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ABSTRACT 48	

This study determined the influence of cold (8°C) and cool (22°C) water immersion 49	

on lower limb and cutaneous blood flow following resistance exercise. Twelve 50	

males completed 4-sets of 10-repetition maximum squat exercise and were then 51	

immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated 52	

position (control) in a randomized order on different days. Rectal and thigh skin 53	

temperature, muscle temperature, thigh and calf skin blood flow and superficial 54	

femoral artery blood flow were measured before and after immersion. Indices of 55	

vascular conductance were calculated (flux and blood flow/mean arterial pressure). 56	

The colder water reduced thigh skin temperature and deep muscle temperature to 57	

the greatest extent (P < 0.001). Reductions in rectal temperature were similar 58	

(0.2°C-0.4°C) in all three trials (P = 0.69). Femoral artery conductance was similar 59	

after immersion in both cooling conditions, with both conditions significantly lower 60	

(55%) than the control post-immersion (P < 0.01). Similarly, there was greater thigh 61	

and calf cutaneous vasoconstriction (40-50%) after immersion in both cooling 62	

conditions, relative to the control (P < 0.01), with no difference between cooling 63	

conditions. These findings suggest that cold and cool water similarly reduce femoral 64	

artery and cutaneous blood flow responses but not muscle temperature following 65	

resistance exercise.  66	

Keywords: blood flow; cooling; muscle damage; inflammation 67	

 68	

 69	

 70	

 71	

 72	
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INTRODUCTION 73	

Lower limb cold-water immersion (CWI) is a widely used recovery method 74	

to reduce the negative symptoms associated with high-intensity or unaccustomed 75	

exercise (Bailey et al., 2007; Leeder, Gissane, van Someren, Gregson & Howatson, 76	

2012). Cooling of the exercised muscles is proposed to attenuate acute 77	

inflammation, edema and swelling, thereby reducing the development of exercise-78	

induced muscle damage, function and soreness (Smith, 1991). Previous studies have 79	

shown that CWI decreases limb muscle temperature and blood flow when applied at 80	

rest (Gregson et al., 2011) and following continuous endurance exercise such as 81	

cycling (Mawhinney et al., 2013; Vaile et al., 2011) and treadmill running (Ihsan, 82	

Watson, Lipski & Abbiss, 2013). The effect of CWI on the physiological and 83	

functional responses to resistance type exercise are less well known.  84	

Recent research has shown that the chronic application of CWI (2 d·w
-1

 over 85	

12 weeks) after resistance exercise reduces resistance training-induced increases in 86	

muscle strength and mass compared with an active cool-down due to the blunting of 87	

cellular signaling (Roberts et al., 2015b). On the contrary, in the acute period, i.e. 88	

hours, after CWI application, increases in muscle function relative to active 89	

recovery have been reported (Roberts et al., 2015a). The improved recovery of 90	

strength with acute CWI was modulated by muscle temperature and potentially 91	

blood flow (muscle oxygenation) (Roberts et al., 2015a). Nevertheless, no study, to 92	

date has directly examined the impact of CWI on limb blood flow following an 93	

acute bout of resistance exercise. This is important to establish, since resistance 94	

exercise can cause a different haemodynamic, thermoregulatory and mechanical 95	

stress than endurance exercise. For example, the metabolic cost of muscle 96	

contraction is prolonged during activities such as running and cycling, rather than 97	
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intermittent during resistance exercise, with skeletal muscle blood flow matched to 98	

the metabolic demands of the contracting muscle (Joyner & Casey, 2015). 99	

Similarly, the intermittent nature and potential for breath holding in resistance 100	

exercise contrasts the linear increase and plateau in limb blood flow in endurance 101	

exercise (MacDougall et al., 1992; Mortensen, Damsgaard, Dawson, Secher & 102	

Gonzalez-Alonso, 2008). It is also possible that resistance exercise does not cause 103	

increases in core body temperature of the same magnitude as endurance exercise 104	

(Deschenes et al., 1998). A higher core body temperature may increase tissue-105	

cooling rate due to a greater temperature gradient between the body and the water 106	

