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Abstract 17 

Many clinically used natural products are produced by non-ribosomal peptide 18 

synthetases (NRPSs), which due to their modular nature should be accessible to 19 

modification and engineering approaches. While the adenylation domain (A) plays the 20 

key role in substrate recognition and activation, the condensation domain (C) which is 21 

responsible for substrate linkage and stereochemical filtering recently became the 22 

subject of debate - with its attributed role as a "gatekeeper" being called into question. 23 

Since we have thoroughly investigated different combinations of C-A didomains in a 24 

series of in vitro, in vivo, and in situ experiments suggesting an important role to the C-25 

A interface for the activity and specificity of the downstream A domain and not the C 26 

domain as such, we would like to contribute to this discussion. The role of the C-A 27 

interface, termed 'extended gatekeeping', due to structural features of the C domains, 28 

can also be transferred to other NRPSs by engineering, was finally investigated and 29 

characterised in an in silico approach on 30 wild-type and recombinant C-A interfaces. 30 

With these data, we not only would like to offer a new perspective on the specificity of 31 

C domains, but also to revise our previously established NRPS engineering and 32 

construction rules.  33 
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Main Text 34 

 35 

Introduction 36 

Peptide drugs like penicillins (antibiotic) (Bills and Gloer, 2016), cyclosporin 37 

(immunosuppressant) (Velkov et al., 2011), and bleomycin (anti-cancer) (Du et al., 38 

2000) shaped our lives in an unprecedented way. They not only make a prodigious 39 

contribution to our public health by curing us from live threatening and formally 40 

untreatable diseases but, most of these scaffolds also share a common mode of 41 

synthesis (Newman and Cragg, 2020). They are complex specialised metabolites 42 

(SMs) predominantly synthesised by bacteria and fungi via biosynthetic pathways 43 

independent of the ribosome, denoted as Non-Ribosomal Peptide Synthetases 44 

(NRPSs) (Felnagle et al., 2008). NRPSs are large, multifunctional (mega-) enzymes 45 

in which multiple, repeating modules of enzymatic domains catalyse the incorporation 46 

and programmed functional group modifications of selected extender units into the 47 

growing peptide chain (Fig.1) (Süssmuth and Mainz, 2017).  48 
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 49 

Figure 1. Outline of the NRPS and its declared units with the example of the GxpS. (a) 50 

Schematic representation of the GameXPeptide Synthetase with modules, XUs and 51 

the XUCs highlighted. The domains are illustrated by the following symbols: 52 

adenylation (A) domain, large circle; thiolation (T) domain, small rectangle; 53 

condensation (C) domain, triangle; dual condensation/epimerizazion (C/E) domain, 54 

diamond; thioesterase (TE) domain, small circle. Further editing domains like 55 

epimerization (E) domains, C- or N-methylation by methyltransferase (MT) domains or 56 

the redox state through redox-active (Ox, Red) domains are not depicted here. The 57 

standard one letter AA nomenclature is used to show the substrate acceptance. (b) 58 

Structure of the produced GameXPeptides (Nollmann et al., 2015) on the top with the 59 

varying residues R1 and R2 listed on the bottom. (c) Schematic representation of the 60 

C-A didomain is illustrated in ribbon representation by the SrfA-C termination module 61 

from Bacillus subtilis ATCC 21332 (PDB ID: 2VSQ) (Tanovic et al., 2008). The C 62 

domains’ N-terminal donor CDSub (dark green) and C-terminal acceptor CASub (light 63 

green) site, the C-A linker (blue) and the A domain with its larger ACore (red) and smaller 64 

ASub (orange) are depicted. The fusion sites of the XUC and XU marked with dashed 65 

lines (yellow) directing to their exact position in the consensus logo in an alignment 66 

below. 67 
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Biosynthesis of non-ribosomal peptides (NRPs) is likened to assembly-line processes 69 

(Fig.1) and dependent upon the activity and precise interplay of at least three ‘core’ 70 

domains: An Adenylation (A) domain for the selection and activation of extender units, 71 

i.e., amino acids; a Thiolation (T) domain, carrying a post translationally attached 72 

prosthetic 4'-phosphopantetheine (4ʹ-PPant) group, onto which the activated substrate 73 

is covalently attached to; and a Condensation (C) domain, covalently linking the T 74 

domain bound substrates to the growing peptidyl chain (Sieber and Marahiel, 2005). 75 

However, to develop novel drug entities by rationally modifying NRPSs, i.e., by altering 76 

the resulting peptides’ length and/or composition to improve drug likeness properties, 77 

bioavailability, or to overcome resistance mechanisms, understanding the inherent 78 

logic of NRP assembly is of utter importance (Alanjary et al., 2019).  79 

Nowadays, crystal structure data and much of the fundamental biochemistry of all 80 

essential catalytic domains and domain complexes are available (Süssmuth and 81 

Mainz, 2017). For example, pioneering work on A domains not only revealed the first 82 

solved NRPS domain structure (PheA, PDB: 1AMU) (Conti et al., 1997), but that NRP 83 

synthesis is initiated by specific recognition and activation of the cognate substrate(s) 84 

by the A domain (Stachelhaus et al., 1999). After binding of the relevant dedicated 85 

amino acid from a pool of substrates by the A domain, substrate activation is achieved 86 

in a two-step chemical reaction. First, the A domain catalyses the formation of an 87 

aminoacyl adenylate intermediate using Mg2+–ATP consumption and release of PPi 88 

(Reimer et al., 2018; Tanovic et al., 2008). Second, the obtained amino acid – O – 89 

AMP anhydride is converted into a covalently bound thioester by a nucleophilic attack 90 

of the free thiol – 4'-PPant cofactor of the adjacent T domain (Drake et al., 2016; 91 

Gulick, 2009). These findings, in turn, have inspired early efforts to rationally re-92 

programme assembly-lines to produce tailor-made molecules by targeted mutagenesis 93 
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of the A domains’ specificity conferring active site residues (Eppelmann et al., 2002; 94 

Schneider et al., 1998; Thirlway et al., 2012), swapping A domains (Crüsemann et 95 

al., 2013; Kries et al., 2015), A-T or C-A di-domains (Duerfahrt et al., 2003; 96 

Stachelhaus et al., 1995), and whole modules (C-A-T tri-domains) (Baltz, 2014; 97 

Mootz et al., 2000)– but with limited success, indicating that further proofreading 98 

mechanisms or gatekeeping domains may be encoded within the assembly-line to 99 

ensure biosynthesis of the desired product(s). 100 

Further gatekeeping functions are attributed to C domains (LCL, DCL, and C/E; 101 

superscript: stereochemistry of the C-terminal residue of the donor substrate, 102 

subscript: stereochemistry of the acceptor substrate, C/E: dual C domain that catalyses 103 

both, epimerization and condensation) (Belshaw et al., 1999; Rausch et al., 2007), 104 

which typically accept two T domain-bound substrates and catalyse peptide bond 105 

formation through the attack of the downstream acceptor substrate upon the thioester 106 

of the upstream donor substrate (Finking and Marahiel, 2004). Structural and 107 

biochemical characterizations disclosed that C domains have a pseudo-dimeric 108 

V-shaped structure with a N- and C-terminal subdomain (Fig. 1c) (Keating et al., 109 

2002). Together, both subdomains are forming two opposite tunnels that lead from the 110 

donor-T and acceptor-T domain binding sites to the conserved key catalytic-residues 111 

containing active site motif HHxxxDG (De Crécy-Lagard et al., 1995; Izoré et al., 112 

2021; Keating et al., 2002; Süssmuth and Mainz, 2017). Very early on, biochemical 113 

characterizations showed that C domains exhibit a strong stereochemical selectivity 114 

for the donor-T domain bound substrate (LCL, DCL) and a significant side-chain 115 

selectivity for the acceptor-T domain bound substrate (LCL, DCL) (Belshaw et al., 1999; 116 

