367 147 0.0 0
MIST26 Bulk rock 41.0 0.1 231 55 8.5 0
MIST27 Bulk rock 40.9 0.2 88 55 5.5 0

Brown stratabound dolostone host rock

MIST4 Bulk rock 32.3 4.7 660 503 2.9 42 50
MIST5 Bulk rock 25.7 9.9 177 46 0.0 81 53
MIST7b Bulk rock 31.7 6.3 1891 600 11.0 52 51 quartz
MIST8 Bulk rock 32.7 5.5 244 77 2.0 57 51 quartz

Dolomite 21.6 12.4 396 40
MIST9 Bulk rock 23.0 12.8 4353 616 4.6 94 51 goethite

Dolomite 22.2 11.9 3923 413
MIST10* Bulk rock 22.8 13.8 6647 668 5.3 98 50

Dolomite 21.1 12.2 4769 393
MIST31 Bulk rock 32.5 5.5 152 31 4.3 69 55

Dolomite 21.4 11.4 207 26

Red fault-related dolostone body

MIST1 Bulk rock 38.3 0.7 1069 711 19.5 5 goethite
MIST7+ Bulk rock 38.8 0.7 833 450 2.0 11 quartz
MIST11 Bulk rock 39.5 0.7 639 2227 20.7 5 goethite
MIST13 Bulk rock 24.0 9.8 51914 2798 10.7 94 50 goethite

Dolomite 21.2 9.2 59115 2741
MIST14 Bulk rock 26.7 10.5 5246 1242 15.4 77 56 goethite

Dolomite 23.5 10.9 6718 1295
MIST15 Bulk rock 32.5 6.1 2503 1568 22.3 38 57 goethite
MIST21 Bulk rock 33.8 2.9 758 717 10.0 27 50 goethite, quartz
MIST23 Bulk rock 38.6 0.3 517 1667 15.8 3 goethite
MIST28 Bulk rock 32.0 6.5 2652 2007 18.8 47 57 goethite

Dolomite 23.2 11.1 5118 2969
MIST29 Bulk rock 37.0 1.8 781 508 3.8 41 goethite
MIST30 Bulk rock 27.7 8.7 2065 2155 19.1 67 57 goethite

Dolomite 23.5 10.9 3123 2282
MIST32 Bulk rock 34.9 3.8 1598 1113 20.2 26 56 goethite
MIST33 Bulk rock 21.8 9.7 73581 3951 8.6 99 50

Dolomite 21.0 8.5 74528 3657

* MIST10 forms the contact between brown stratabound dolostone host rock and red fault-related dolostone and thus contains material of both.
+ MIST7 sample is host-rock dominated by large vein with red dolomite.
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the fluid; Kim and O’Neil 1997) and hydrocarbon escape (low d
13C

associated with hydrocarbon; Peckmann and Thiel 2004). However, this

alternative scenario is viewed as unlikely due to the absence of evidence

for hydrocarbons (no hydrocarbon inclusions or evidence of tar at the

outcrop) and the position of the section (an outcrop exposed to meteoric

waters and soil-derived CO2). Microbial activity could also influence the

d
13C of pore waters (Coleman 1993; Whiticar 1999), but although it

cannot be ruled out, no textures reminiscent of microbial precipitates

(Lacelle et al. 2009) are present in the rocks.