(Stephens, Halson, Miller, Slater & Askew, 2016). Moreover, resistance exercise 107	

stimulates greater muscle damage compared with other modes of exercise, such as 108	

cycling and running (Dolezal, Potteiger, Jacobsen & Benedict, 2000; Howatson et 109	

al., 2012).  110	

We have previously shown that CWI of various water temperatures similarly 111	

decreases post-cycling lower limb blood flow despite greater reductions in muscle 112	

and thigh skin temperatures in colder water (Mawhinney et al., 2013). It is currently 113	

unknown if the differences in hemodynamic and temperature responses mediated by 114	

resistance, relative to endurance, exercise, would impact upon post-resistance 115	

exercise responses to CWI and if different water temperatures of CWI would result 116	

in similar or graded decreases in limb blood flow after resistance exercise. 117	

Therefore, the aim of this study was to examine the effects of cold (8ºC) and cool 118	

(22ºC) water immersion on lower limb blood flow and muscle temperature changes, 119	

after a typical bout of resistance exercise.  120	

 121	
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MATERIALS AND METHODS 122	

Participants 123	

Twelve recreationally active men who were non-smokers and free from 124	

cardiovascular, respiratory and metabolic disease were studied (mean±s: age, 26±6 125	

yrs; height, 1.8±0.1 m; mass, 77.5±11.2 kg; 10-repetition maximum (10 RM), 126	

50.4±13.4 kg). The participants typically performed resistance exercise at least three 127	

times per week and performed squat exercise at least once per week in their training 128	

regime (self-report questionnaire). The participants were familiarized with the 129	

experimental procedure and associated risks and gave their written informed 130	

consent to participate. The study was approved by the Institutional Ethics 131	

Committee and conformed to the 1964 Declaration of Helsinki and its later 132	

amendments for research using human participants. 133	

 134	

Experimental Design 135	

Two weeks prior to the commencement of the experimental trials, each participant 136	

completed a 10 RM parallel depth squat assessment using a Smith machine 137	

(Familiarization 1). The squat protocol consisted of a warm up set, using only the 138	

bar, followed by progressive increases in load until the attainment of the 10 RM 139	

within five attempts (Baechle & Earle, 2000).  The following week, participants 140	

completed 4 sets of the predetermined 10 RM squat exercise interspersed with 2 141	

min rest periods (Familiarization 2). This second familiarization trial was performed 142	

to reduce the magnitude of any subsequent muscle damage and inflammation from 143	

the exercise stimulus in the proceeding trials, e.g., reduce an order effect, that might 144	

influence blood flow, which is commonly known as the protective repeated bout 145	

effect (Howatson & van Someren, 2008).  146	
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The experimental trials were performed in a randomized counterbalanced 147	

order, at least 7-days following the second familiarization session and at least 7-148	

days apart. For each trial, participants arrived at the laboratory at least 3 h 149	

postprandial, having refrained from exercise, alcohol, tobacco and caffeine during 150	

the previous 24 h and having consumed 5 ml⋅kg
-1

 of water 2 h before arrival. All 151	

participants recorded their nutritional and fluid intake for 24 h prior to their first 152	

experimental trial. This record was photocopied and returned to them to repeat for 153	

their remaining trials. All trials were conducted under an ambient temperature of 154	

22-24°C to control variability in cutaneous blood flow (Cracowski, Minson, Salvat-155	

Melis & Halliwill, 2006) and at the same time of day in order to avoid the circadian 156	

variation in internal body temperature.  157	

Each participant was required to complete 4 sets of 10 RM squats followed 158	

by a 10 min period of immersion in either 8°C or 22°C water or seated rest 159	

(Control). The water temperatures and immersion protocol was based on our 160	

previous studies (Gregson et al., 2011; Mawhinney et al., 2013). On arrival, nude 161	

body mass (kg) was obtained (Seca, Hamburg, Germany). A rectal probe was self-162	

inserted and a heart rate (HR) monitor was positioned across the chest. Participants 163	

then rested supine for 30 min for instrumentation and to stabilize physiological 164	

status, wearing training shorts. Following baseline measurements (10 min), 165	

participants completed 4 sets of 10 RM squats interspersed with a 2 min rest period 166	

between sets. Participants then returned to the supine position for 10 min for post-167	

exercise/pre-immersion measurements. Participants were then raised from the bed in 168	

a semi-recline position using an electronic hoist (Bianca, Arjo Ltd, Gloucester, 169	