Linne and Marahiel, 2000). Nevertheless, the exact role and especially how C 117 
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domains contribute to determining NRPS specificity is still unclear and subject to 118 

debate (Baunach et al., 2021; Calcott et al., 2020; Izoré et al., 2021). 119 

Until recently, however, state-of-the-art NRPS engineering strategies assumed that the 120 

interface formed by C and A domains functions as a stable platform which should not 121 

be separated (Tanovic et al., 2008). Thus, the ascribed substrate specificity of the C 122 

domains could be neglected for the substrate bound to the acceptor-T domain for more 123 

than a decade (Bozhüyük et al., 2019b). This changed with the introduction of the 124 

eXchange Unit (XU) concept – a rule-based mix-and-match strategy to reproducibly 125 

engineer NRPSs (Bozhüyük et al., 2018). This concept uses A-T-C tri-domains, 126 

denoted as XUs, that can be fused within the C-A linker regions (Fig. 1c). In addition 127 

to breaking the dogma of the inseparability of the C-A interface, another important 128 

aspect of this concept is the recommendation that the substrate specificity of the 129 

corresponding C domains must be respected to obtain catalytically active chimeric-130 

NRPSs – as was evident from literature and experimental data at the time. Thus, the 131 

XU concept has subsequently been improved even further to overcome observed 132 

substrate incompatibility issues by dividing C domains within the flexible linker that 133 

connects the N- (CDSub) and C-terminal (CASub) subdomains (Fig. 1c), yielding the so-134 

called eXchange Unit Condensation domain (XUC) concept (Bozhüyük et al., 2019a). 135 

Although both, the XU and XUC strategies allowed these assembly lines to be 136 

functionally reprogrammed with great efficiency, there is a growing body of evidence 137 

that, in particular, the attributed strong selectivity of C domains for the acceptor-T 138 

domain bound substrate is likely to be the exception rather than the rule (Baunach et 139 

al., 2021; Calcott et al., 2020). 140 

A number of recent insightful studies have led to results that at least question the 141 

"proof-reading" role of C domains during NRP synthesis for legitimate reasons. In a 142 
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nutshell, recent studies suggest that: (I) C and A domains do not co-evolve (Baunach 143 

et al., 2021); (II) recombination within A domains are the main drivers of natural product 144 

diversification (Baunach et al., 2021; Booth et al., 2021); (III) the C-A linker region 145 

contributes to A domain substrate specificity and activity (Calcott et al., 2020); and 146 

(IV) recent structural data found that C domains do not have a distinct pocket to select 147 

the acceptor-T domain bound side chain during peptide assembly, but that residues 148 

within the active site motif may instead serve to tune substrate selectivity (Izoré et al., 149 

2021). 150 

Herein, we sought to contribute to the controversially discussed matter of C domain 151 

specificity and whether C domain selectivity is indeed just a presumption that has 152 

unnecessarily complicated rational NRPS redesign – as most recently suggested 153 

(Calcott et al., 2020). For us, who introduced the XU and XUC concepts and thus 154 

contributed to the rise of the potentially false dogma, the answer to this question is of 155 

great importance. It is imperative to prevent C domain specificity from becoming a false 156 

dogma that influences future engineering efforts in the wrong way, as the NRPS 157 

community has experienced before with the falsely assumed inseparability of C-A di-158 

domains (Brown et al., 2018). 159 

With this in mind, we reviewed recombinant NRPSs created in our lab to identify 160 

functional artificial BGCs showing an unexpected behaviour, like C domains accepting 161 

noncognate substrates or altered A domain activation profiles not matching the profiles 162 

observed in the natural context (Bozhüyük et al., 2018; Bozhüyük et al., 2019a; 163 

Bozhüyük et al., 2021). Indeed, the examples identified do not support the idea that 164 

C domains generally have strict selectivity but can at least accept a range of substrates 165 

with similar physicochemical properties - supporting insights obtained from the latest 166 

solved crystal structure data (Izoré et al., 2021). Nevertheless, especially in the 167 
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presence of promiscuous A domains, we occasionally observed changes in the 168 

substrate activation profiles or the preference of an alternative substrate over the WT 169 

substrate observed in situ. These observations suggest either that C domains do have 170 

some kind of gatekeeping function and thus favour certain substrates over others, or 171 

that the C domains themselves are able to tune the activity and specificity of the 172 

downstream A domains – as also reported earlier (Meyer et al., 2016). To shed further 173 

light on the role of C domains on NRP synthesis, we systematically analysed the effect 174 

of C domains onto A domains via a series of in vitro, in vivo, in situ, and in silico 175 

characterizations. 176 

 177 

Results 178 

To quickly grasp the influence of C domains on the activity and selectivity of A-179 

domains, we initially took advantage of the GameXPeptide (GXP) A-F producing 180 

Synthetase (GxpS) from Photorhabdus laumondii subsp. laumondii TT01 (Nollmann 181 

et al., 2015). GxpS, besides being the most widespread BGC in Photorhabdus and 182 

Xenorhabdus strains. (Shi and Bode, 2018), is one of our best studied, most 183 

engineered, and most promiscuous model systems (Bian et al., 2015; Bozhüyük et 184 

al., 2018; Bozhüyük et al., 2019a; Bozhüyük et al., 2021) – producing a library of 185 

cyclic penta-peptides (1-4) (Nollmann et al., 2015). This library of peptide derivatives 186 

is synthesized due to the relaxed selectivity of the A domains from modules 1 (A1: 187 

leucine & valine) and 3 (A3: p-NH2-phenylalanine, phenylalanine, leucine). In addition, 188 

the latter has already been characterised in vitro and in vivo in previous work (Bian et 189 

al., 2015; Bozhüyük et al., 2019a). In the course of these characterisations, it was 190 

even possible to determine that the GxpS_A3, in addition to a broad variety of 191 

proteinogenic amino acids (in vitro), recognizes and activates non-natural para- (p), 192 
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meta- (m), and ortho- (o) substituted amino acids (in vitro and in vivo), such as 193 

m/o/p-Cl-Phe, m/o/p-F-Phe, m/p-Br-Phe, and p-O(C3H3)-Phe (Bozhüyük et al., 194 

2019a). Since this promiscuity is the ideal prerequisite to analyse the influence of C 195 

domains on the activity profile of A domains, we selected GxpS_A3 as a first framework 196 

for further experiments. 197 

 198 

In vitro characterisations highlight influence of C domains on GxpS_A3’s 199 

activity and selectivity. 200 

To get first biochemical evidence of the hypothesized influence of C domains on A 201 

domain selectivity we cloned, heterologously produced (in E. coli BL21 (DE3) Gold), 202 

purified (via His6-Tag affinity chromatography), and in vitro assayed three GxpS 203 

derived proteins (P1: GxpS_A3-T3; P2: GxpS_CASub-A3-T3; and P3: GxpS_C3-A3-T3) 204 

against all 20 proteinogenic amino acids in the presence or absence of an upstream 205 

domain (C or CAsub) (Fig. 2). For better comparability of the results, we chose two 206 

different in vitro assays for adenylation activity. On the one hand the 'traditional' 207 

γ-[18O4]-ATP pyrophosphate exchange assay (Fig. 2a) (Phelan et al., 2009) and on 208 

the other hand the recently introduced multiplexed hydroxamate assay (HAMA) (Fig. 209 

2b-c) (Stanišić et al., 2019). Whereas the γ-[18O4]-ATP targets the first half-reaction 210 

of amino acid activation, detecting the isotopic back exchange of unlabelled PPi into 211 

γ-18O4-labelled ATP and is analysed by MALDI/HRMS (Phelan et al., 2009), the HAMA 212 

assay targets the second half-reaction, quenching the formed aminoacyl adenylate by 213 

adding hydroxylamine and the resulting amino-hydroxamates are analysed by tandem 214 

mass spectrometry (MS/MS) analysis (Stanišić et al., 2019). Another major difference 215 

is the number of substrates that can be tested in one reaction. In contrast to the 216 

