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Abstract 

The CCS technique involves the compression of emission gasses in deep 

geological layers. To guarantee the safety of the site, CO2-corrosion of the 

injection pipe steels has to be given special attention when engineering CCS-

sites. To get to know the corrosion behaviour samples of the heat treated steel 

AISI 4140, 42CrMo4, used for casing, and the martensitic stainless injection-

pipe steel AISI 420, X46Cr13 were kept at T=60°C and p=1-60 bar for 700 h-

8000 h in a CO2-saturated synthetic aquifer environment similar to the geological 

CCS-site at Ketzin, Germany. The isothermal corrosion behaviour obtained by 

mass gain of the steels in the gas phase, the liquid phase and the intermediate 

phase gives surface corrosion rates around 0.1 to 0.8 mm/year. Severe pit 

corrosion with pit heights around 4.5 mm are only located on the AISI 420 steel. 

Main phase of the continuous complicated multi-layered carbonate/oxide 

structure is siderite FeCO3 in both types of steel.  

Keywords:  steel, pipeline, corrosion, carbonate layer, CCS, CO2-injection, CO2-

storage. 

1 Introduction 

In the oil and gas production carbon dioxide corrosion may easily cause failure 

of pipelines [1–7] and this problem will become an issue when emission gasses 

are compressed from combustion processes into deep geological layers (CCS 

Carbon Capture and Storage) [8, 9]. Generally steels applied in pipeline 
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technology precipitate slow growing passivating FeCO3-layers (siderite) [10–12, 

26, 30, 31]. First CO2 is dissolved to build a corrosive environment. Because the 

solubility of FeCO3 in water is low (pKsp = 10.54 at 25°C [12, 13] a siderite 

corrosion layer grows on the alloy surface as a result of the anodic iron 

dissolution. In geothermal energy production the CO2-corrosion is sensitively 

dependent on alloy composition, environmental conditions like temperature, CO2 

partial pressure, flow conditions and protective corrosion scales [10–23]. 

Engineering the geological CCS-site Ketzin, Germany, the first on-shore CO2-

storage (CO2-SINK) no experience of the corrosion behaviour of the steels and 

therefore of the necessity to monitor the site was available for the aquifer water 

T=60°C / p=80 bar [24, 25] 40°C to 60°C). 60°C is a critical temperature region 

well known for severe corrosion processes [4, 6, 7, 19, 20, 26–29]. 

     This work was carried out to predict the reliability of the on-shore CCS site at 

Ketzin, Germany and to get a better understanding of the corrosion behaviour of 

steels used for CO2-injections. 

2 Materials and methods  

Exposure tests were carried out using samples made of thermal treated specimen 

of AISI 4140 (1%Cr) and AISI 420 (13%Cr) with 8 mm thickness and 20 mm 

width and 50 mm length. A hole of 3.9 mm diameter was used for sample 

positioning. The surfaces were activated by grinding with SiC-Paper down to 

120 µm under water. Samples of each base metal were positioned within the 

vapour phase, the intermediate phase with a liquid/vapour boundary and within 

the liquid phase. The brine (as known to be similar to the Stuttgart Aquifer [32]: 

Ca2+: 1760 mg/L, K2+: 430 mg/L, Mg2+: 1270 mg/L, Na2+: 90,100 mg/L, Cl-: 

143,300 mg/L, SO4
2-: 3600 mg/L, HCO3-: 40 mg/L) was synthesized in a strictly 

orderly way to avoid precipitation of salts and carbonates. Flow control (2 NL/h) 

was done by a capillary meter GDX600_man by QCAL Messtechnik GmbH, 

München. The heat treatment of the samples between 700 h to 8000 h was 

disposed in a chamber kiln according to the conditions at the geological site at 

Ketzin/Germany at 60°C at 60 bar in an autoclave system and for reference at 

ambient pressure as well. X-ray diffraction was carried out in a URD-6 (Seifert-

FPM) with CoKα-radiation with an automatic slit adjustment, step 0.03 and 

count 5 sec. Phase analysis was performed by matching peak positions 

automatically with PDF-2 (2005) powder patterns. Mainly structures that were 

likely to precipitate from the steels were chosen of the ICSD and refined to fit 

the raw-data-files using POWDERCELL 2.4 [33] and AUTOQUAN® by Seifert 

FPM.  

