
D
raft

�

�

�

�

�

�

����������	���
	����	

��
��	�����������	����


����
��	��

�
	�
�������	���
���
��	����������	�������
�����������	����
�

�

�������	� �����������	
�������
��	����
�


������
������ �����������������


������
�������	� ���
����

����� �!"
���#�!���$�����$��	� ������������

%�"������&
����'����$���	� ��(��)$��$#��*� 
��+�,����-��.�
(���
��*�%
(
��/��
����
��������
0��$����*��
�$��#+�,������.�
(���
��1������

�
�����%������*��

2��3��#	�
���������!
�
��*����!�!
�
��
��������
�*���������������
��*�
�����%�����
�
"����
��*����!
�
����$�����

��

�

�

https://mc06.manuscriptcentral.com/cgj-pubs

Canadian Geotechnical Journal



D
raft

MS. cgj�2014�0292R2 final (clean) text only  November 2015 

 

Page 1 of 25 

 

����������	���
	����	

��
��	�����������	����


����
��

	���
	�
�������	���
���
��	����������	�������
�����φφφφ�

��	����

��
�

���
��
�
���	�����
�
 

�

����

������
���
��
��
�

� �

                                                      
1
 PhD candidate 

GeoEngineering Centre at Queen’s�RMC 

Department of Civil Engineering  

Ellis Hall 

Queens University 

Kingston, Ontario, K7L 3N6 CANADA 

 

Phone:  (613) 541�6000 (ext. 6347) 

Email: s.javan.khoshdel@queensu.ca 

 
 
2
 Professor and Research Director  �	

���	����!�
���	
" 

GeoEngineering Centre at Queen’s�RMC 

Department of Civil Engineering, 13 General Crerar, Sawyer Building, Room 

2414, Royal Military College of Canada, Kingston, Ontario, K7K 7B4 CANADA 

 

Phone: (613) 541�6000 (ext. 6479/6347/6391) 

Email: bathurst�r@rmc.ca 

 

Page 1 of 44

https://mc06.manuscriptcentral.com/cgj-pubs

Canadian Geotechnical Journal



D
raft

MS. cgj�2014�0292R2 final (clean) text only  November 2015 

 

Page 2 of 25 

 

#��$�#%$�

The paper focuses on the calculation of probability of failure of simple unreinforced slopes and 

the influence of the magnitude of cross�correlation between soil parameters on numerical 

outcomes. A general closed�form solution for cohesive slopes with cross�correlation between 

cohesion and unit weight was investigated and results compared with cases without cross�

correlation.  Negative cross�correlations between cohesion and friction angle and positive cross�

correlations between cohesion and unit weight, and friction angle and unit weight were 

considered in the current study. The factors of safety and probabilities of failure for the slopes 

with uncorrelated soil properties were obtained using probabilistic slope stability design charts 

previously reported by the writers. Results for cohesive soil slopes and positive cross�correlation 

between cohesion and unit weight are shown to decrease probability of failure. Probability of 

failure also decreased for increasing negative cross�correlation between cohesion and friction 

angle, and increasing positive correlation between cohesion and unit weight, and friction angle 

and unit weight. Probabilistic slope stability design charts presented by the writers in an earlier 

publication are extended to include c�φ soil slopes with and without cross�correlation between 

soil input parameters. An important outcome of the work presented here is that cross�correlation 

between random values of soil properties can reduce the probability of failure for simple slope 

cases. Hence, previous probabilistic design charts by the writers for simple soil slopes with 

uncorrelated soil properties are conservative (safe) for design. This study also provides one 

explanation why slope stability analyses using uncorrelated soil properties can predict 

unreasonably high probabilities of failure when conventional estimates of factor of safety suggest 

a stable slope.   

�

&���	
��'�Slope stability; Probabilistic analysis; cross�correlation; Monte Carlo simulation  

�

�($�)*+%$�)(�

 

Slope stability charts are used routinely to estimate the conventional factor of safety of 

unreinforced slopes with isotropic, homogeneous soil properties and simple geometry. Design 

charts by $
��	
� �,-.", /���
�	����� �00�", �
��
� �00-" and ����

�����
��� �0��" are just 

a few examples to calculate the factor of safety for cohesive (c) and cohesive�frictional (c−φ) soil 
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slopes. These design charts are based on the deterministic kinematic approach of limit analyses 

or deterministic limit equilibrium methods of analysis. An important limitation of deterministic 

methods for conventional slope stability analyses is that nominal similar slopes may have the 

same factor of safety but different probabilities of failure. This is attributed to random and spatial 

variability of slope soil properties.  

�

�
�
���	������
����
���
���  �0�1" presented a closed�form solution to calculate probability 

of failure for cohesive soil slopes (c = su > 0, φ = φu = 0). The probability of failure is calculated 

directly using the mean value of the factor of safety and coefficient of variation (COV) of soil 

cohesion and unit weight (γ). A similar equation for the case of random variability in cohesive 

soil strength only has been published by 2
��������
���3���	�� �001".   

 

�
�
���	������ 
��� �
���
���  �0�1" also produced a series of slope stability charts for c−φ 

soils that have the advantage that they do not require an iterative approach to calculate the factor 

of safety, and they include in the same chart an estimate of the probability of failure using the 

random variability of soil properties expressed by the coefficient of variation (COV) as inputs. 

The ranges of COV values in these charts are 0.1 < COVc < 0.5, 0.1 < COVφ < 0.2 and COVγ < 

0.1 for soil cohesion, friction angle and unit weight, respectively. Recall that coefficient of 

variation (COV) is the ratio of standard deviation to mean value. 