The most likely hypothesis is thus that the low d
13C of the calcitized D2

implies near-surface conditions with a higher soil-derived carbon input

and a high fluid/rock ratio (of about 1800 for a dedolomite d
13C of

24.8% VPDB, a host-rock d
13C of +1% VPDB and considering C3

vegetation in the soil cover; calculation based on Lohmann 1988, personal

communication, d
13Ci 5 d

13CHR 3 Fc + (1 2 Fc) 3 d
13Ci–1 with

Fc 5 mole fraction carbon in rock, using rock/water increment size of

1 3 1026). The high fluid/rock ratio needed in the context of exposure to

(near-surface) meteoric water implies regular, moderate rainfall or wet

conditions, and contrasts markedly with the current arid conditions

prevailing in Oman. However, previous studies of cave deposits from

northern Oman demonstrated that climatic conditions in the region

switched multiple times between wetter conditions (increased Indian

Ocean monsoons) and arid conditions over the course of the Pleistocene

to Holocene (Burns et al. 2001). Burns et al. (2001) related the increased

precipitation to orbital parameters, and suggested that wetter periods of 4

to 10 thousand years (ky) duration existed in Oman during maximum

interglacial periods. Speleothem growth occurred mainly during the

wetter periods, as also interpreted from zoned phreatic cave calcites from

Jebel Madar in Oman showing monsoon-driven cyclicity (Immenhauser

et al. 2007). The alternating wetter and drier periods are expected to drive

changes in the oxygen and carbon isotope compositions of near-surface

cements (Fig. 14). This link was demonstrated for d18O in speleothems in

Oman, with generally lower oxygen isotope values in speleothems formed

during wetter periods compared to recent speleothems formed under arid

climate conditions (Fleitmann et al. 2003). The absolute d
18O values

between Fleitmann et al. (2003) and Immenhauser et al. (2007) are slightly

different because of the mixing between surface waters and hydrothermal

waters in the case study from Immenhauser et al. (2007). The difference in

FIG. 11.—Crossplots of elemental concentrations for the bulk carbonate fraction of the bluish gray limestone, the brown stratabound dolomite (SBD) and red fault-
related dolomite (FRD) and the dolomite fraction of SBD (D1) and of FRD (D2). A) Fe versus Mg concentration, illustrating the lower Fe content in low Mg (altered)
FRD compared to high Mg (unaltered) FRD samples, B) Fe versus Mn concentration. Note the positive correlation between the two variables.

FIG. 12.—Dolomite content in bulk rock versus dolomite stoichiometry for
dolomite within the SBD (D1) and the FRD (D2), both calculated from XRD
analyses. The distinction is made between D2 that is well preserved with high
content of dolomite in bulk rock and D2 that is affected by alteration and has
lower percentages of dolomite in the bulk rock. Alteration of the dolomite samples
is associated with an increase of mol% CaCO3 in the dolomite crystals.
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d
18O between more humid and more arid conditions is related to a

difference in moisture source, i.e., a much greater percentage of the total

moisture brought to the region originated in the Indian Ocean during the

peak interglacial humid periods, whereas the northern Mediterranean

moisture source was more important during arid periods (Fleitmann et al.

2003; see Fig. 14). Furthermore, increased rainfall results in a decrease of

d
18O and dD of rainwater, even when the source of moisture remains

constant (Lawrence and White 1991). A study by Whittaker et al. (2011)

demonstrates an inverse relation between d
13C and amount of annual

rainfall; a wetter climate will be linked to a lower d13C recorded in near-

surface cements due to an open system with high soil moisture, and thus

less plant stress, higher biological activity in the soil zone, and isotopic

equilibrium between infiltrating fluid and soil CO2 (Harmon et al. 2004).

The data therefore suggest that the oxidation and calcitization of D2

occurred mainly during the wetter climatic periods of the Pleistocene to

Holocene (Fig. 14A). The d
18O signature of the calcitized D2 (27.5 to

25.5% VPDB) are similar to those of Pleistocene to Holocene

speleothems of the Hoti cave in northern Oman deposited during humid

periods (Burns et al. 2001). However, the range of d
18O values for

rainwater between arid and humid periods overlaps (Fig. 14; Fleitmann et

al. 2003; Immenhauser et al. 2007), and therefore the main argument is

that a large amount of rainfall is required to shift the d
13C to lower

values. The d
13C values measured in the calcitized D2 (25.8 to 23.7%

VPDB) fall at the lower end of the range of 26 to 21% VPDB reported

for the vadose speleothems in the Oman Hoti cave (Burns et al. 1998;

Immenhauser et al. 2007). The goethite–calcite weathering fabric is thus

interpreted as resulting from a high fluid/rock ratio (1800) between the

host-rock and oxidative, meteoric fluids that had interacted with an

extensive soil cover. The meteoric fluids must have had a high redox

potential (Eh) since ferroan dolomite is driven to goethite, and a high Ca/

Mg ratio to promote dedolomitization (Fig. 14A).