γ-[18O4]-ATP isotope exchange assay, which only allows testing of one substrate per 217 
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reaction, the HAMA assay allows the parallel testing of dozens of competing amino 218 

acid substrates. Therefore, the HAMA assay is supposed to mimic the natural 219 

conditions in the cell much better, as all substrates are present at the same time. 220 
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 221 

Figure 2. In vitro characterization of the GxpS A3. (a) GxpS A3-T3 with no, 222 

GxpS_C3ASub, GxpS_C3 or XtpS_C3 domain tested in a γ-[18O4]-ATP assay for ATP 223 

conversion rate measured with MALDI/HRMS; (b) GxpS_A3-T3 with no, GxpS_C3ASub, 224 

GxpS_C3 or XtpS_C3 domain tested in a HAMA for produced peptide yields measured 225 

with HPLC/HRMS; (c) BacA_C3 GxpS_A3-T3 tested in a HAMA for produced peptide 226 

yields measured with HPLC/HRMS. The representation of the NRPS domains by 227 

symbols is according to Fig. 1, and CDSub and CASub are labelled corresponding to the 228 

preferred up- and down-stream A domain substrate in WT NRPS. 229 

Supplementary Information – Table S1 230 

Supplementary Information – Table S5 231 

Supplementary Information – Table S6 232 

Supplementary Information – Table S8  233 
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As a result of this first in vitro characterization of P1 - P3, it can be stated that the 234 

presence and absence of any domain (GxpS_CAsub3, GxpS_C3, XtpS_C3) upstream 235 

of GxpS_A3 showed a great influence on adenylation activities and substrate 236 

recognition profiles in both assays – with notable differences, though (Fig. 2). In 237 

general, P1 - P3 showed a much broader capacity to activate different substrates in 238 

the γ-[18O4]-ATP isotope exchange assay than in the HAMA assay. For instance, P1 239 

showed adenylation activities against all 20 substrates in the γ-[18O4]-ATP isotope 240 

exchange assay with a higher preference for non-polar aromatic amino acids (Tab. 241 

S5), whereas when assayed with the HAMA assay only 5 substrates were activated 242 

(Phe, Trp, Leu/Ile, Tyr), more closely resembling the A domain’s in vivo behaviour 243 

(Tab. S6). As expected, however, P1 showed highest specificity for phenylalanine in 244 

both assays, and in addition good ATP conversion rates at ~25 % for methionine, 245 

tyrosine, and leucine in the γ-[18O4]-ATP isotope exchange assay. P2, carrying the C-246 

terminal subdomain of GxpS_C3 upstream of GxpS_A3, showed impaired catalytic 247 

potential to activate the offered substrates in both assays. Of note, with very different 248 

activation and specificity profiles depending on the assay chosen, i.e., P2 favoured 249 

methionine in the γ-[18O4]-ATP isotope exchange assay and phenylalanine in the 250 

HAMA assay. In contrast, for P3, carrying the full length GxpS_C3 domain, we 251 

observed an improved catalytic efficiency to activate the offered substrates. P3 252 

revealed an almost identical activation profile as P1 in the HAMA assay, but with almost 253 

three-fold increased turnover rates, in the γ-[18O4]-ATP isotope exchange assay P3 254 

showed highest ATP conversion rates (~80 %) for phenylalanine, leucine and tyrosine 255 

(Fig. 2a-b). 256 

In sum, these results are indicative for the importance of a functional C-A didomain 257 

interface for the activity and specificity of A domains. The gathered in vitro data of both 258 
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assays along with insights from recent literature data (Baunach et al., 2021; Booth et 259 

al., 2021; Calcott et al., 2020; Izoré et al., 2021; Stanišić et al., 2021) provide 260 

evidence for an extended gatekeeping function for the C domains upstream of A 261 

domains rather than strict intrinsic selectivity. Similar results have also been reported 262 

previously for mono- and multi-specific modules that either strictly incorporate leucine 263 

or arginine or incorporate chemically diverse amino acids in parallel into microcystin 264 

(Meyer et al., 2016). Interestingly, in this study, the presence of the C domain’s C-265 

terminal subdomain, including all C-A interface-forming residues, was sufficient to 266 

restore, at least in part, the specificities observed in vivo, whereas in our case, the 267 

presence of the C-terminal subdomain (Fig. 2a-b) even impaired the A domains 268 

capacity to efficiently recognise the substrates presented. 269 

Next, and to better understand the influence of C-A interfaces on substrate recognition 270 

and activation of adjacent A domains, we targeted P1 by creating two chimeric proteins 271 

with three domains each (P4 & P5) that were analysed via the HAMA assay (Fig. 2b-272 

c). While P4 was generated by fusion of the C3 domain of the xenotetrapeptide-273 

producing synthetase (XtpS) from the Gram-negative Xenorhabdus nematophila 274 

ATCC 19061 (Kegler et al., 2014), which is very similar to the originally present 275 

GxpS_C3 (~86 % sequence identity) (Tab. S8), P5 was generated by fusion of the C2 276 

domain of the peptide antibiotic-producing bacitracin synthetase (BacA) from the 277 

unrelated Gram-positive Bacillus licheniformis ATCC 10716 (Konz et al., 1997) (~44 % 278 

sequence identity) (Tab. S8). Both hybrid proteins – as well as all hybrid constructs 279 

described below – were created according to the splicing position established within 280 

the XU concept (Bozhüyük et al., 2018). As expected, P4 showed a very similar 281 

activity and amino acid recognition profile to P3, with phenylalanine being the preferred 282 

substrate (Fig. 2a-b). In contrast, P5 almost completely lost its catalytic activity, with a 283 
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barely detectable signal for phenylalanine left (Fig. 2c), confirming that altered C-A 284 

interactions do have a great impact on the A domains capacity to recognise and 285 

activate respective substrates, indeed. 286 

 287 

Varying C domains result in altered in vivo product spectra 288 

As in vitro experiments sometimes can lead to results not reflecting the enzymes true 289 

in vivo behaviour, for example, as experienced with results from biochemical 290 

characterisations of C domains (Belshaw et al., 1999; Dekimpe and Masschelein, 291 

2021; Linne and Marahiel, 2000; Rausch et al., 2007; Stanišić et al., 2021), we also 292 

performed a series of in vivo experiments with truncated chimeric GxpS versions. 293 

GxpS has the rare potential to in vivo initiate peptide synthesis even after deletion of 294 

the initiation module (Bozhüyük et al., 2021) – as was also recently reported for the 295 

teicoplanin-producing NRPS in an in vitro study (Kaniusaite et al., 2020). However, 296 

for our experimental setup, we deleted the first two modules (A1 to C3) of GxpS, 297 

inserted either none (NRPS-1), GxpS_CASub3 (NRPS-2), GxpS_C3 (NRPS-3) (Fig. 3a) 298 

or related C domains (63 to 69 % sequence identity) (Tab. S8) of various origins with 299 

different ascribed acceptor site specificities (NRPS-4 to -8) (Fig. 3a-b), produced the 300 

resulting NRPSs heterologously in E. coli DH10B::mtaA (Schimming et al., 2014), and 301 

analysed the culture extracts by HPLC-MS/MS. Throughout the present work, the 302 

resulting peptides and yields were confirmed by HPLC-MS/MS (Tab. S7) and 303 

comparison of retention times with synthetic standards (see Supplementary 304 

Information). 305 
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 306 

Figure 3. In vivo characterization of the GxpS A3 with varying C domains using 307 

truncated GxpS versions. (a) terminal GxpS_A3--TE with no, GxpS_C3ASub, GxpS_C3 308 

or XtpS_C3 domain heterologous expressed in E. coli DH10B::mtaA and the extracts 309 

were measured via HPLC/MS; (b) terminal GxpS A3--TE with KolS_C5, BicA_C3, 310 

AmbSXmira_C5 or AmbSXindi_C5 domain heterologous expressed in E. coli 311 

DH10B::mtaA and the extracts were measured via HPLC/MS. The representation of 312 

the NRPS domains by symbols is according to Fig. 1, and CDSub and CASub are labelled 313 

corresponding to the preferred up- and down-stream A domain substrate in WT NRPS; 314 