 

In the related prior work for cohesive and c−φ soil cases by the writers, the implications of 

possible correlations between input parameters on probability of failure outcomes were 

recognized and some quantitative examples provided.  

 

Possible correlations between random values of shear strength parameters that can influence 

probability of failure estimates for slopes have been noted by (!�����
���%�	����
�� �,45). 

These correlations are quantified by the cross�correlation coefficient (ρ). Negative correlations 

between c and φ have been reported from laboratory measurements (6�����,.07�8����������


����,.-7�%��
�������,,.9��0007�3	

����
���)

��0�07�:
�
����
����0��). A negative cross�

correlation coefficient is computed when the cohesive soil strength component (c) decreases with 

increasing friction angle (φ). The uncertainty (or spread) in estimates of soil shear strength is 
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smaller when there is a negative correlation between random values of c and φ compared to the 

case of uncorrelated random values. 6�� �0�1"9 2
�����������
��� �00," and #��
���
��;
�������


��� �0�5" investigated the effect of positive cross�correlation between c and φ in soil slopes with 

spatial variability using the random finite element method (RFEM) method.  

 

There is little data available to quantify correlations between c and unit weight (γ), and between 

φ and γ (/
���	�
���&�
	�
��,.17�<

��
����
����004). A positive correlation coefficient for 

these random variables is most often assumed in the literature (%�	����
��
���=���,,-7�6	��


���$
�!��,,.7 ���
���

��
���
����
��
��
�
��00.). 

 

In the current study the influence of cross�correlation of random soil parameters on probability of 

failure of simple slopes is examined in more depth. For the case of cohesive soil slopes, the 

influence of positive cross�correlation between cohesion and unit weight is investigated using a 

closed�form solution and also numerically using Monte Carlo simulation. For the case of c−φ 

soils, the effect of negative cross�correlation between strength parameters (c and φ) and negative 

and positive correlation between c and γ, φ and γ , respectively,  are also investigated using 

Monte Carlo simulation. New probabilistic slope stability design charts for c�φ soils similar to 

the charts published by �
�
���	������
����
���
���  �0�1" are presented. These new charts 

allow the user to calculate factor of safety and probability of failure with and without considering 

negative cross�correlation between c and φ and positive cross�correlation between c and γ , and φ 

and γ. 

 

The results of analyses presented in this study and the companion paper by �
�
���	������
���

�
���
��� �0�1" are restricted to the case of random variability of soil parameters. The influence 

of spatial variability of soil parameters is not considered. The analyses results in the earlier and 

current study apply to idealized simple slope geometries and soil conditions. Hence, the real 

world influence of pore water pressure, soil stratigraphy and the like are not considered. This 

was done purposely to focus attention on the influence of statistical characteristics of random soil 

properties on probability of failure.  
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The next section provides a summary explanation of how cross�correlations between random 

variables can be formulated for use in Monte Carlo simulations.  

�

%�)���%)��>6#$�)(��>$?>>(��(<+$�<#�#/>$>���
 

2���

���
 

The Monte Carlo simulation technique can be used to generate the probability distribution of a 

function of multiple random variables from the probability distributions of the contributing 

random variables. A random variable X can be computed as: 

 

X = σZ + K                  [1] 

 

Here, Z is the standard variable (mean 	 = 0 and standard deviation σ = 1) corresponding to the 

variable X.  The normal probability distribution of each random variable is considered to be 

known. Values of Z can be calculated using the standard normal distribution function 

Φ (ΝΟRMSDIST) in Excel. 

��

%	�

�
�����
�
�@�
 

In general, a multivariate Gaussian (normal) distribution of n random variables, denoted by X = 

(X1, X2,…, Xn), has a symmetrical n x n covariance matrix given by: 

 

n11 12 1

21 22 2n
ij

nnn1 n2

cvar cvar ... cvar

cvar cvar ... cvar
Λ = [cvar ] = 

... ... ...

cvar cvar ... cvar

 
 
 
 
 
  

  [2] 

 

where the element cvarij is the covariance of random variables Xi and Xj expressed as:  
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ij i j
cvar = COVARIANCE(X , X )  [3] 

 

The terms on the main diagonal are the squares of the standard deviation (variance). If all 

random variables are uncorrelated, then all terms except those on the main diagonal are zero. 

 

Based on probability theory, if two normal random variables Xi and Xj are correlated, then the 

cross�correlation coefficient (ρ) between Xi and Xj expressed as 
i jX , Xρ can be calculated as:  

 

i j

i j

i j

X ,X

X ,X
X X

cvar
ρ = ρ  = 

σ σ � [4] 

�

Here, 
iXσ and 

jXσ are the standard deviation of the random variables Xi and Xj, respectively. 

Therefore the covariance matrix can be rewritten as: 

 

2
n1 1,2 1 2 1,n 1

2
n2,1 2 1 2 2,n 2

ij

2
n n nn,1 1 n,2 2

σ ρ σ σ ρ σ σ

ρ σ σ σ ρ σ σ
Λ = [σ ] = 

ρ σ σ ρ σ σ σ

 
 
 
 
 
 
  

�

�

� � �

�

                                          

[5] 

   

In this study the covariance matrix with 3 x 3 elements was used matching the case for three 

random variables. Each pair of variables is cross�correlated with ρ denoted as 

 

ρ1: Cross�correlation between cohesion and friction angle 

ρ2: Cross�correlation between cohesion and unit weight 

ρ3: Cross�correlation between friction angle and unit weight 
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The covariance matrix can now be defined as: 