United Kingdom) and either lowered into the water tank (ECB, Gloucester, U.K.) to 170	

the iliac crest for 10 min, or remained suspended above the bed (Control). At the 171	
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end of immersion, participants were returned to the bed using the electronic hoist 172	

and remained supine for 30 min. The use of the hoist to raise and lower the 173	

participants was important to avoid the effect of muscle activation on blood flow 174	

Rectal and skin temperatures, HR and thigh and calf cutaneous blood flow 175	

were continuously monitored. Muscle temperature, superficial femoral artery blood 176	

flow and mean arterial blood pressure (MAP) were measured at baseline, pre-177	

immersion and during post immersion. At the same time points, both perceived 178	

thermal comfort, rated using a 9-point scale (0 = unbearably cold to 9 = very hot) 179	

(Young, Sawka, Epstein, Decristofano & Pandolf, 1987)
 
and shivering, rated using a 180	

4-point scale (1 = no shivering to 4 = heavy shivering) (Wakabayashi, Hanai, 181	

Yokoyama & Nomura, 2006) were recorded. 182	

 183	

Measurements 184	

Rectal, Thigh, Skin, and Muscle Temperatures  185	

A rectal probe (Rectal probe (adult), Ellab UK, Norwich, England) was 186	

inserted 15 cm beyond the anal sphincter for the assessment of rectal temperature. 187	

Skin thermistors (Surface temperature probe (stationary), Ellab UK, Norwich, 188	

England) were attached to the chest, forearm, upper thigh, and calf for the 189	

assessment of local and mean skin temperature (Ramanathan, 1964). Muscle 190	

temperature was assessed using a needle thermistor inserted into the vastus lateralis 191	

(Multi-purpose needle probe, Ellab UK, Norwich, England). Thigh skinfold 192	

thickness was measured using Harpenden skinfold calipers (HSK BI, Baty 193	

International, West Sussex, United Kingdom) and divided by 2 to determine the 194	

thickness of the thigh subcutaneous fat layer over the vastus lateralis (Enwemeka, et 195	

al., 2002). The needle thermistor was inserted at a depth of 3 cm plus one-half the 196	
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skinfold measurement for determination of deep muscle temperature (3 cm). The 197	

thermistor was then withdrawn at 1 cm increments for determination of muscle 198	

temperature at 2 cm and 1 cm below the subcutaneous layer. Rectal, skin and 199	

muscle temperatures were recorded using an electronic measuring system (E-Val 200	

Flex, TMN9616, Ellab UK, Norwich, England).  201	

 202	

Heart Rate and Arterial Blood Pressure 203	

  HR was continuously measured using short-range telemetry (S610; Polar 204	

Electro Oy, Kempele, Finland). Arterial blood pressure was measured via 205	

automated brachial auscultation (Dinamap, GE Pro 300V2, Tampa, Florida, USA), 206	

and MAP was calculated as [Diastolic + (0.333 x (Systolic-Diastolic))].  207	

 208	

Femoral Artery Blood Flow  209	

A 15 MHz multi-frequency linear array transducer attached to a high-210	

resolution ultrasound machine (Acuson P50, Siemens, Germany) was used to 211	

measure femoral artery diameter and velocity. Images were taken at the superficial 212	

femoral artery in the proximal third of the left leg approximately 3 cm distal to the 213	

bifurcation. This position was marked on the skin for ultrasound head repositioning 214	

during repeated measures. Ultrasound parameters were set to optimize longitudinal 215	