(c) Compounds 5 - 14 produced from NRPS-1 to -8 expressed in E. coli DH10B::mtaA 315 

and the extracts were measured via HPLC/MS. 316 

Supplementary Information – Table S1 317 

Supplementary Information – Table S7 318 

Supplementary Information – Table S8  319 
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Briefly, all of them, NRPS-1 to -8, were catalytically active showing biosynthesis of the 320 

same range of tripeptides (5 - 14), due to the promiscuity of GxpS_A3 – with FlL (5) 321 

having highest titres followed by flL (6) and l/LlL (7 & 8) (Fig. 3a-b). Interestingly, 322 

despite the C/E domain downstream of GxpS_A3, all peptides are produced with 323 

higher titers towards the L‑configuration (5, 8, & 10). As the epimerization reaction is 324 

reversible and finds its end in the adjustment of an equilibrium between both isomers 325 

(Stachelhaus and Walsh, 2000), this might indicate that the downstream C/E domain, 326 

which usually expects a peptidyl chain, is unable to make sufficient contact with the 327 

activated amino acid, resulting in delayed condensation followed by late thiolation. 328 

Hence, this change in the reaction velocity caused by the length of the substrate (Stein 329 

et al., 2005) might lead to the observed diastereomer with a trend towards the L-isomer 330 

and not the expected D-isomer. However, titres of NRPS-2 are slightly lower but 331 

NRPS-3s' are ~30 % higher compared to NRPS-1 (Fig. 3a) – confirming the in vitro 332 

observed influence of the C-A interface on general biocatalytic activity of A domains 333 

(Fig. 2a-b). Remarkably, GxpS_A3 as part of NRPS-1, -2, and -3 showed a different 334 

substrate activation profile than as part of P1, P2, and P3, respectively. NRPS-1, -2, 335 

and -3 mainly synthesised the tripeptides 5 to 10, known and expected from WT 336 

behaviour, illustrating why biochemical in vitro characterisations must always be 337 

treated with the utmost caution, especially with regard to multi-modular assembly lines. 338 

Compared to NRPS-1, the chimeric proteins NRPS-4 to -8 showed no difference in the 339 

number of substrates activated by GxpS_A3, but the overall peptide production rates 340 

of NRPS-5 and -6 were ~50 % lower and of NRPS-7 and -8 ~200 % higher (Fig. 3b). 341 

For example, the latter produces 11 with 2-fold higher yield than NRPS-1 and 4-fold 342 

higher than NRPS-3. Consequently, NRPS-1 to -8 are supporting the in vitro observed 343 
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extended gatekeeping function of C domains (Fig. 2) by fine tuning the A domains’ 344 

substrate selectivity. 345 

 346 

In situ recombination shows evidence for C domains’ extended gatekeeping 347 

function 348 

To further investigate the influence of altered C-A interactions on the product spectra 349 

of NRPSs, we next sought to study homologous BGCs present in several bacterial 350 

strains producing the same peptide scaffold but resulting in different derivatives. The 351 

great advantage of such highly homologous systems is the possibility to study the 352 

effect of altered C-A interactions without having to consider further potential 353 

incompatibilities that could inhibit synthesis. We therefore targeted the fabclavine-354 

producing BGCs (fcl; Fig. 4a) present in several Xenorhabdus strains (Wenski et al., 355 

2019), including X. budapestensis DSM 16342 (Xbud), X. hominickii 17903 (Xhom), 356 

and X. szentirmaii DSM 16338 (Xsze), which were studied in present work. 357 

Fabclavines are bioactive peptide-polyketide-polyamine hybrids with broad-spectrum 358 

activity against bacteria, fungi, and other eukaryotic cells (Fig. 4a). (Donmez Ozkan 359 

et al., 2019; Fuchs et al., 2014; Wenski et al., 2019) In previous work, the deletion of 360 

fclI of the NRPS encoding genes fclIJ led to shortened polyamine carrying fabclavine 361 

derivatives (15 - 17), and thus to the assumption that FclJ can also be used as a 362 

starting unit without FclI (Wenski et al., 2019). Accordingly, and due to fclJ’s rather 363 

small size, encoding two NRPS elongation modules (~7 kbp), FclJ was chosen as 364 

promising starting point to investigate C-A interface substitutions in situ. FclJ, however, 365 

bears another advantage necessary to study the impact of an altered C-A interface on 366 

the A domain’s substrate recognition profile – namely FclJ_A6. While this particular A 367 

domain recognises and activates proline in X. budapestensis and X. hominickii, it also 368 
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activates threonine and valine in X. szentirmaii (Wenski et al., 2020). As the 369 

promiscuity of the latter neither can be explained by differences within the respective 370 

proteins’ primary structure (~89 % similarity) (Tab. S8) nor with changes within the 371 

substrate specificity conferring amino acid residues within the A domains active site 372 

(Tab. S9), we hypothesised that the respective upstream C domain (FclJ_C6) must be 373 

the reason for the product diversification in X. szentirmaii (Fig. 4). 374 

To explore the substrate promiscuity of FclJ_A6 in X. szentirmaii, we generated a 375 

X. szentirmaii ΔfclI ΔfclJ double knockout mutant and prepared a library of plasmids 376 

encoding WT FclJ from X. szentirmaii (NRPS-9), X. budapestensis (NRPS-10) and 377 

X. hominickii (NRPS-11), as well as six chimeric FclJ combinations (Fig. 4b, NRPS-12 378 

to -17) for plasmid-based gene complementation experiments (Fig. 4b). These six 379 

chimeric NRPSs represent all possible XU-C-A interface combinations from the chosen 380 

set of target-BGCs and therefore allows us to investigate whether the observed 381 

promiscuity of FclL_A6 is due to intrinsic proofreading of the given C domain or rather 382 

an effect of altered C-A interactions.  383 
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 384 

Figure 4. Fabclavines and the plasmid-based XU combinations for fclJ 385 

complementation in X. szentirmaii ΔfclIJ. (a) Fabclavine biosynthesis gene cluster 386 

(BGC) with the ΔfclI ΔfclJ deletion marked in red. (b) Schematic representation of the 387 

carried-out XU combinations of the Xsze FclJ_C5--C6/A6-T6 (black), Xbud FclJ C5--388 

C6/A6-T6 (light blue), and Xhom FclJ C5--C6/A6-T6 (orange). The representation of 389 

the NRPS domains by symbols is according to Fig. 1. (c) Hatched bar charts with 390 

corresponding colour code of the plasmid based FclJ insertions of the Pro derivative 391 

(Top), Val derivative (Middle), and the Thr derivative (Bottom). The produced quantity 392 

of each product 15, 16 or 17 was compared in percentage relative to the amount of 393 

produced 15, 16 or 17 by Xsze FclJ_C5--C6/A6-T6 (set as 100 %). 394 
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As intended, plasmid based-complementation and production of WT FclJs (NRPS-9 to 401 

-11) in X. szentirmaii ΔfclI ΔfclJ led to the production of the expected range of 402 

shortened fabclavines (15 - 17) – with NRPS-9 synthesising peptides 15 - 17 and 403 

NRPS-10 and -11 only the proline derivative 15. For the chimeric NRPSs 12 and 13, 404 

both carrying the putative promiscuous XU2 of FclJ (A6T6) from X. szentirmaii (Fig. 405 