�

2
c c c γ1 2

2
c γ1 3

2
γ c γ γ2 3

σ ρ σ σ ρ σ σ

Λ = ρ σ σ σ ρ σ σ

ρ σ σ ρ σ σ σ

φ

φ φ φ

φ

 
 
 
 
 
  

� [6]�

 

Using this covariance matrix and mathematical developments reported by (!����� 
���

%�	����
�� �,45", three correlated random variables can be computed as follows: 

 

c c1
c = σ Z + K  [7] 

 

2
1 1 1 2 = ρ σ Z + σ 1 ρ Z +  Kφ φ φφ −  [8] 

 

2
γ 3 1 2 2 3 1 2

γ γ γ2 1 2 2 322
11

σ (ρ ρ ρ ) (ρ ρ ρ )
γ = ρ σ Z + Z + σ 1 ρ + Z + K

1 ρ1 ρ

− −
−

−−  [9] 

 

Here, σc, σφand γσ are the standard deviations of the three random variables, and Z1, Z2 and Z3 

are the corresponding standard variables.  

 

The above development is based on normal distribution of input parameters. In this study all 

input parameters are assumed to be lognormal distributed. Therefore, to use the above equations, 

random variables and cross�correlation coefficients must be transformed from lognormal to 

normal values. Transformation equations (e.g. for φ) are as follows: 
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2
ln ln 

1
K  = ln(K )  σ

2φφ φ−  [10] 

 

2 2
lnσ  = ln(1 + COV )φφ  [11] 

 

The cross�correlation coefficient for c and φ is as follows: 

 

1

2 2

c

1

c

ln(1+ρ COV COV )
ρ (ln , lnc)=

ln(1+COV )ln(1+COV )

φ

φ

φ
                                                       

[12] 

 

Here, ln σ φ and ln K  φ  are standard deviation and the mean value of the lognormal values of φ. 

Quantities COV  φ and K  φ are coefficient of variation and the mean value of φ, and cCOV  is the 

coefficient of variation of c. Quantity 1ρ (ln , lnc)φ  is the cross�correlation coefficient for 

lognormal values of c and φ, and 1
ρ is the cross�correlation coefficient for c and φ introduced 

earlier.  

 

Analytical developments presented here are simplified for the case of cohesive soil slopes where 

only random variables su and γ can be correlated. Here, c is replaced by su denoting undrained 

soil shear strength. For this case, ρ1 = ρ3 = 0 and the covariance matrix is 2 x 2 as follows: 

 

 

2

su 2 su γ

2

2 γ su γ

σ ρ σ σ

ρ σ σ σ
Λ =

 
 
  

  [13] 

 

Random variables su and γ are now expressed by the following equations: 

 

u su su1
s  = σ Z + K                                                                                                               [14] 
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2
γ γ γ1 3

γ = ρσ Z + σ 1 ρ Z + K−                                                                                   [15] 

 

where ρ = ρ2 is used to simplify presentation.  

 

Previous researchers have assumed values of cross�correlation coefficient (ρ1) between c and φ of 

�0.7 and �0.2, and (ρ2) between c and γ and (ρ3) between φ and γ of 0.2 and 0.7 (?���0�-7�

���
���

��
���
����
��
��
�
��00.).� �As mentioned in the introduction, there is little data 

available to confirm that these ranges of cross�correlation coefficient for c and γ, and φ and γ are 

reasonable. However, in the current investigation similar ranges of ρ were used in order to 

identify trends in analysis outcomes. 

 

%���!� 
��� <�		��  �0��" used the same procedure to create a multivariate probability 

distribution function for five correlated soil parameters for cohesive soil slopes and showed that 

there is a cross�correlation of about 0.7 between undrained cohesion and effective stress which is 

comparable to the upper�bound value of ρ2 reported in the literature. 

�

%)+<6>*����:)<A��%��%+6#���6�<�#(#68����#(*�/)($>�%#�6)�

��/+6#$�)(�
 

In each Monte Carlo realization, three different random numbers between 0 and 1 are generated. 

Next, standard normal variables (Z1, Z2 and Z3) are calculated based on the standard deviation 

and mean value of the random variables. Then, random variables for c, φ and γ are computed 

using >B�
��	���.�,. For each set of random input parameters the factor of safety is calculated 

for all slip surfaces using the Simplified Bishop’s circular slip analysis method and the minimum 

factor of safety recorded for that set of random variables. Finally, the probability of failure from 

all Monte Carlo simulations is computed as the number of factors of safety less than one divided 

by the total number of Monte Carlo simulations. This procedure was implemented in a Visual 

Basic code that coupled the Monte Carlo simulation with the Simplified Bishop’s circular slip 
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method. In this study, 10000 and 5000 Monte Carlo simulations were used for models with three 

and two random variables, respectively. 

 

 

#(#68$�%#6�/>$:)*�3)��%):>��C>��)�6��6)<>��
 

 

The probabilistic slope stability design chart developed for purely cohesive soil cases by 

�
�
���	������
����
���
��� �0�1" uses the factor of safety (Fs) computed from Taylor’s chart 

as the independent (input) parameter. The factor of safety is calculated as: 

 

u
s

s

s
F  = 

γHN                                                                       [16] 

 

where su is undrained shear strength, γ is total unit weight, H is the height of slope and Ns is a 

stability number which is a function of slope angle (α) and depth factor (D) where DH is the 

depth from slope crest to a firm stratum (3�!�
���). Height H and slope angle α are considered to 

be deterministic.  