The isotopic signature of altered, noncalcitized D2, resulting from the

oxidation and dolomite recrystallization process, shows contrasting

values. Pristine D2 is characterized by a strongly depleted d
18O signature

(Fig. 13). The d
13C signature of the preserved D2 is similar to that of

Jurassic carbonates (Veizer et al. 1999). The oxidation and recrystalliza-

tion of D2 is accompanied by a shift towards less negative d
18O values

(data from D2 to altered red and rusty D2; Fig. 13) whereas the original

d
13C signature is retained. These results suggest that this goethite-

recrystallized dolomite weathering fabric formed during the more arid

climate periods (Fig. 14B) characterized by a lower amount of rainfall, a

different prevalent moisture source leading to less depleted d
18O values

(Fleitmann et al. 2003), and less soil development. The reduced soil

development, a lower residence time of the fluid in the soil, and less

interaction with soil-derived CO2 explain d
13C values in the meteoric fluid

that are less depleted during arid periods and can lead to a positive d13C

value in the dolomite (Fig. 14B). Furthermore, the lower amount of

annual rainfall during the drier periods will lead to a depressed aquifer

and a lower fluid/rock ratio. Using the equation of Lohmann (1988,

personal communication), a fluid/rock ratio of 60 to 450 results in a

cement with a d
18O reflecting the meteoric fluid composition (thus not

host-rock buffered, and considering that temperature and fractionation

factor, here for dolomite, determine the shift between the fluid d
18O and

the recrystallized dolomite d18O) and a d
13C that is completely host-rock

buffered (equation d
18Oi 5 d

18OHR 3 Fo + (1 2 Fo) 3 d
18Oj–1 with

Fo 5 mole fraction oxygen in rock and d
18Oj 5 (d18Oi 2 1000 3

FIG. 13.—Carbon and oxygen isotope cross-
plot of the calcitic and dolomitic fractions. In the
red fault-related dolomite (FRD) body, different
degrees of altered dolomite were sampled, i.e.,
unaltered pristine D2, oxidized D2 dolomite
(altered red D2 and altered rusty D2), and
calcitized D2. Altered red dolomite occurring in
veins is also shown. The dolomite alteration and
calcitization follows a clear trend in isotopic
signature. The gray box indicates the Jurassic
marine calcite signature from Veizer et al. (1999).

INFLUENCE OF CLIMATE AND DOLOMITE COMPOSITION ON DEDOLOMITIZATION 191J S R



Fo 3 (a21))/(Fo 3 (a21) + 1), based on d
18O of fluid of 25%

VSMOW and d
18O of host-rock of 21% VPDB; equation for carbon

as shown above and considering C4 vegetation in the soil cover;

increment size of 0.1). The fact that the wet versus arid periods involve

meteoric fluids with different characteristics and that the lower amount of

rainfall translate into lower fluid–rock interaction can help explaining the

different fabric, i.e., calcitization versus recrystallization of dolomite

(compare Fig. 14A and B). Recrystallization here is defined as a

dissolution–reprecipitation process in diagenetic studies (Machel 1997).

An important question related to this interpretation is how dolomite can

recrystallize at near-surface conditions, since dolomite dissolution–

reprecipitation at low temperature may be inhibited kinetically. Dolomite

precipitation at ambient temperatures is a challenging problem because

dolomite is rarely found in recent sedimentary environments at surface

temperatures (Machel 2004). However, several studies present low-

temperature dolomitization, such as island dolomite cases (Budd 1997)

or Ca-rich dolomite that formed from a huntite precursor (Alonso-Zarza

and Martı́n-Pérez 2008). The oxidation and dolomite recrystallization

process is texture-preserving, and this process is akin to a pseudomorphic

replacement process where the initial phase is a metastable ferroan

dolomite and the replacement phase is a more stable, iron-poor dolomite.

This process could be classified as an interface-coupled dissolution–

reprecipitation process (Putnis and Putnis 2007).