4b-c), only synthesis of 15 could be detected, and thus FclJ_A6’s substrate promiscuity 406 

could not be transferred – indicating that production of derivatives other than 15 is not 407 

the sole result of the A domain’s substrate specificity. This indication is further 408 

supported by NRPS-14 and -16, both carrying XU1 (C5A5T5C6) of FclJ from 409 

X. szentirmaii and XU2 from X. budapestensis (NRPS-14) and X. hominickii (NRPS-410 

16), respectively, now capable to biosynthesise peptides 15 - 17. Interestingly, 411 

production of NRPS-15 only led to detectable amounts of 15, while NRPS-17 led to the 412 

synthesis of 15 -17, but to a much lesser extent than NRPS-14 and -16 (Fig. 4b-c). 413 

Taken together, however, obtained in situ results confirm that, at least in case of 414 

fabclavine biosynthesis, the observed NRP diversification (X. szentirmaii) or 415 

specification (X. hominickii, X. budapestensis) is neither the result of the respective A 416 

domains promiscuity nor the C domains proofreading, but due to an extended 417 

gatekeeping function. 418 

The extended gatekeeping function seems to manifest itself via specific interactions in 419 

the C-A interface – presumably by influencing the geometric degrees of freedom of the 420 

A domain. In the course of their catalytic cycle, A domains must adopt an open and 421 

closed conformation as well as the C-terminal subdomain has to undergo a ∼140° 422 

rotation (Drake et al., 2016). Altered C and A domain interactions might therefore 423 

influence these precisely coordinated transitions, editing selectivity and activity of 424 

respective A domains. Eventually, to reveal the very nature of the C domains’ influence 425 
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on downstream A domains, next we aimed to in depth investigate a series of WT and 426 

chimeric C-A interfaces on a structural level. 427 

 428 

In silico approach maps hot-spot areas to determine crucial C-A didomain 429 

interactions 430 

Since the structural elucidation of the targeted C-A interface forming proteins of NRPS-431 

11 and NRPS-13 was intended but failed, we chose an in silico approach to 432 

characterise the extended gatekeeping function of C domains, at least in first 433 

approximation. We combined protein homology modelling (Nayeem et al., 2006) by 434 

using the Molecular Operating Environment (MOE 2019.01 (Molecular Operating 435 

Environment (MOE), 2021)) along with HSPred (Lise et al., 2011). The latter is a 436 

support-vector-machine-based method to predict critical interaction partners across 437 

protein-protein interfaces. HSPred systematically mutates in silico individual amino 438 

acids (excluding Pro and Gly) to alanine and calculates the changes in free energy of 439 

binding (ΔΔG). 'Critical Interaction Partners' or 'Hot Spots Residues' are defined as 440 

those residues for which ΔΔG ≥ 2 kcal/mol. The HSPred output score predicts mutated 441 

residues with a score greater than zero as hot spots (ΔΔG ≥ 2 kcal/mol) and negative 442 

scores (ΔΔG < 2 kcal/mol) as non-hot spots. Others are not involved in interface 443 

formation (Fig. 5; Fig. S4). 444 

For comparative structural in silico analysis, we chose the in vitro assayed GxpS WT 445 

interface of P3 (GxpS_C3-A3) and hybrid interfaces of P4 (XtpS_C3-GxpS_A3) and 446 

P5 (BacA_C3-GxpS_A3) (cf. Fig. 2), respectively. In terms of sequence homology and 447 

catalytic activity, P4 and P5 were chosen to represent the two extremes, with P4 being 448 

almost WT-like and P5 completely unrelated. Additionally, we chose the in situ 449 

investigated FclJ_C6-A6 WT and hybrid interfaces presented above (Fig. 4b, NRPS-9 450 
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to -17). For homology modelling, we selected three different crystal structure templates 451 

of NRPS proteins with multiple domains: AB3403 (PDB ID: 4ZXH) (Drake et al., 2016), 452 

EntF (PDB ID: 5T3D) (Drake et al., 2016), and SrfA-C (PDB ID: 2SVQ) (Tanovic et 453 

al., 2008). This template diversity is intended to cover the majority of C-A interface-454 

forming regions, such as the adenylate-forming conformation of AB3403, the thioester-455 

forming conformation of EntF and the open conformation of SrfA-C (Fig. 5). Based on 456 

these templates, we created a total of 30 models of the selected C-A interfaces (Tab. 457 

S10), and then analysed the protein-protein interactions of the C and A domains via 458 

HSPred (Fig. S4).459 
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Figure 5. HSPred interface prediction for the created homology model. (a) Exemplary MOE models of the GxpS_C3-A3 homology model 461 

calculated with 2VSQ, 4ZXH, and the 5T3D as templates representative for all models from the HSPred analysis with highlighted hotspot 462 

residues (red), non-hotspot residues (white), non-interface residues (blue), and non-existing residues (colourless) in the reference 463 

alignment. The positions of the Area-Of-Interactions (AOI) 1-3 are grayed out in the structures. (b) Contour wireframe model only showing 464 

the interface forming residues of the HSPred interface prediction of the ten Xsze FclJ_C6-Xhom FclJ_A6, Xsze FclJ_C6-Xbud FclJ_A6, 465 

Xsze FclJ_C6-A6, Xhom FclJ_C6-A6, Xbud FclJ_C6-A6, BacA_C3-GxpS_A3, BacA_C3-A3, XtpS_C3-GxpS_A3, XtpS_C3-A3, and 466 

GxpS_C3-A3 models build in reference to the AB3403 (PDB ID: 4ZXH) (Drake et al., 2016), EntF (PDB ID: 5T3D) (Drake et al., 2016), 467 

and SrfA-C (PDB ID: 2SVQ) (Tanovic et al., 2008) templates. The interacting Chains I-XVI are indicated with black frames in the contour 468 

wireframe models. Colouring of the residue positions in the reference alignment domains (Tab. S11) is according to the C domain 469 

(green), C-A linker (blue), ACore (red), and ASub (orange). 470 
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The resulting interface plots in the contour wire model of the HSPred prediction (Fig. 478 

5) show at a glance the distinct conformational changes of the different interfaces 479 

formed. In brief, numerous interactions can be ascribed to sixteen different Chains I-480 

XVI that contribute to interface formation (Fig. 5b). These Chains, of which the C 481 

domain has six, the C-A linker one, and the A domain nine, interact in the so-called 482 

Area-Of-Interaction (AOI) 1-3 (Fig. 5a), which show highly dynamic conformational 483 

changes in the course of the catalytic NRP synthesis cycle. However, based on the 484 

chosen crystal structure templates, a comprehensive description of the structural C-A 485 

interface differences and the changes that occur during the transition of the individual 486 

catalytic states into each other can be found in the supplementary information (Explan. 487 

S1). In the following, the most important differences between the WT and hybrid C-A 488 

interfaces modelled and analysed in this work are highlighted. It should be noted that 489 

the amino acid numbering used below is based on the residue position in the protein 490 

sequence alignment of calculated models (Tab. S11). 491 

When the WT C-A interface of P3 is compared to the hybrid interfaces of both, the C-492 

A interface of P4 and P5, differences mainly are present in the AOI1 ASub area of all 493 

catalytic states (Fig. 5). P4 introduces additional hot spot residues in the adenylate 494 

forming conformation (Fig. 5, P44ZXH) via Chain I (R216) & V (R365), loosened 495 

ACore/ASub transition of Chain III (D291) and a tightening to the C-A linker in AOI2 of 496 

Chain IX (R841, R847, Y849) in the thioester forming conformation (Fig. 5, P45T3D). 497 

Although the exchange of GxpS_C3 for XtpS_C3 in P4 leads to a slightly closer 498 

interaction of the C domain with the ASub domain during adenylate and thioester 499 

formation as well as to a slight relaxation of the ACore/ASub hinge region (AA907 to 500 