B-mode images of the lumen/arterial wall interface. Continuous and synchronized 216	

pulsed wave Doppler velocities were also obtained. Data were collected using an 217	

insonation angle of 60
°
 and each measurement was recorded for 2 min. Analysis of 218	

blood flow velocity and diameter was performed using custom designed edge-219	

detection and wall-tracking software (Green, Cheetham, Reed, Dembo & 220	

O'Driscoll, 2002; Thijssen et al., 2011; Woodman et al., 2001). Blood flow was 221	
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calculated as the product of cross-sectional area and blood flow velocity. Resting 222	

diameter, blood flow velocity and blood flow were sampled as the mean of a 20 s 223	

period of each 2 min image. Femoral vascular conductance was calculated as the 224	

ratio of blood flow/MAP. 225	

 226	

Cutaneous Blood Flow 227	

Red blood cell flux was used as an index of skin blood flow via laser 228	

Doppler flowmetry (Periflux System 5001, Perimed Instruments, Jarfalla, Sweden). 229	

An integrated laser Doppler probe (Probe 413, Perimed, Suffolk, United Kingdom) 230	

was attached to the mid-anterior thigh halfway between the inguinal line and the 231	

patella, and on the calf in the region of the largest circumference. Once affixed, the 232	

probes were not removed until the completion of each trial. Cutaneous vascular 233	

conductance was calculated as the ratio of laser Doppler flux to MAP (cutaneous 234	

vascular conductance = laser Doppler flux/MAP x 100) and expressed as a 235	

percentage change from pre immersion values. Thigh and calf skin conductance are 236	

expressed as percentage change from pre immersion (zero) 237	

 238	

Statistical Analysis 239	

It was estimated that a sample size of at least 6 participants would have 90% 240	

power to detect a 175 ml·min
-1

 reduction in femoral artery blood flow following 10 241	

min of cool (22°C) water immersion, using a standard deviation of the differences 242	

of 99 ml·min
-1

 (Mawhinney et al., 2013). A two-factor (condition x time) general 243	

linear model (GLM) was used to evaluate treatment differences between the 8°C, 244	

22°C and control conditions. A three-way GLM (condition x depth x time) was 245	

employed to analyse muscle temperature. Significant main effects and interactions 246	
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were followed up using multiple comparisons (Student-Newman-Keuls). The α 247	

level for evaluation of statistical significance was set at P < 0.05 and were analysed 248	

using Statistical Package for the Social Sciences (Chicago, IL). All data are 249	

presented as mean±s. 250	

 251	

RESULTS 252	

Thermoregulatory responses 253	

Exercise elicited an increase in rectal temperature (8°C; ∆ 0.3±0.2°C; 22°C; 254	

∆ 0.2±0.1°C; control; 0.3±0.1°C; P < 0.001) but rectal temperature was not different 255	

between conditions (P > 0.05; Figure 1a). Rectal temperature decreased over the 256	

post immersion recovery period (P < 0.001) with no difference observed between 257	

conditions (P = 0.19; Figure. 1a). 258	

Exercise elicited an increase in thigh (8°C; ∆ 0.4±0.6°C; 22°C; ∆ 0.8±0.6°C; 259	

control; ∆ 0.6±0.8°C; P = 0.002) and mean skin temperature (8°C; ∆ 0.3±0.2°C; 260	

22°C; ∆ 0.2±0.1°C; control; 0.3±0.1°C; P < 0.001) but skin temperatures were not 261	

different between conditions (P > 0.05; Figure. 1). The colder water reduced local 262	

thigh and mean skin temperatures to a greater extent compared to 22°C throughout 263	

post-immersion (P < 0.001; Figure 1); both skin temperatures were lower in both 264	

cooling conditions compared with the control condition. Both temperatures 265	

gradually increased during the 30 min recovery period in both cooling conditions 266	

whilst values remained relatively stable in the control condition. Local thigh and 267	

mean skin temperature remained below baseline at the end of the recovery period in 268	

the 8°C and 22°C conditions (P < 0.001) and were unchanged in the control 269	

condition (P > 0.05; Figure. 1). 270	
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Exercise induced increases in muscle temperature at 3 cm (8°C; ∆ 271	

0.8±0.3°C; 22°C; ∆ 1.4±0.5°C; control; ∆ 1.0±0.4°C), 2 cm (8°C; ∆ 0.9±0.4°C; 272	

22°C; ∆ 1.3±0.7°C; control; ∆ 1.1±0.6°C), and 1 cm (8°C; ∆ 1.0±0.6°C; 22°C; ∆ 273	