     Then the samples were embedded in a cold resin (Epoxicure, Buehler), 

cut and polished first with SiC-Paper from 180 µm to 1200 µm under water and 

then finished with diamond paste 6 µm and 1 µm. Different light optical 

and electron microscopy techniques were performed on specimens to investigate 

the layer structures and morphology of samples 60°C/700 h, 60°C/2000 h and 

60°C/4000 h.  
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3 Results and discussion 

3.1 Kinetics 

Figure 1 illustrates the isothermal oxidation behaviour of the alloys AISI 420 

X46Cr13 and AISI 4140 42CrMo-4 at 60°C/ambient pressure characterized by 

mass gain according to DIN 905 part 1-4.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 1: Corrosion rate as a function of heat treatment of the alloys 

X46Cr13 and 42CrMo-4 (60°C / CO2 saturated brine / ambient 

pressure). 

     The greatest corrosion rates are found within the vapour phase, the lowest in 

the liquid phase. The high corrosion rates within the vapour phase are mainly 

due to the better access of CO2 towards the sample surface in the water saturated 

CO2-vapour phase. Samples in the intermediate phase show typical corrosion 

scale of the media they were exposed to but neither enhancement nor reduction 

of the corrosion rates were found. The greatest increase of the corrosion rates up 

to 2000 h is correlated to a passivating layer of siderite in CO2-atmosphere. In 

general the corrosion rate increases with increasing CO2 partial pressure [2], but 

in the presence of iron carbonate precipitates the corrosion rate may even 

decrease. This is the reason for the lower corrosion rates at longer exposure times 

with exception of the low Cr steel in the vapour phase. After 1 year of exposure 

(8000 h) there is an increase, which shows an extended reaction time and gives 

evidence of a change in mechanism. 

     After 700 h at 60 bar the results of corrosion rates are in good agreement with 

results at ambient pressure.  
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     Pitting and shallow pit corrosion are only observed on the surface of the 

sample of X46Cr13 kept in the liquid phase with a maximum penetration depth 

of 4.6 mm after one year. This is nearly half of the pipe wall thickness 

(Figure 2). The time of heat treatment has little to no influence on the penetration 

depth of the pits, but significant influence on the number of counts [34–36].  

 
Figure 2: Corrosion rate as a function of heat treatment in CO2 saturated 

brine of the alloys X46Cr13 and 42CrMo-4 at 60°C at ambient 

pressure and at 60 bar. 

3.2 Microstructure 

3.2.1 AISI 4140, 42CrMo-4 

Already after 700 h at ambient pressure as well as at 60 bar the 1% Cr alloy 

(AISI 4140) kept in the vapour phase shows a characteristic duplex corrosion 

layer (Figure 3). This comprises the outer corrosion layer, mainly consisting of 

siderite FeCO3 and goethite α-FeOOH, and the inner layer mainly composed of 

siderite and spinel phase. Both layers contain mackinawite FeS and akaganeite 

Fe8O8(OH)8Cl1.34. The total layer thickness varies from 20 µm to 130 µm at 

ambient pressure and around 60 µm to 90 µm at 60 bar, where the inner layer 

shows elliptical islands of 10 µ to 30 µm. Samples in the intermediate phase 

show shallow pits with a depth about 50 µm and a width of 200 µm.  

     After 2000 h in the vapour phase the thickness of the outer layer various 

significantly but can rise up to 1.5 mm in the vapour phase and after 4000 h even 

a small inner layer is connected to 3-4 mm outer layer. Mainly consisting of the 

inner layer samples in the liquid phase have an inner layer altitude around 30 µm 

– 150 µm which grows in depth from 2000 h to 4000 h of heat treatment. Liquid 

phase samples do not show a typical inner corrosion layer. 
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Figure 3: Cross section micrographs of 42CrMo-4 after heat treatment in CO2 

saturated brine at ambient pressure in saline aquifer water. 