AA944, Tab. S11), the hybrid interface of P4 appears to be very similar to the wild type 501 

one of P3 – as could be expected from their high sequence similarity. It is therefore not 502 
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surprising that the introduced changes at the interface have almost no effect (cf. Fig. 503 

2) on the catalytic activity and substrate activation profile of GxpS_A3, as evidenced 504 

in the in vitro and in vivo assays. In turn, when the interface of P5 is compared to the 505 

WT P3 interface, multiple additional hot residues within Chain I (R204, K209, D211, 506 

Y214, D215, K217, R218), and Chain V (R323) in all three models (Fig. 5, P52VSQ, 507 

P54ZXH, and P45T3D) could be observed, indicating a much stronger association around 508 

the otherwise flexible ASub domain in AOI1. This increased rigidity of the C-A interface 509 

seems to interfere with the ability of the A domains to switch between the different 510 

conformations required for proper substrate binding/release and adenylate formation 511 

(Reimer et al., 2018), as highlighted by P5’s poor catalytic in vitro activity (cf. Fig. 2c).  512 

Compared to all other interfaces, investigated within present work, the Xsze FclJ_C6-513 

A6 WT interface (NRPS-9) as well as the recombinant interfaces from NRPS-12 to -17 514 

show a novel interaction site with a significant impact on especially the substrate 515 

binding/release conformation (Fig. 5, models based on 2VSQ). All these constructs 516 

have the Xsze FclJ_C6 domain in common – introducing the unique Chain II (Fig. S5-517 

7) that highly contributes to the C-A interface formation by tightly interacting with the 518 

respective ASub domains in AOI1. Chain II shows up in all conformations but with the 519 

highest abundance of hot residues in the adenylate forming state (models based on 520 

4ZXH) at S220, H221 and E224. Chain XIV, which regularly participates in interface 521 

formation in substrate binding/release (Fig. 5, models based on 2VSQ models), 522 

disappears entirely in the constructs containing the respective Xsze C domain. Further, 523 

all of the studied fabclavine interfaces lack contribution of Chain XV and XVI, which 524 

have been involved in the adenylate-forming and thioester-forming conformation in the 525 

GxpS, XtpS and BacA interfaces (Fig. 5b). Consequently, the pronounced 526 

conformational changes of the ASub domain observed in silico are less determined by 527 
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the opposite C-domain, suggesting dynamic detachment. Therefore, the previously 528 

described promiscuity at this position in fabclavine biosynthesis (Wenski et al., 2020) 529 

does not seem to be the exclusive result of the FclJ_A6 domains activity, but from the 530 

extended gatekeeping function of the FclJ_C6 domain that grants additional spatial 531 

flexibility mainly in AOI1. 532 

In sum, the Xsze FclJ_C6 seems to follow its very own path in C-A interface formation 533 

with considerable differences, especially in the yet unreported interaction of the C 534 

domain’s Chain II, and loss of interaction of Chain XIV, XV & XVI with ASub, extending 535 

its already dynamic 30° rotation from the substrate binding/release to the adenylate 536 

forming conformation and subsequent 140° body torsion in the thioester forming 537 

conformation (Drake et al., 2016). Interestingly, this extended gatekeeping, leading to 538 

less spatial restrictions on the A domain’s movement, is not only transferred on a 539 

structural level when chimeric interfaces are created, but also influences the substrate 540 

recognition capacity of the respective downstream A domain. 541 

 542 

 543 

Discussion 544 

Although biochemical in vitro characterisations of individual domains or modules 545 

greatly contributed to our current advanced understanding of all fundamental catalytic 546 

reactions in NRP synthesis, obtained results are difficult to extrapolate to full length 547 

multi-domain and -modular mega-synthetases – as evidenced from long standing 548 

design paradigms currently under debate, such as the inseparability of C-A didomains 549 

and the C domains gatekeeping role (Baltz, 2014; Baunach et al., 2021; Belshaw et 550 

al., 1999; Bozhüyük et al., 2018; Bozhüyük et al., 2019a; Calcott et al., 2020; 551 
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Lautru and Challis, 2004; Süssmuth and Mainz, 2017). Especially the latter has 552 

most recently been revised by landmark contributions investigating the evolution of 553 

NRPSs, i.e. by drawing a landscape of evolutionary recombination events (Baunach 554 

et al., 2021), and exploring the C domains acceptor site specificity via gene shuffling 555 

experiments (Calcott et al., 2020). These contributions have led to the currently 556 

prevailing view that C domains, or rather the proofreading role attributed to them, can 557 

be neglected in the creation of hybrid NRPSs and unnecessarily has complicated 558 

NRPS engineering campaigns (Alanjary et al., 2019; Brown et al., 2018). Although 559 

this view, to some extent, contradicts most recent structural insights (Izoré et al., 2021) 560 

as well as our own observations made when developing reproducible engineering 561 

strategies (Bozhüyük et al., 2018; Bozhüyük et al., 2019a), we do not doubt that the 562 

core findings of these studies are accurate. Nevertheless, when reviewing our data of 563 

previous works (Bozhüyük et al., 2018; Bozhüyük et al., 2019a; Bozhüyük et al., 564 

2021), we could notice that there must be more to it and that the current black and 565 

white view of this issue misses the complexity of this problem. 566 

Therefore, with this work, we have attempted to shed light on the recently sparked 567 

debate about the role of C-domains in the non-ribosomal synthesis of peptides 568 

(Dekimpe and Masschelein, 2021). Based on our established expertise in 569 

engineering NRPSs, we have tried to rethink the problem and approach it from different 570 

angles, focusing particularly on the changing behaviour of A domains in the context of 571 

chimeric biosynthetic pathways. We have devised a comprehensive experimental 572 

procedure ranging from in vitro (Fig. 2) and in vivo (Fig. 3) characterisations targeting 573 

our preferred model system GxpS (Fig. 1) to in situ investigations of the fabclavine 574 

producing BGC (Fig. 4) and in silico characterisation of selected C-A didomain 575 

interfaces created in this study (Fig. 5). 576 
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Within this study, it has been our experience that in vitro results can differ significantly 577 

depending on the assay chosen and can paint a picture that contradict the results 578 

obtained in vivo. However, all in vitro and in vivo results concerning the selected 579 

promiscuous GxpS_A3 framework, revealed a significant influence of all C domains on 580 

both (Fig. 2-3), the general catalytic activity and the substrate recognition profile within 581 

the identified "substrate group specificity" of the GxpS_A3 domain. Interestingly, in 582 

terms of phylogenetic distance and sequence homology, less similar C domains (e.g. 583 

AmbSindi._C5 & BicA_C3) seem to have a more pronounced effect (Fig. 2 & 3) – in both 584 

directions (Fig. 2b, NRPS-6 & -8). This effect could be described as an extended 585 

gatekeeping function of the C-A interface on fine-tuning the A domains selectivity and 586 

thus contributing to its role as a primary substrate selectivity filter – as also reported 587 

from previous in vitro characterisations of A domains of the microcystin-producing 588 

NRPS (Meyer et al., 2016). 589 

Noteworthy, BacA_C3 as a representative outside the Photo- and Xenorhabdus genus 590 

exerts significant influence on the interface-dynamics which almost abolished the 591 

activity in vitro (Fig. 2c). This observation now explains our previous inability to 592 

recombine building blocks of Gram-negative and -positive origin with each other by 593 

using the XU strategy in most cases (Bozhüyük et al., 2018). Interestingly, most 594 

recently we were able to functionally apply the very same interface (P5) by introducing 595 

synthetic leucin zippers (type S NRPSs) within the C-A linker region (Bozhüyük et al., 596 