1.2±0.9°C; control; ∆ 1.1±0.7°C) depths (P < 0.001), which were similar between 274	

conditions (P > 0.05; Figure. 2). During the post immersion recovery period, a 275	

greater reduction in muscle temperature was observed in both cooling conditions 276	

compared with the control condition at all 3 probe depths and at each time point (P 277	

< 0.001; Figure 2). There was also a greater reduction in muscle temperature at each 278	

depth in 8°C cooling compared with 22°C at each time point (P < 0.001; Figure 2). 279	

Thermal comfort was lower after cooling; both immediately (8°C, 2±1 AU; 280	

22°C, 3±1 AU; control, 5±1 AU, P < 0.001) and 10 min post immersion (8°C, 3±1 281	

AU; 22°C, 4±1 AU; control, 5±1 AU, P < 0.01) compared with the control 282	

condition. A lower thermal comfort rating also occurred in the 8°C condition, 20 283	

min after immersion, compared with the control condition (P < 0.001). Thermal 284	

comfort was also lower in the colder water compared with 22°C for up to 10 min 285	

after immersion (P < 0.001). There was no difference in thermal comfort between 286	

conditions at the end of the 30 min recovery period (P > 0.05) with similar ratings 287	

to baseline. Slight to moderate shivering was observed during immersion in both 288	

cooling conditions compared with no shivering in control (8°C, 2±1 AU; 22°C, 2±1 289	

AU; control, 1±0 AU). There was no shivering observed throughout the post 290	

immersion period in any experimental condition. 291	

 292	

Heart rate, mean arterial pressure and ratings of perceived exertion (RPE) 293	

Each set of 10 repetitions of squat exercise increased HR (P < 0.01), which 294	

remained elevated prior to immersion (8°C; 77±11 beats·min
-1

; 22°C; 73±11 295	
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beats·min
-1

; control; 73±10 beats·min
-1

; P < 0.001). HR was increased during colder 296	

water immersion (8°C, 80±14 beats·min
-1

; 22°C, 69±9 beats·min
-1

; control; 71±7 297	

beats·min
-1

; P < 0.001), but remained similar between all conditions during the post 298	

immersion recovery period (P > 0.05). 299	

MAP was not different between conditions immediately prior to immersion 300	

(8°C; 89±5 mmHg; 22°C; 88±5 mmHg; control; 88±6 mmHg; P > 0.05). MAP was 301	

higher during the 10 min immersion period and immediately post immersion in 8°C 302	

water (95±7 mmHg) compared to 22°C, (88±7 mmHg) and control (87±4 mmHg) 303	

conditions (P < 0.01). MAP was similar between all conditions throughout the 304	

remaining period of the post immersion phase (P > 0.05). MAP returned towards 305	

baseline values at the end of the 30 min recovery period in the 22°C and control 306	

conditions (P > 0.05), but still remained elevated in the 8°C condition (8°C, 90±6; 307	

22°C, 90±5; control, 89±7 mm Hg; P = 0.02). 308	

 RPE was similar between trials in the first set of exercise (8°C; 13±2 AU; 309	

22°C; 13±1 AU; control; 13±1 AU; P > 0.05). There was a higher rating with each 310	

subsequent set of squat exercise (P < 0.001) with RPE remaining similar between 311	

conditions until the end of exercise (8°C; 15±2 AU; 22°C; 15±2 AU; control; 15±2 312	

AU; P > 0.05). 313	

 314	

Femoral artery and cutaneous blood flow responses. 315	

 Exercise increased femoral blood flow and conductance by ~75% and ~80% 316	

respectively (P < 0.001) which was not different between conditions (P > 0.05; 317	