For dolomite recrystallization to occur, the diagenetic fluid must have

had a high redox potential (Eh) and a Ca/Mg ratio within the stability

field of dolomite (as to prevent calcitization). A low Ca/Mg ratio is

consistent with the model of humid versus arid climate periods and can be

explained even if the source of the fluid (i.e., meteoric fluids) remains the

same between the two climate modes (Fig. 14). A high fluid flow and a

high fluid/rock ratio are needed to keep the Ca/Mg ratio in the pore space

high enough to calcitize dolomite: when Mg is brought into solution

during dolomite dissolution it drives the Ca/Mg ratio of the meteoric fluid

towards lower values, and if a constant influx of new dedolomitizing fluid

is not available the process of dedolomitization ceases. In the proposed

model, during arid periods the low fluid/rock ratio would favor a low

Ca/Mg ratio, limited dissolution of the dolomite, and more extensive

recrystallization.

In summary, the oxidation and recrystallization of dolomite by

moderate interaction with meteoric fluids is interpreted to have caused

a shift towards less negative d
18O and probably happened during one or

more arid periods in the course of the Pleistocene to Recent, when surface

runoff was more limited (Burns et al. 2001). Some of the (probably

already partially oxidized and recrystallized) D2 could be calcitized

(partially) by meteoric fluids with a slightly more negative d
18O and a

negative d
13C during a subsequent humid climatic phase (Fig. 14). The

current arid conditions in Oman would be more favorable to texture-

preserving dolomite recrystallization rather than calcitization. Thus, the

main impact of climate over dedolomitization is to control the amount of

meteoric fluids and soil development, resulting in differential minerali-

zation pathways and d
13C values.

Duration of Dedolomitization Events and Flow Focusing along Fractures

Assuming that this conceptual model is correct, and that calcitization

took place by high meteoric fluid–rock interaction (consistent with

findings of De Groot 1967) during humid climate spells, the time

FIG. 14.—Schematic diagram of conceptual
model for the relation between climate and the
weathering fabrics, and their stable oxygen and
carbon isotope composition. The oxygen isotope
values for rain-water are based on Fleitmann
et al. (2003). A) Humid climate during the peak
interglacial periods, B) Arid climatic periods.
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required to complete the process of calcitization can be contrasted with

the total duration of one or multiple episodes of humid climate

(estimated between 4 to 10 ky for a single humid period; Burns et al.

2001). The time required for calcitization can be estimated by a

simplified calculation assuming a dolomite dissolution rate of

1.7 3 1024 mmol/kg of H2O/yr (Back et al. 1993; Deike 1990) and an

annual rainfall of 2000 mm (average current tropical monsoon climate):

the result is that 450 ky would be needed to dedolomitize only a 1-cm-

thick layer of dolomite. The duration of 450 ky is one order of

magnitude higher than the total duration of multiple humid periods in

the Pleistocene–Holocene (Burns et al. 2001), and the dedolomitization

process penetrated the rock to at least 50 cm.

One possibility to explain the discrepancy between the duration of

humid periods and the time required to dedolomitize the rocks is that the

dolomite dissolution rate used in the calculation could have been

underestimated: dissolution rates depend on the stability of the

dolomite, and the latter relates to the specific geochemical characteristics

of the mineral. However, even using the high end of the range of modern

rates of dolomite dissolution (4.3 3 1024 mmol/kg of H2O/yr; Deike

1990) yields an estimate of 170 ky to dedolomitize a 1-cm-thick layer of

dolomite with 2000 mm rainfall per year. A more likely explanation for

the discrepancy in dedolomitization rates is that taking only the annual

rainfall into consideration results in an underestimated fluid flow

because groundwater and surface fluid flow focusing are not considered.

Deike (1990) has highlighted the importance of the mass of water

transported in an aquifer, and has demonstrated that in the case study a

significant portion of the rock could be dedolomitized within 10 ky

(Deike 1990). Although the current study did not investigate quantita-

tive aspects of flow focusing, factors controlling fluid migration (such as

topography and fracture network) must play a key role in dedolomitiza-

tion at Wadi Mistal: the FRD occurs along a fault and associated

fracture network, which is hypothesized to have acted as a preferential

conduit for meteoric fluids. This dynamic process of preferential fluid

pathways along fractures would result in larger volumes of meteoric

water flowing along the dolomite body, and would decrease the time

needed to dedolomitize D2 within the FRD. Future work on

dedolomitization should focus on a more quantitative reconstruction

of flow focusing along fractures.