2021). The created type S NRPS not only synthesized a thiazoline containing peptide 597 

with high fidelity at high titre, but the GxpS_A3 domain exclusively activated leucine, 598 

thus completely omitting the domains in vitro confirmed preferred substrate 599 

phenylalanine (Bozhüyük et al., 2021) – representing another illuminating example of 600 
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how altered C-A interactions are capable to contribute to the A domains attributed role 601 

as primary selectivity filter. 602 

Eventually, by targeting the fabclavine BGCs from X. szentirmaii, X. budapestensis, 603 

and X. hominicii XU substitutions to alter C-A interface interactions could be made that 604 

were least out of their natural context (Fig. 4). Here, a more dominant and transferable 605 

extended gatekeeping effect of the Xsze FclJ_C6 domain could be observed, which, 606 

through an additional loop in the interface (Fig. S5-7), mainly interacts with the ASub 607 

domain. Introduction of Xsze XU1 (C5A5T5C6) upstream of FclJ_A6 from 608 

X. budapestensis. and X. hominickii. empowered the formerly proline specific A 609 

domains to also activate valine and threonine (Fig. 4b-c).  610 

In the final analysis, along with most recently published findings, present data suggests 611 

that a general strong gatekeeping function of C domains can be excluded and might 612 

rather be the exception. Yet, we were able to highlight that C domains do have a great 613 

effect on selectivity of adjacent A domains via an extended gatekeeping function and 614 

should definitely be considered when artificial NRPSs are created. Our in silico 615 

analysis revealed that this extended gatekeeping function manifests itself within the 616 

respective formed C-A interfaces during all catalytic stages (Fig. 5). 617 

At this point, we must revise the established XU concept assembly rules to guide the 618 

debate about the specificity-imparting properties of C domains. Accordingly, the 619 

second XU rule ('The specificity of the downstream C domain must be respected' 620 

(Bozhüyük et al., 2018)) should not have been focusing on the attributed C domain’s 621 

acceptor site specificity, but on the very nature of interfaces that C domains can form 622 

with an A domain of interest. Nevertheless, the second rule could still serve as a rule 623 

of thumb to directly guide engineering attempts without prior in-depth analysis, as it is 624 

more likely that C domains upstream of A domains with the same or similar specificity 625 
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can form a more similar and thus functional interface (Fig. S8). With our current 626 

knowledge, C domains that do not directly conform to the C domain dogma no longer 627 

need to be excluded. Therefore, the C-A interface is assumed to have a more 628 

significant contribution to a selectivity filter function, in turn, highlighting the great 629 

advantage of the XUC concept which preserves these interfaces (Bozhüyük et al., 630 

2019a). 631 

We hope that the present work can make a constructive contribution to the ongoing 632 

debate and is just one more viewpoint of many to follow. We look forward to the 633 

forthcoming results and intend to contribute further insights soon, yet again from a 634 

different angle. Therefore, we would like to conclude with the words of a great scientist: 635 

'When you change the way you look at things, the things you look at change.' – Max 636 

Planck  637 
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Material and methods 638 

Cultivation of strains  639 

All E. coli and Xenorhabdus strains were cultivated in liquid or on solid LB-medium (pH 640 

7.5, 10 g/L tryptone, 5 g/L yeast extract and 5 g/L NaCl). Solid media contained 1 % 641 

(w/v) agar. Kanamycin (50 μg/ml) and chloramphenicol (34 μg/ml) were used as 642 

selection markers. All E. coli cultures were cultivated at 37 °C, 22 °C, or 16 °C for 643 

peptide or protein production purposes. Xenorhabdus strains were grown at 30 °C. 644 

 645 

Cloning of biosynthetic gene clusters 646 

Genomic DNA of selected Xenorhabdus and Photorhabdus strains were isolated using 647 

the Qiagen Gentra Puregene Yeast/Bact Kit. All PCRs were performed with 648 

oligonucleotides obtained from Eurofins Genomics (Tab. S4). NRPS fragments for HiFi 649 

cloning (NEB) were amplified with primers coding for the respective homology arms 650 

(20-30 bp) in a two-step PCR program. The coding sequences for the His6-Tag were 651 

amplified with the pCOLADUETTM-1 (Merck/Millipore) plasmid backbone. Polymerases 652 

Phusion High-Fidelity DNA polymerase (Thermo Scientific), Q5 High-Fidelity DNA 653 

polymerase (New England BioLabs), and Velocity DNA polymerase (Bioline) were 654 

used according to the manufacturers’ instructions. DNA purification was performed 655 

using Invisorb Fragment CleanUp or MSB Spin PCRapace Kits (stratec molecular). All 656 

generated plasmids (Tab. S3) were introduced into E. coli DH10B::mtaA (Schimming 657 

et al., 2014) by either electroporation. Each NRPS (subunit) was under the control of 658 

a PBAD promotor for peptide production or a tacI promotor for protein expression. 659 

Plasmid isolation from E. coli was achieved with the Invisorb Spin Plasmid Mini Two 660 

Kit (stratec molecular). 661 

 662 
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Generation of deletion mutants 663 

The generation of deletion mutants was performed as described previously 664 

(Brachmann et al., 2007; Wenski et al., 2019): The upstream and downstream 665 

flanking regions of the corresponding gene (approximately 1000 bp) were amplified 666 

and cloned into the either PCR-amplified or digested vector pEB17 to generate deletion 667 

vectors (Bode et al., 2019). After the Hot Fusion Assembly E. coli S17 were 668 

transformed with the vectors, followed by conjugation with the corresponding 669 

Xenorhabdus strain as described previously (Fu et al., 2014; Philippe et al., 2004; 670 

Simon et al., 1983; Thoma and Schobert, 2009). 671 

 672 

Transformation of X. szentirmaii 673 

Hetero- and homologous complementation as well as NRPS-engineering plasmids 674 

were transformed into the corresponding X. szentirmaii strain by heatshock 675 

transformation by an adapted protocol of Xu et al. as described previously (Wenski et 676 

al., 2019; Xu et al., 1989). 677 

 678 

Heterologous expression of NRPS templates and LC-MS analysis 679 

Constructed plasmids were transformed into E. coli DH10B::mtaA (Schimming et al., 680 

2014). Cells were grown overnight in LB medium containing the necessary antibiotics 681 

(50 μg/ml kanamycin, or 34 μg/ml chloramphenicol). 100 μl of an overnight culture 682 

were used for inoculation of 10 ml LB-cultures supplemented with the respective 683 

antibiotics as selection markers and additionally containing 0.002 mg/ml L-arabinose 684 

and 2 % (v/v) XAD-16. After incubation for 72 h at 22 °C the XAD-16 was harvested. 685 

One culture volume methanol was added and incubated for 30 min at RT. The organic 686 
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phase was filtrated, and a sample was taken of the cleared extract. After centrifugation 687 

(17,000 x g, 20 min) the methanol extracts were used for LC-MS analysis. All 688 

measurements were performed by using an Ultimate 3000 LC system (Dionex) with an 689 

ACQUITY UPLC BEH C18 column (130 Å, 2.1 x 50 mm, 1.7 μm particle size; Waters) 690 

at a flow rate of 0.4 ml min-1 using acetonitrile (ACN) and water containing 0.1 % formic 691 

acid (v/v) in a gradient ranging from 5-95 % of ACN over 16 min (40 °C) coupled to an 692 

AmaZonX (Bruker) electron spray ionization mass spectrometer. High-resolution mass 693 

spectra were obtained on an Ultimate 3000 RSLC (Dionex) coupled to an Impact II 694 

qTOF (Bruker) equipped with an ESI Source set to positive ionization mode. The 695 

software DataAnalysis 4.3 (Bruker) was used to evaluate the measurements. 696 

 697 

Expression and purification of His6-tagged proteins 698 

For overproduction and purification of the His6-tagged ~72 kDa GxpS A3-T3, ~98 kDA 699 

GxpS C3ASub-A3-T3, ~122 kDa GxpS C3-A3-T3 and ~122 kDa XtpS C3 GxpS A3-T3 700 

a 5 mL overnight culture in LB medium of E. coli BL21 (DE3) Gold cells harboring the 701 

corresponding expression plasmid and the TaKaRa chaperone-plasmid pTF16 702 

(TAKARA BIO INC.) were used to inoculate 500 mL of autoinduction medium (464 mL 703 