Figure 3). A lower femoral artery blood flow and conductance (~50%) was 318	

observed during post-immersion recovery period in both cooling conditions 319	

compared with control (8°C, 22°C, P < 0.01; Figure 3). Cooling reduced femoral 320	
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artery blood flow and conductance by ~60% and ~75% relative to baseline and pre-321	

immersion values, respectively, at the end of the 30 min recovery period. 322	

 Pre-immersion thigh (8°C, 0.23±0.15 AU; 22°C, 0.28±0.21 AU; control, 323	

0.31±0.15 AU; P = 0.31) and calf (8°C, 0.22±0.20 AU; 22°C, 0.16±0.10 AU; 324	

control, 0.17±0.08 AU; P = 0.45) cutaneous vascular conductance were not 325	

different between conditions. A greater skin vasoconstriction was observed in both 326	

cooling conditions at the thigh (P < 0.01) and calf (P< 0.01) relative to the control 327	

throughout the post-immersion recovery period (~50-60%; P > 0.05). No 328	

differences were observed between cooling conditions (Figure 4). 329	

 330	

DISCUSSION 331	

The purpose of this study was to investigate the effects of CWI of various 332	

water temperatures on lower limb blood flow following resistance exercise. We 333	

found no differences in the blood flow responses to CWI at 8°C and 22°C following 334	

resistance exercise despite greater reductions in muscle and skin temperatures after 335	

CWI of 8°C. Moreover, these responses were similar in time course and magnitude 336	

to our previous findings following endurance cycling exercise (Mawhinney et al., 337	

2013). Taken together, these findings suggest that the application of CWI is 338	

similarly effective with regards to vascular responses following different modes of 339	

moderate intensity exercise. 340	

Previous studies, which have examined the influence of CWI on limb blood 341	

flow responses after exercise, have used an endurance exercise stimulus (Ihsan et 342	

al., 2013; Mawhinney et al., 2013; Vaile et al., 2011). These endurance type 343	

protocols typically produce a greater level of systemic (e.g., core temperature) 344	

hyperthermia and different metabolic perturbations, compared with resistance 345	
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exercise (Deschenes et al., 1998; Mortensen et al., 2008). A relative decrease in 346	

blood volume in the leg muscle microcirculation after CWI of 10°C has been 347	

reported after knee extensor resistance exercise using near-infrared spectroscopy 348	

(Roberts et al., 2015a),
 
however, this method is associated with several limitations 349	

(Davis, Fadel, Cui, Thomas & Crandall, 2006; Ferrari, Mottola & Quaresima, 2004) 350	

compared with absolute measures of femoral and skin blood flow. In the present 351	

study, 10-min of lower body immersion in either 8ºC or 22ºC water reduced femoral 352	

artery blood flow by ~75% and ~50%, respectively, compared with the control 353	

condition. The magnitude of change in femoral artery conductance after CWI was 354	

similar to our previous observations (~55%) after cycling exercise (Mawhinney et 355	

al., 2013) and other studies, which assessed limb blood flow with other methods 356	

(Ihsan et al., 2013; Vaile et al., 2011). The lack of difference in the femoral artery 357	

conductance response to cold (8ºC) and cool (22ºC) water in the current study, 358	

despite greater decreases in muscle temperature in cold water, are in agreement with 359	

our previous work (Gregson et al., 2011; Mawhinney et al., 2013)
 
and are likely due 360	

to an insufficiently large enough difference in deep muscle temperature between 361	

cooling conditions (~1°C) to directly modify femoral artery blood flow.  362	

 363	

It has previously been observed that heat stress from cycling exercise 364	

(Mawhinney et al, 2013) can cause a different cutaneous blood flow response to 365	

CWI compared with resting conditions
 
(Gregson et al, 2011), e.g., a lack of 366	

difference in cutaneous vasoconstriction after immersion in cold and cool water 367	

temperatures following cycling exercise. However, it remains to be elucidated 368	

whether a smaller level of thermal strain after a bout of resistance exercise could 369	

influence the cutaneous blood flow response to CWI. This is important to establish 370	
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because a greater cutaneous blood flow during cooling may infer less muscle blood 371	

flow (Gregson et al, 2011). In the present study, rises in core (~0.3ºC) and local 372	

limb temperatures (muscle 3 cm, ~1ºC; skin, ~0.6ºC) after resistance exercise led to 373	

increases in thigh and calf cutaneous vascular conductance. Despite differences in 374	

lower limb skin temperature after immersion in 8ºC and 22ºC water, reductions in 375	

lower limb cutaneous vascular conductance were similar between cooling 376	

conditions and in agreement with our previous work
 
(Mawhinney et al,

 
2013) that 377	

elicited a higher thermoregulatory strain (core 0.9ºC, muscle 3 cm; 1.6ºC and skin 378	