New Insights from Dolomite Stoichiometry

Dolomite stoichiometry influences susceptibility to dedolomitization,

since an excess of Ca causes instability in the dolomite lattice structure

(Zeidan and Basyuni 1998; Nader et al. 2008). This relation was not

evident in this study, where pristine D2 dolomite is nearly stoichiometric,

whereas weathered and pristine D1 dolomite samples are also nearly

stoichiometric or have a small excess of Ca. Interestingly, it is found that

weathered, recrystallized D2 is non-stoichiometric with high Ca excess

(similar to the 56 to 57 mol% CaCO3 reported in Frank 1981). Hence, in

these strata, the Ca excess is not related to the original signature of the

dolomite, but seems to result from the texture-preserving recrystallization

and oxidation process with the formation of iron hydroxides during

weathering. It is proposed that during the oxidation process, Fe2+ from

the ferroan dolomite is oxidized to Fe3+ and forms goethite, while Ca2+

and Mg2+ from the ferroan dolomite are incorporated in the recrystallized

dolomite. Because it is interpreted that fluid flow in the oxidation and

dolomite recrystallization process (leading to goethite–dolomite fabric) is

more limited than in the oxidation and calcitization process (resulting in

goethite–calcite fabric), the Ca and Mg ions are probably locally derived.

Since the Fe2+ (which takes the Mg sites in the dolomite lattice) is lost due

to oxidation, the resulting relative ratio of Ca/Mg is higher than in the

pristine ferroan dolomite, which explains the measured excess in Ca in the

weathered dolomite.

SUMMARY AND CONCLUSIONS

This study highlights that:

1. Weathering of dolomite leads to a range of textures that identify
one or more dedolomitization and recrystallization events that
record the diagenetic history of the rocks.

2. Different types of dolomite respond variably to changing physico-
chemical conditions. A main subaerial dedolomitization phase was
identified that took place in the Pleistocene–Holocene and that
affected the iron-rich D2 dolomite more than the D1 dolomite. In
the case of the FRD of north Oman, iron concentration in dolomite
seems to have played a role in its susceptibility to subaerial
weathering. In addition, petrographic evidence suggests the
occurrence of an earlier, shallow-burial dedolomitization phase
that affected only the D1 dolomite and predates D2.

3. The stoichiometry of pristine D1 and D2 dolomite (corrected for
iron concentration) is comparable. However, the weathered D2
dolomite is non-stoichiometric (56 to 57 mol% CaCO3). This non-
stoichiometry is attributed to the oxidation of iron from the ferroan
dolomite and dolomite recrystallization with higher Ca/Mg ratio.

4. Stable oxygen isotope values of pristine and altered D2 dolomite
demonstrate an isotopic resetting of the dolomite signature during
oxidation and recrystallization of the ferroan D2 dolomite. This
oxygen isotope shift towards less negative values and the lack of
change in the carbon isotope composition between pristine and
altered D2 dolomite can be explained by dolomite recrystallization
during oxidation due to the interaction with low-temperature
meteoric fluids depleted in soil-derived CO2 or low fluid–rock
interaction and thus host-rock buffering, in contrast to the isotopic
signature of calcitized D2.

5. Pleistocene to Holocene surface weathering took place in two
different modes, leading to two different alteration textures. In one
case, dolomite was affected by oxidation and dolomite recrystalli-
zation, resulting in a goethite-recrystallized dolomite fabric. In the
other case, dolomite was oxidized and calcitized, causing a goethite–
dedolomite fabric. The stable isotope results and comparison with
previous studies on stable isotopes in Oman speleothems and
Pleistocene to Holocene climate interpretations suggest that the
weathering textures can be linked to the climatic conditions.
Oxidation and calcitization occurred during the wet periods, by
meteoric fluids that contained soil-derived carbon, thus shifting the
d
13C of the dolomite to more negative values. Oxidation and
dolomite recrystallization happened in the more arid periods, with
less soil development and less fluid/rock interaction.
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