 

From probability theory, probability of failure (Fs < 1) for the case of lognormal input parameters 

can be expressed as: 

 

[ ] lnFs
f s

lnFs

K
P  = p F  < 1  = Φ

σ

 −
 
 

                                      [17] 

 

where, Φ is the cumulative standard normal distribution function, and 	lnFs and σlnFs are the mean 

and standard deviation of the normally distributed random variable lnFs. In this development, the 

factor of safety Fs is defined by >B�
��	�� �D. If su and γ in >B�
��	�� �D are correlated and 

lognormal distributed random variables with mean values of 	su and 	γ, respectively, and Ns and 
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H are constant values, then the mean value and standard deviation of logarithmic values of Fs can 

be calculated using general formulations published by #�!�
���$
�!� �,41", hence: 

 

lnFs lnsu lnγ sK  =  K K ln(HN )− − �                                                                               [18] 

 

2 2 2

lnFs lnsu lnγ ucvar(lns , lnγ)σ  = σ  + σ  2−                                                        [19] 

 

Here, 	lnsu and 	lnγ are mean values of lnsu and lnγ, respectively, σlnsu and σlnγ are their 

corresponding standard deviations, and u(lns , lnγ)cvar  is covariance between lnsu and lnγ. These 

parameters can be calculated as follows using the transformations introduced earlier: 

 

2 2

lnsu suσ  = ln (1 + COV )                                                        [20] 

 

2

lnsu su lnsu

1
K  = ln(K ) σ

2
−  

                                               [21] 

  

2 2

lnγ γσ  = ln(1 + COV )                                                   [22] 

 

2

lnγ γ lnγ

1
K  = ln(K ) σ

2
−  

                                                  [23] 

 

cvar(lns ,lnγ) = ρ(lns ,lnγ) σ σ
u u lnsu lnγ                  [24]                           

                                                                                               

Parameters COVsu and COVγ are coefficients of variation of variable su and γ, respectively. 

Parameter uρ(lns ,lnγ)  is the cross�correlation coefficient between lnsu and lnγ and is defined as: 
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ln(1+ ρCOV COV )
su γ

ρ(lns , lnγ)=
u σ σ

lnsu lnγ
                                                 [25] 

Here, ρ in the numerator is the cross�correlation coefficient between su and γ. Algebraic 

manipulation leads to the following expanded general expression for >B�
��	���: 

 

s
2 2 2

su γ su γ

21 + COV
suln / Fs
21 + COV
γ

P  = p[F  < 1] = Φ
f ln((1 + COV )(1 + COV )/(1+ρCOV COV ) )

  
  
  
  

  
 
 
 
 
 

  [26] 

 

Parameter F�� is the mean factor of safety computed using mean values of su and γ as follows: 

 

s

s

K
suF =

K HN
γ

                                                       [27] 

 

>B�
��	�� �D with ρ = 0 was used by �
�
���	������ 
��� �
���
���  �0�1" to generate the 

design chart in 3�!�
��� for cohesive soil slopes using the NORMSDIST function for Φ in Excel. 

 

The solid curves plotted in 3�!�
��� show results of calculations using >B�
��	���D with ρ = 0, 

for a range of coefficient of variation for Fs that captures the spread in both su and γ values. The 

mean factor of safety is computed using >B�
��	���. with Ns taken from Taylor’s Chart (3�!�
��

�). The quantity COVFs is computed using:  
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2 2

Fs su γCOV  = COV  + COV
                          [28] 

 

The range for the coefficient of variation for su is COVsu = 0.1 to 0.5 and for γ is COVγ ≤ 0.1. 

Hence, curves falling within the shaded area in 3�!�
��� are of practical interest (i.e. between 

COVFs = 0.1 and 0.5). 

 

>=#/<6>��>�+6$��
 

%	��������	�����	����
 

3�!�
��-
 shows the influence of cross�correlation between random values of soil cohesion (su) 

and unit weight (γ) on probability of failure (Pf). The values of the probability of failure for the 

same mean values of factor of safety and values of ρ = ρ2 = −0.7, 0, 0.7 are shown with three 

combinations of COVsu = 0.1, 0.5 and 4, and constant COVγ = 0.1. For COVsu = 0.1 and COVsu = 

0.5, negative ρ values increase probability of failure compared to the case with ρ = 0, while 

positive ρ values decrease probability of failure. However, for COVsu = 4, negative ρ values 

decrease probability of failure and positive ρ values increase probability of failure. This reversal 

occurs when COVsu = 1 in >B�
��	���D. It should be noted that the case of negative correlation 

between su and γ is of academic interest, but plotting these cases helps to identify trends in the 

figure plots. 

 

In 3�!�
��-
, the difference between probabilities of failure for different values of ρ is greater for 

lower values of COVsu. For example, for Fs = 1.3 and COVsu = 0.1, Pf = 0.04%, 3.5% and 8% for 

ρ = 0.7, 0 and −0.7 respectively, while for the same Fs = 1.3 but for COVsu = 0.5, Pf = 35%, 37% 

and 39% for ρ = 0.7, 0 and −0.7 respectively. The reason is, for lower values of COVsu, the 

magnitudes of COVsu and COVγ are similar and the effect of cross�correlation between cohesion 

and unit weight on probability of failure is greater. However, for COVsu = 4, COVγ is negligible 

compared to COVsu and the effect of cross�correlation between cohesion and unit weight on 

probability of failure is less. The trends described here are also apparent when the reliability 

index 
1

f(P )β Φ−−−−= −= −= −= − is used to quantify the margin of safety as shown in 3�!�
��-�. Reliability 
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index rather than probability of failure is the preferred choice of parameter in reliability theory�

based design codes. 