LB medium, 500 μL 1M MgSO4, 10 mL 50x5052, 25 mL 20xNPS) containing 50 μg/mL 704 

kanamycin and 34 μg/mL chloramphenicol. The cells were grown at 37 °C up to an 705 

OD600 of 0.6. Following the cultures were cultivated for additional 72 h at 16 °C. The 706 

cells were pelleted (10 min, 4,000 rpm, 4 °C) and stored overnight at -20 °C. 707 

For protein purification the cells were resuspended in binding buffer (500 mM NaCl, 708 

20 mM imidazol, 50 mM HEPES, 10 % (w/v) glycerol, pH 8.0). For cell lysis benzonase 709 

(500 U, Fermentas), protease inhibitor (Complete EDTA-free, Roche), 0.1 % Triton-X 710 

and lysozym (0.5 mg/mL, ~20,000 U/mg, Roth) were added and the cells were 711 
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incubated rotating for 30 min at 4 °C. After this the cells were placed on ice and lysed 712 

by ultra-sonication. Subsequently, the lysed cells were centrifuged (25,000 rpm, 713 

30 min, 4°C). 714 

The yielded supernatant was passed through a 0.2 μm filter and loaded with a flow rate 715 

of 0.5 mL/min on a 5 mL HisTrap HP column (GE Healthcare) equilibrated with 12 CV 716 

binding buffer. Unbound protein was washed off with 8 CV with 4 % and 8 CV with 8 % 717 

elution buffer (500 mM NaCl, 500 mM imidazol, 50 mM HEPES, 10 % (w/v) glycerol, 718 

pH 8.0). The purified protein of interest was eluted with 35 % elution buffer. Following, 719 

the purified protein containing fraction was concentrated (Centriprep® Centrifugal 720 

Filters Ultacel® YM - 50, Merck Millipore). 721 

 722 

MALDI-Orbitrap-MS 723 

Samples were prepared for MALDI-analysis as a 1:1 dilution in 9-aminoacridine in 724 

acetone (10 mg/mL in 99 % aceton), spotted onto a polished stainless-steel target, and 725 

air-dried. MALDI-Orbitrap-MS analyses were performed with a MALDI LTQ Orbitrap 726 

XL (Thermo Fisher Scientific,Inc., Waltham, MA) equipped with a nitrogen laser at 727 

337 nm. The following instrument parameters were used: laser energy, 27 μJ; 728 

automatic gain control, on; auto spectrum filter, off; resolution, 30,000; plate motion, 729 

survey CPS. Mass spectra were obtained in negative ion mode over a range of 500 to 730 

540 m/z. The mass spectra for γ-[16O4]-ATP exchange analysis were acquired by 731 

averaging 50 consecutive laser shots. Spectral analysis was conducted using XCalibur 732 

Qual Browser (version 2.0.7; Thermo Fisher Scientific, Inc., Waltham, MA).  733 

 734 

γ-[18O4]-ATP-Pyrophosphat Exchange Assay 735 
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The γ-[18O4]-ATP-Pyrophosphat Exchange Assay was performed as published 736 

previously (Phelan et al., 2009) with the following changes described below. 737 

The 2 µl amino acid solution (3 mM amino acid, 15 mM PPi/Tris), 2 μL γ-[18O4]-ATP 738 

(3 mM γ-[18O4]-ATP, 15 mM MgCl2/Tris) and 2 μL of purified protein (c = 2 mg/ml) were 739 

incubated for 2 h at RT. The reactions were stopped by freezing the sample at -20 °C 740 

and addition of 6 μL 9-aminoacridine in acetone (10 mg/mL) for MALDI-Orbitrap-MS 741 

analysis.  742 

 743 

Multiplexed hydroxamate assay (HAMA) 744 

The hydroxamate formation assay was performed as published previously (Stanišić 745 

et al., 2019). The 100 μL reaction volume containing 50 mM TRIS (pH 7.6), 5 mM 746 

MgCl2, 150 mM hydroxylamine (pH 7.5 - 8, adjusted with HCl), 5 mM ATP, 1 mM TCEP 747 

and 2 µM of purified enzyme were stared by adding 1 mM proteinogenic amino acid 748 

mix (in 100 mM TRIS, pH 8) and incubated for 30 min at RT. The reactions were 749 

stopped by diluting in 10-fold 95 % acetonitrile (ACN) and water containing 0.1 % 750 

formic acid. All measurements were performed by using an Ultimate 3000 RSLC 751 

(Dionex) with an ACQUITY UPLC BEH Amide Column, 130 Å, 1.7 µm, 2.1 mm X 752 

50 mm, 1/pkg coupled to an Impact II qTOF (Bruker) equipped with an ESI Source set 753 

to positive ionization mode. UPLC conditions were performed as published previously 754 

(Stanišić et al., 2019). The software DataAnalysis 4.3 (Bruker) was used to evaluate 755 

the measurements. 756 

 757 

Homology modelling and interface identification 758 
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The homology-modelling was performed with the homology modeling algorithm within 759 

MOE (Molecular Operating Environment). This process undergoes an (I) initial partial 760 

geometry, where all coordinates are copied if residue identity is conserved. Next, a (II) 761 

Boltzmann-weighted randomized sampling, which (IIa) consists of a backbone 762 

fragments collection from a high-resolution structural database, and alternative side 763 

chain conformations assembly from an extensive rotamer library for non-identical 764 

residues and (IIb) a creation of independent number models based upon loop and side 765 

chain placements scored by a contact energy function (Nayeem et al., 2006). 766 

For homology modelling, the C-A didomains within the crystal structure of AB3403 767 

(PDB-ID: 4ZXH), EntF (PDB-ID: 5T3D) and SrfA-C (PDB-ID: 2SVQ) were selected as 768 

homologous-protein-templates.  769 

With the homology models build, HSPred (Lise et al., 2011), a support vector 770 

machine(SVM)-based method, was used to predict the critical interaction partners 771 

across the interface. This approach systematically mutated individual amino acids s 772 

(excluding Pro and Gly) to alanine and calculates the changes in free energy of binding 773 

(ΔΔG). 'Critical Interaction Partners' or 'Hot Spots Residues' are defined as those 774 

residues for which ΔΔG ≥ 2 kcal/mol. The HSPred output score (its exact calculation 775 

can be read here (Lise et al., 2011)) predicts mutated residues with a score greater 776 

than zero as hot spots (ΔΔG ≥ 2 kcal/mol) and negative scores (ΔΔG < 2 kcal/mol) as 777 

non-hot spots. Others are not involved in the interface.  778 
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Peptide quantification  779 

The absolute production titers of selected peptides were calculated with calibration 780 

curves based on pure synthetic 1, (for quantification of 1–4), 5 (for quantification of 5, 781 

9-10, 12-14), 6 (for quantification of 6), 7 (for quantification of 7), 8 (for quantification 782 

of 8), 11 (for quantification of 11), 13 (for quantification of 13). Therefore, the pure 783 

compounds were prepared at different concentrations (100, 50, 25, 12.5, 6.25, 3.125, 784 

1.56, 0.78, 0.39, and 0.195 μg/ml) and measured by LC-MS using HPLC/MS 785 

measurements as described above. The peak area for each compound at different 786 

concentrations was calculated using Compass Data Analysis and used for the 787 

calculation of a standard curve passing through the origin. Triplicates of all in vivo 788 

experiments were measured. The pure peptide standards 1, 5, 6, 7, 8, 11, and 13 were 789 

synthesized in-house (Bozhüyük et al., 2018). 790 

 791 

Chemical synthesis  792 

Chemical synthesis of all peptides was performed as described previously (Bozhüyük 793 

et al., 2018). 794 
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