1.7ºC). It is therefore conceivable that only a small hyperthermic load (systemic or 379	

local limb) is required to blunt cutaneous vasoconstrictor responsiveness (Wilson, 380	

Cui & Crandall, 2002). In addition, cold-induced vasodilation can occur in 8ºC 381	

water, albeit under resting conditions with no change in body temperature, which 382	

may contribute to a similar skin blood flow after 8ºC CWI relative to 22ºC CWI 383	

(Gregson et al, 2011). In combination, similar changes in femoral artery and 384	

cutaneous blood flow after CWI in 8ºC and 22ºC water suggest that both cooling 385	

conditions will be equally effective in reducing blood flow when applied after 386	

resistance exercise and that the 22ºC water may be more tolerable based on the 387	

increased thermal comfort ratings in this condition.  388	

 389	

It is difficult to directly measure muscle blood flow in humans, particularly 390	

across a broad area of muscle. Our approach, measuring total limb and cutaneous 391	

blood flow simultaneously, allows some inferences to be drawn regarding 392	

generalized changes in blood flow to muscle. In response to cooling in the present 393	

experiment, changes in both total limb and cutaneous flow were similar. This 394	

suggests that despite distinct impacts of 8
o
C and 22

o
C cooling on skin and muscle 395	
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temperatures (especially deeper muscle temperatures), the impact on muscle blood 396	

flow was qualitatively similar. Collectively, these data infer that, if different degrees 397	

of post-exercise cooling have an impact upon recovery following resistance 398	

training, they are independent of blood flow to muscle. 399	

 400	

Muscle temperature-induced reductions in microvascular blood flow may 401	

reduce inflammation, edema, swelling and pain after tissue injury and limit 402	

secondary injury (Lee et al, 2005). The proposal that cooling induced reductions in 403	

limb blood flow are beneficial in limiting the inflammatory response after muscle 404	

damaging exercise is largely based on animal research, which has shown muscle 405	

cooling to reduce markers of inflammation in damaged muscle (Lee et al, 2005; 406	

Ramos et al, 2016; Schaser et al, 2007). A recent novel study using humans has 407	

recently challenged this view by showing that CWI (10 min at 10ºC), applied after 408	

lower body resistance exercise, has no impact on the muscle inflammatory or 409	

cellular stress response compared with active recovery (Peake et al, 2016). 410	

Additionally, the chronic application of CWI (2 d·w
-1

 over 12 weeks) applied after 411	

resistance-training exercise also blunts the cellular adaptation responses and long-412	

term gains in muscle mass and strength (Roberts et al, 2015b). Nevertheless, a 413	

reduction in muscle blood flow may still provide benefits to the acute recovery of 414	

muscle function after resistance exercise (Roberts et al., 2015a) by attenuating 415	

edema and swelling per se (Dolan, Thornton, Fish & Mendel, 1997; Yanagisawa, et 416	

al, 2003) and associated pain (e.g. soreness) upon movement (Diong & Kamper, 417	

2014). These findings have implications for the use of CWI in the periodization of 418	

training. For example, CWI may be better utilized in situations where repeated 419	

bouts of intense resistance exercise are required in short periods of time rather than 420	
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as a regular adjunct to resistance training.  421	

 422	

In line with our previous observations (Gregson et al, 2011; Mawhinney et 423	

al, 2013), the increases in MAP and HR during 8ºC immersion are characteristic of 424	

the well-established cold pressor response (Victor, Leimbach, Seals & Wallin, 425	

1987). The changes in these cardiovascular indices are initiated by the activation of 426	

noxious skin thermonociceptors that cause a reflex increase in sympathetic nervous 427	

activity leading to peripheral vasoconstriction and reductions in arterial blood flow 428	