 

The maximum possible range of the cross�correlation coefficient is −1 < ρ < 1. 3�!�
���1
 and 

1� show the influence of changing cross�correlation coefficient from −0.7 to 0.7 on probability 

of failure for different mean values of factor of safety using >B�
��	�� �D. The upper bound 

value of ρ is close to the maximum value used by ���
���

��
���
����
�����
�
� �00." who 

examined the influence of cross�correlation between the same parameters but for the case of 

bearing capacity of shallow foundations. In 3�!�
��1
, combinations of COVsu = 0.5 and COVγ 

= 0.1, and in 3�!�
��1�, COVsu = 0.2 and COVγ = 0.1 are presented. In these figures for Fs > 1, 

probability of failure decreases with increasing ρ, while for Fs < 1, probability of failure 

increases with increasing ρ. This influence results from the location of the mean values of input 

parameters relative to the limit state function as explained by 2
�����������
��� �00,). In the case 

of Pf < 0.5 (mean values of Fs are on the safe side of the limit state function Fs > 1), increasing ρ 

decreases probability of failure and for Pf > 0.5 (when the mean values of Fs are on the unsafe 

side of the limit state function Fs < 1) increasing ρ increases the probability of failure. The 

explanation for this trend is related to the negative and positive sign of β when Pf > 0.5 and Pf < 

0.5 respectively, and the influence ρ on the magnitude of β�� 

 

In 3�!�
��1�, probability of failure is less than 3�!�
��1
 for the same value of Fs and ρ because 

of the lower value of COVsu = 0.2 in� 3�!�
�� 1� compared to COVsu = 0.5 in� 3�!�
�� 1
. 

Superimposed on these figures are the� results of numerical probabilistic slope stability analysis 

using a Visual Basic code written by the writers to implement the coupled Simplified Bishop’s 

circular slip analysis and Monte Carlo simulation method described earlier. The closed�form 

solutions and numerical results are judged to be in good agreement. This gives confidence that 

the numerical code used later in the paper for c�φ soil cases is correct based on comparison with 

available analytical solutions which exist only for cohesive soil slope cases with simple 

geometry.  
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3�!�
���1
 and 1��illustrate that the difference between the probabilities of failure for different 

values of ρ for the same value of Fs is greater in 3�!�
��1� (COVsu = 0.2). This result is clearer in 

3�!�
���5
�and�5��where the ratio of probability of failure for −0.7 < ρ < 0.7 to the probability of 

failure corresponding to ρ = 0 is plotted for COVsu = 0.5 and COVsu = 0.2, respectively. The 

probability of failure corresponding to ρ = 0 is taken from 3�!�
��� with COVγ = 0.1. It can be 

seen that the difference between normalized probabilities of failure for the same value of Fs and 

for different values of ρ in 3�!�
��5
 is lower than the same case in 3�!�
��5�. For example, in 

3�!�
��5
 for Fs = 2, the highest value of Pf /Pf (ρ = 0) is 1.28 and the lowest is 0.66, while in 

3�!�
��5� for the same value of Fs, the highest value of Pf/ Pf (ρ = 0) is 6.7 and the lowest is 

about zero. 

 

The shaded region in 3�!�
�� � corresponds to the practical range of COVsu and COVγ as 

mentioned in the previous section. For cases where there is a correlation between undrained 

cohesive soil strength (su) and soil unit weight, it is expected that this correlation is positive (i.e. 

ρ > 0) (%�	����
��
���=���,,�7����
���

��
���
����
��
��
�
��00.). 3�!�
��D
 shows 

two sets of curves. The curves with symbols correspond to probability of failure versus factor of 

safety for lognormal distributed uncorrelated random values of cohesion and unit weight (3�!�
��

� with COVγ = 0.1). The nearest lower dashed curve corresponds to the same distribution of 

random lognormal cohesion and unit weight values but with cross�correlation coefficient ρ = 0.7. 

As before, probability of failure decreases for increasing positive cross�correlation coefficients 

and Fs > 1, and the influence of positive cross�correlation on probability of failure is greater for 

lower values of COVsu. The results of the same analyses are presented in 3�!�
�� D� using 

reliability index (β). 

 

(���
��
���	����	��	����φφφφ��	�����	����

 

3�!�
�� . shows the model used to investigate the influence of cross�correlation between soil 

parameters on probability of failure for simple soil slopes with c�φ soil strength properties. Mean 

values of soil properties shown in 3�!�
��. were kept the same in numerical calculations. The 

only deterministic parameter that was changed was the slope angle (α). Probability of failure was 

calculated for four different values of (mean) factor of safety and for different combinations of 
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cross�correlation coefficient for pairs of soil parameters. Factor of safety (Fs) and probability of 

failure (Pf) were calculated using the coupled Simplified Bishop’s analysis method and Monte 

Carlo simulation described earlier.  

 

In these examples, the input parameters (c, φ and γ) were assigned values of coefficient of 

variation which are estimated upper limits, i.e. COVc = 0.5, COVφ = 0.2 and COVγ = 0.1 (<�		��


���&���
����,,,).  