3.2.2 AISI 420, X46Cr13 

As with the 1%Cr steel the 13% Cr steel X46Cr 13 shows surface corrosion with 

a typical duplex layer formation. Also the thickness of the corrosion layer in the 

vapour phase is much greater than in the intermediate and especially in the liquid 

phase. After 700 h at 60 bar and at ambient pressure there are islands of outer 

corrosion layers in the vapour and the intermediate phase that grow to 70 µm 

after 2000 h and even to 1.5 mm and a 500 µm inner layer after 4000 h while the 

liquid phase shows little to no surface corrosion (Figure 4).  

     While the outer layer mainly consists of siderite FeCO3, goethite α-FeOOH 

and akaganeite Fe8O8(OH)8Cl1.34, the inner layer is composed of siderite, goethite 

and spinel phase. Mackinawite was not analysed. The carbides within the inner 

layer follow the stochiometric formula of me23C6 and are most likely 

manganese carbides. 

     The complicated multi-layered carbonate/oxide structure reveals siderite 

FeCO3, with small amounts of Ca [10, 29] is goethite α-FeOOH, mackinawite 

FeS and spinelphases of various compositions as the main phases (Figures 5 and 

6). Lepidocrocite γ-FeOOH and akaganeite Fe8O8(OH)8Cl1.34 are minor phases. 

Although carbides are not expected at these conditions Mn23C6 or some other 

not clearly stated composition may precipitate as followed from thermodynamic 

calculations (Software FACTSAGE®). In CO2-environment precipitates on 

carbon steel may also consist of Fe3C [12]. 
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Figure 4: Cross section micrographs of X46Cr13 after heat treatment in CO2 

saturated brine at ambient pressure in saline aquifer water  

     The formation of the scale in geothermal water takes place in 2 steps as 

described in detail by Pfennig and Kranzmann [34, 35]. The first step may be 

attributed to the formation of Fe[II] compounds FeOH2 [13]. The second step 

corresponds to the formation of a magnetite spinel type with Cr content in the 

13% Cr steel and goethite and to the formation of siderite FeCO3. Mackinawite 

FeS forms due to the saturation of the brine with H2S and akaganeite 

Fe8O8(OH)8Cl1.34 due to the high salt content of the brine. Iron does not lead to a 

corrosion resistant stable oxygen film in O2-free brine saturated with CO2 at the 

presence of H2S. Already little amounts of H2S in geothermal water cause the 

change in mechanism of the iron corrosion in the H2O-CO2-system [13]. The 

strong adsorption of sulphide anions blocks the development of a protective 

oxide film. Therefore predominating phases are carbonates FeCO3, hydroxides 

FeOOH and sulphides FeS. The further phase study including TEM-technique 

and the investigation of the combining reaction mechanism is a topic of future 

research project. 
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Figure 5: Cross section micrograph of 42CrMo-4 after 700 h of heat 

treatment in CO2 saturated brine at ambient pressure in saline 

aquifer water. 

 

 
 

Figure 6: Cross section micrographs of X46Cr13 after 700 h of heat 

treatment in CO2 saturated brine at ambient pressure in saline 

aquifer water. 

4 Conclusion 

The saturation of a geothermal brine with CO2 leads to near linear corrosion rates 

for a 1% Cr (42CrMo-4) and 13%Cr (X46Cr13) steel. Highest surface corrosion 

rates are 0.8 mm/year (1% Cr) and 0.3 mm/year (13% Cr) in the vapour phase. 

The average intermediate and liquid corrosion rate for both type of steel is 

0.1 mm/year. Severe pit corrosion with pit heights around 4.5 mm is only located 

on the X46Cr13 steel kept in the liquid where the gas flow and pressure is low. 

Main phase of the continuous scale is FeCO3 siderite and FeS mackinawite in 

both types of steel. A complicated multi-layered carbonate/oxide structure 

reveals goethite α-FeOOH, lepidocrocite γ-FeOOH, spinelphases of various 

compositions and akaganeite Fe8O8(OH)8Cl1.34. In the high chromium-bearing 

alloy carbides (Mn23C6) are found. Since it is not clear whether the scales are 

protecting and therefore adhesive to the wall one should be aware of parts of the 

scale falling down into the injection pipe part. Following from these corrosion 
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rates the steels used for injecting technical CO2 in Ketzin will withstand at least a 

1 year period of injection without a need of replacement. if the tensile stresses 

can be reduced to a minimum and the decrease in pressure along the pipe wall 

thickness is kept low. 
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