(Gregson et al, 2011). In the 22ºC condition, there was no observed increase in HR 429	

or MAP despite a reduction in limb blood flow. These findings are consistent with 430	

the activation of non-noxious thermonociceptors operable at similar temperatures 431	

(Gregson et al, 2011). The stimulation of these particular thermonociceptors are 432	

related to the difference in skin temperatures and ratings of thermal sensation during 433	

immersion in the different cooling conditions. 434	

 435	

In the present study, seated rest in ambient air was selected as the control; 436	

consequently, the effect of hydrostatic pressure on limb blood flow per se, 437	

independent of the water temperature effect, was not assessed. The pressure effect 438	

of water has previously been shown to increase femoral artery blood flow by ~250-439	

300 ml·min
-1

 in thermoneutral immersion under non-exercise conditions (Ménétrier 440	

et al, 2015). Therefore, in our study, it is possible that the hydrostatic effect of water 441	

per se may have prevented a greater magnitude of decrease in arterial blood flow 442	

being observed after cooling.  443	

 444	
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 445	

CONCLUSION 446	

The application of lower limb immersion in 8ºC and 22ºC water after a bout 447	

of resistance exercise decreases femoral artery and cutaneous blood flows compared 448	

with rest and to a similar extent between cold and cool water temperatures. 449	

Individuals who may not tolerate colder water temperatures may therefore use less 450	

noxious water temperatures after resistance exercise. These findings have practical 451	

implications for the acute use of cold-water immersion for recovery in clinical and 452	

athletic settings. 453	

 454	
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Figure captions 638	

 639	

Figure 1. Rectal temperature (A), mean skin temperature (B) and thigh skin 640	

temperature (C) pre and post immersion in 8°C, 22°C and control (n = 12, mean ± 641	

SD). Main effects for condition (P<0.001) and time (P<0.001), alongside a 642	

significant interaction between condition and time (P<0.001), were found for thigh 643	

and mean skin temperature. Main effects for time (P<0.001) were found for rectal 644	

temperature. Significant difference from baseline in the 8°C condition (*), 22°C 645	

condition (**) and control conditions (***) (P<0.01). Significant difference 646	

between cooling conditions vs control (+) (P<0.001). Significant difference 647	

between cooling conditions (#) (P<0.05). 648	

 649	

Figure 2. Muscle temperature pre and post immersion, at temperature probe depths 650	

of 3 cm (A), 2 cm (B), and 1cm (C) (n =12, mean ± SD). Main effects for condition 651	

(P<0.001) and time (P<0.001) were found along with a significant interaction 652	

between condition, time and probe depth (P<0.001). Significant difference from 653	

baseline in the 8°C (*), 22°C (**) and control conditions (***) (P<0.001). 654	

Significant difference between cooling conditions vs control (+) (P<0.001). 655	

Significant difference between cooling conditions (#) (P<0.05). 656	

 657	

Figure 3. Femoral artery blood flow (A) and conductance (B) pre and post 658	

immersion in 8°C, 22°C and control (n = 12, mean ± SD). A main effect for 659	

condition (P<0.001) and time (P<0.001) was found for both artery flow and 660	

conductance. There was also a significant interaction between condition and time 661	

for both artery flow (P<0.01) and conductance (P<0.01). Significant difference 662	

from baseline in the 8°C (*), 22°C (**) and control conditions (***) (P<0.05). 663	

Significant difference between cooling conditions vs control (+) (P<0.01). 664	

 665	

Figure 4. Percentage change in thigh cutaneous vascular conductance (A) and calf 666	

vascular conductance (B) from pre immersion in 8°C, 22°C and control (n =12, 667	

mean ± SD). Main effects for condition (P<0.01) were found for both thigh and calf 668	

cutaneous vascular conductance. A main effect for time (P<0.05) was also found 669	

for thigh conductance. There were no interactions between condition and time in 670	

thigh (P=0.78) or calf vascular conductance (P=0.42). Significant difference from 671	

baseline in the 8°C (*), 22°C (**) and control conditions (***) (P<0.05). 672	

Significant difference between cooling conditions vs control (+) (P<0.01). 673	
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