 

3�!�
�� 4 shows the influence of cross�correlation between cohesion and friction angle. The 

values of probability of failure for the same mean values of factor of safety and values of ρ1 = 

−0.5, 0, 0.5 are presented in this figure. The choice of �0.5 and 0.5 was made because these 

values fall in the middle of the range of values reported by ���
���

��
���
����
��
��
�
�

 �00.". For Fs > 1, the curve with a negative cross�correlation coefficient value has the lowest 

probability of failure and the curve with positive cross�correlation has the highest probability of 

failure. For example, for Fs = 1.21 the curve with positive cross�correlation between c and φ 

gives Pf = 30% and the case with negative cross�correlation corresponds to Pf = 14.5%. However, 

for Fs < 1, the trend is reversed. This is due to changes in the area under the distribution curve of 

the mean factor of safety when the mean value of the factor of safety is located on the right� or 

left�hand side of Fs = 1. 2
�����������
��� �00,"�also noted that increasing the correlation between 

c and φ will always increase Pf if Pf < 0.5 and increasing the correlation between c and φ will 

always decrease Pf if Pf > 0.5. A detailed explanation can also be found in the paper by 

�
�
���	������
����
���
��� �0�1". #��
���
��;
�������
��� �0�5" showed the same effect for 

Pf < 0.5 and a range of spatial correlation length using the random finite element method 

(RFEM). 

 

For the case of a negative cross�correlation between c and φ (which is most likely based on the 

literature), the probability of failure is lower. These results are qualitatively the same as those 

presented by �
�
���	������ 
��� �
���
���  �0�1" who used the commercially available 

program SVSlope (3
������� 
��� $�	��� �0��) to investigate the effect of negative cross�

correlation between soil strength parameters on probability of failure (see dashed curve in 

3�!�
��4). The results of positive cross�correlation between c and φ, presented in 3�!�
��4 are 
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consistent with 6�� �0�1" who noted that if c and φ are perfectly positive cross�correlated, the 

probability of failure increases compared to the case where there is no cross�correlation; this was 

attributed to dominant occurrences of local failure mechanisms over global failure mechanisms. 

However, at the time of this study program SVSlope is restricted to cases with cross�correlation 

between soil cohesion and friction angle only. To investigate the influence of cross�correlation 

between c and γ and φ and γ, the numerical code developed by the writers was used. 

 

3�!�
�� , presents the effect of different combinations of the values of ρ1, ρ2 and ρ3 on 

probability of failure for the same mean values of the factor of safety for the c�φ slope in 3�!�
��

.. The dashed line corresponds to cases with uncorrelated input parameters. For simplicity, ρ2 = 

ρ3 (cross�correlation between c and γ, and φ and γ are the same). Positive cross�correlations 

between c and γ and between φ and γ have been reported in the literature as mentioned in the 

introduction. However, negative values of ρ2 = ρ3 and positive values of ρ1 were also 

investigated in this study to identify trends. It can be seen in this figure that values of ρ1 = −0.5 

and ρ2 = ρ3 = 0.5 gave the lowest probability of failure, while cases with other values of cross�

correlation (e.g. ρ1 = 0.5 and ρ2 = ρ3 = −0.5) resulted in higher probability of failure. For 

example, for the value of Fs = 1.21, the case with ρ1 = −0.5 and ρ2 = ρ3 = 0.5 corresponds to Pf = 

9%, while the case with ρ1 = 0.5 and ρ2 = ρ3 = −0.5 gives Pf = 31%.  Therefore, for the more 

reasonable case of negative cross�correlation between c and φ and positive cross�correlation 

between the other pairs of soil parameters, the lowest probability of failure was computed for all 

Fs > 1.  

 

In 3�!�
��,, excluding the curves with the highest and lowest probability of failure, the curve 

with ρ1 = ρ2 = ρ3 = −0.5 has the lowest probability of failure (e.g. for Fs = 1.21, Pf = 19 %) 

compared to the case with no correlation (e.g. for Fs = 1.21, Pf = 25%) and the case with ρ1 = ρ2 

= ρ3 = +0.5 (e.g. for Fs = 1.21, Pf = 29%). This implies that the cross�correlation between c and φ 

controls the value of the probability of failure provided that COVc and COVφ are higher than 

COVγ. For this case, ρ1 has greater influence on the probability of failure. 

 

Page 17 of 44

https://mc06.manuscriptcentral.com/cgj-pubs

Canadian Geotechnical Journal



D
raft

MS. cgj�2014�0292R2 final (clean) text only  November 2015 

 

Page 18 of 25 

 

3�!�
�� , considers only the example slope case in 3�!�
�� . and therefore is not general. 

Furthermore, ρ1 = �0.5, ρ2 = ρ3 = 0.5 are not the highest absolute values reported in literature. 

3�!�
����0�through �5 are simplified probabilistic stability design charts for the general case of 

cohesive�frictional (c�φ) soils with Kφ = 20, 25, 30, 35, 40 and 45 degrees and values of the cross�

correlation coefficient equal to ρ1 = �0.7, ρ2 = ρ3 = 0.7. These cross�correlation values are the 

maximum values reported in the literature and thus give the lowest value of the probability of 

failure. They are very close to the values used by ���
���

��
��� 
��� �
��
��
�
�  �00."�� 

They are used in these new charts to show the maximum difference between probabilities of 

failure with and without cross�correlation between input parameters.  

 

3�!�
����0�through��5 are similar to probabilistic slope stability design charts for c�φ soil slopes 

published by �
����	������
����
���
��� �0�1) which assumed no cross�correlation between 

soil parameters. These new charts complement the series of previous charts by the writers by 

including the influence of maximum cross�correlation between parameters. The calculation of Fs 

remains unchanged from the previous charts by the writers.  

 

The solid contour lines in 3�!�
����0 through �5�correspond to probability of failure for upper�

bound values of spread in soil input values assumed as COVc = 0.5, COVφ = 0.2 and COVγ = 0.1 

and uncorrelated soil property values. These curves are very similar to the previous charts by the 

writers with the exception that in the earlier charts COVγ = 0. The difference in numerical 

outcomes is negligible for the uncorrelated parameter cases. Superimposed on these plots are the 

red dashed contour lines that correspond to the probability of failure for upper�bound values of 

COVc and COVφ and COVγ with negative cross�correlation between c and φ, and a positive 

cross�correlation between c and γ, and φ and γ (ρ1 = �0.7, ρ2 = ρ3 = 0.7). 

 

The advantage of 3�!�
��� �0� through� �5 over the earlier charts by the writers is that the 

influence of uncorrelated and highly correlated soil strength parameters on the probability of 

failure for simple slopes with the same mean value of the factor of safety is easily detectable.  

Probability of failure for other combinations of cross�correlation coefficients will fall between 

the two limiting (upper�bound and lower�bound) cases in these charts. 
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The influence of the magnitude of cross�correlation between lognormal distributed random 

values of undrained shear strength (su) and bulk unit weight (γ) on probability of failure was 

investigated in this paper for the case of simple unreinforced slopes. The closed�form solution 

reported by �
�
���	������ 
��� �
���
���  �0�1"� and 2
�������� 
��� 3���	��  �001"� was 

extended to include the cross�correlation coefficient (ρ) between undrained cohesive strength 

and unit weight.  A numerical code for the solution of the coupled Simplified Bishop’s circular 

slip method and Monte Carlo simulation was used to examine the influence of cross�correlation 

between lognormal distributed random values of c, φ and γ. The same code was used to verify 

the accuracy of the closed�form solution for the case of cohesive soil slopes. 

 

The main conclusions and contribution of this paper to probabilistic analysis of simple slopes are 

summarized below: 

 

1.�The magnitude of probability of failure is of most interest for cases when the traditional factor 

of safety is positive but close to one. For these cases the assumption of uncorrelated random 

variables of undrained cohesive strength (su) and (γ) for cohesive slopes leads to higher 

probability of failure than may be intuitively expected based on magnitude of factor of safety. 

For example, for the case of uncorrelated values with COVγ = COVsu = 0.1 and Fs = 1.3, the 

probability of failure is Pf = 3.5% (3�!�
�� �) which is counter intuitive (i.e. too high). 

However, for the same conditions and cross�correlated random values giving ρ = +0.7, the 

result is Pf = 0.04% (1/2500) which is judged to be more reasonable. Hence, an important 

conclusion from this work is that positive correlation between su and γ is a possible 

explanation for the apparent discrepancy in expected margins of safety using conventional 

deterministic slope stability methods with low but safe values of Fs, and margins of safety 

expressed probabilistically. 

 

2.� �
�
���	������
����
���
��� �0�1"�created a series of probabilistic design charts for simple 

slopes with uncorrelated random values of c, φ and γ. Cross�correlation between random 

variables can be quantified by the cross�correlation coefficient ρ and this coefficient 
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introduced into numerical codes. An important contribution of this paper is the formulations 

that are necessary to compute cross�correlated random values of c, φ and γ that have 

lognormal distributions. These equations are expressed with conventional statistical quantities 

of mean and coefficient of variation (COV) and can be used directly in coupled slope stability 

analysis and Monte Carlo simulations. Using the methodology presented in the paper, six 

different probabilistic slope stability design charts for six different values of friction angle 

similar to the charts published by �
�
���	������ 
��� �
���
���  �0�1" are presented. 

However, these new charts complement the earlier series of charts by considering the 

influence of upper�bound values of COVc, COVφ and COVγ representing the spread in 

random variability of soil input parameters plus the influence of maximum likely cross�

correlation between soil parameters.  

 

3.�The paper demonstrates that for cases where large probabilities of failure are computed using 

uncorrelated random input values, the decrease or increase in probability of failure is not of 

practical concern (i.e. Pf values are very high). However, the paper demonstrates scenarios 

where Pf using uncorrelated random values gives an unsatisfactory (high) probability of 

failure but introduction of practical values of cross�correlation between input values leads to a 

lower Pf value which is safer (i.e. for Pf < 0.5 and negative cross�correlation between c and φ, 

and a positive cross�correlation between c and γ, and φ and γ).  

 

4.�A practical outcome from this study is that the original simplified probabilistic slope stability 

charts by the writers for cohesive and cohesive�frictional cases based on uncorrelated soil 

properties (�
�
���	������
����
���
����0�1) are conservative (safe) for design. 

 

There are important limitations to the results presented in this paper. As noted in the 

introduction, spatial variability of soil properties is not considered.  A preliminary quantitative 

appreciation of the influence of spatial variability on computed probability of failure for simple 

slopes with uncorrelated soil parameters has been explored in the companion paper by the writers 

(�
�
���	������
����
���
����0�1). Finally, it should be noted that the range in magnitude of 

cross�correlation parameters used in analyses has been based on maximum values reported in the 

literature. However, there is a lack of physical data to justify the range. Nevertheless, using a 
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wide range of cross�correlation coefficients proved useful to identify trends in analysis 

outcomes. 

�

�
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LIST OF FIGURES 

3�!�
���� Taylor’s slope stability chart for cohesive soils ($
��	
��,-.). 

�

3�!�
���� Probability of failure (Pf) versus (deterministic) mean factor of safety (F��) for cohesive 

soil slopes with lognormal distribution of uncorrelated undrained shear strength (su) and unit 

weight (γ). Note: Shaded region is the practical range. Dashed lines are for cases with COVγ = 0 

(from �
�
���	������
����
���
����0�1). 

�

3�!�
��-� a) probability of failure (Pf) and b) reliability index (β) versus (deterministic) mean 

factor of safety (F��) for cohesive soil slopes with lognormal distribution of correlated undrained 

shear strength (su) and unit weight (γ), a range of cross�correlation coefficient (ρ), COVsu = 0.1, 

0.5 and 4, and COVγ = 0.1. 

�

3�!�
��1� Effect of cross�correlation coefficient (ρ) on probability of failure for different mean 

values of factor of safety and a) COVsu = 0.5 and b) COVsu = 0.2 using closed�form solution 

(solid lines) and numerical results using Monte Carlo simulation (dashed lines). Note: COVγ = 

0.1. 

 

3�!�
��5� Effect of cross�correlation coefficient (ρ) on normalized probability of failure for 

different mean values of factor of safety with COVγ = 0.1 and a) COVsu = 0.5 and b) COVsu = 

0.2. 

 

3�!�
��D.  a) Probability of failure (Pf) and b) reliability index (β) versus (deterministic) mean 

factor of safety (F��) for cohesive soil slopes with lognormal distribution of undrained shear 

strength (su) and unit weight (γ) and a range of COVsu. Note: Lines with symbols correspond to ρ 

= 0. Each nearest dashed line is the matching curve with ρ = 0.7. 

 

3�!�
�� .. Example slope model geometry and mean soil property values for c�φ soil slope 

example. 
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3�!�
��4. Influence of cross�correlation between c and φ on probability of failure of the slope in 

Figure 7 with mean values of c, φ and γ shown in the figure. 

�

3�!�
��,. Effect of different combinations of ρ1, ρ2 and ρ3 on the probability of failure in c�φ 

slopes. Parameter ρ1 is the cross�correlation coefficient between c and φ, ρ2 is the cross�

correlation coefficient between c and γ and ρ3 is the cross�correlation coefficient between φ and 

γ. 

 

3�!�
���0. Probabilistic slope stability design chart for Kφ = 20 degrees and COVc = 0.5, COVφ = 0.2 and 

COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = �0.7, ρ2 = ρ3 = 0.7.  
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����. Probabilistic slope stability design chart for Kφ = 25 degrees and COVc = 0.5, COVφ = 0.2 and 

COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = �0.7, ρ2 = ρ3 = 0.7. 
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����. Probabilistic slope stability design chart for Kφ = 30 degrees and COVc = 0.5, COVφ = 0.2 and  

COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = �0.7, ρ2 = ρ3 = 0.7. 
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���-. Probabilistic slope stability design chart for Kφ = 35 degrees and COVc = 0.5, COVφ = 0.2 and 

COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = �0.7, ρ2 = ρ3 = 0.7.  
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���1. Probabilistic slope stability design chart for Kφ = 40 degrees and COVc = 0.5, COVφ = 0.2 and 

COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = �0.7, ρ2 = ρ3 = 0.7. 
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3�!�
���5. Probabilistic slope stability design chart for Kφ = 45 degrees and COVc = 0.5, COVφ = 0.2 and 

COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = �0.7, ρ2 = ρ3 = 0.7. 
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Figure 2. Probability of failure (Pf) versus (deterministic) mean factor of safety (F ̅_s) for cohesive soil slopes 

with lognormal distribution of uncorrelated undrained shear strength (su) and unit weight (γ). Note: Shaded 
region is the practical range. Dashed lines are for cases with COVγ = 0 (from Javankhoshdel and Bathurst 

2014).  
120x97mm (300 x 300 DPI)  

�

�

Page 27 of 44

https://mc06.manuscriptcentral.com/cgj-pubs

Canadian Geotechnical Journal



D
raft

��

�

�

Figure 3.  a) probability of failure (Pf) 
Figure 3. a) probability of failure (Pf) and b) reliability index (β) versus (deterministic) mean factor of safety 

(F _̅s) for cohesive soil slopes with lognormal distribution of correlated undrained shear strength (su) and 

unit weight (γ), a range of cross"correlation coefficient (ρ), COVsu = 0.1, 0.5 and 4, and COVγ = 0.1.  
119x88mm (300 x 300 DPI)  
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Figure 3. b) reliability index (β)  
Figure 3. a) probability of failure (Pf) and b) reliability index (β) versus (deterministic) mean factor of safety 

(F _̅s) for cohesive soil slopes with lognormal distribution of correlated undrained shear strength (su) and 

unit weight (γ), a range of cross"correlation coefficient (ρ), COVsu = 0.1, 0.5 and 4, and COVγ = 0.1.  
119x98mm (300 x 300 DPI)  
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Figure 4.  
a) COVsu = 0.5 

Effect of cross�correlation coefficient (rho) on probability of failure for different mean values of factor of 

safety and a) COVsu = 0.5 and b) COVsu = 0.2 using closed�form solution (solid lines) and numerical results 
using Monte Carlo simulation (dashed lines). Note: COVγ = 0.1.  

118x94mm (300 x 300 DPI)  
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Figure 4.  
b) COVsu = 0.2 

Effect of cross�correlation coefficient (rho) on probability of failure for different mean values of factor of 

safety and a) COVsu = 0.5 and b) COVsu = 0.2 using closed�form solution (solid lines) and numerical results 
using Monte Carlo simulation (dashed lines). Note: COVγ = 0.1.  

118x94mm (300 x 300 DPI)  
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Figure 5.  
a) COVsu = 0.5 

Effect of cross�correlation coefficient (ρ) on normalized probability of failure for different mean values of 

factor of safety with COVγ = 0.1 and a) COVsu = 0.5 and b) COVsu = 0.2.  
149x118mm (300 x 300 DPI)  
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Figure 5.  
b) COVsu = 0.2 

Effect of cross�correlation coefficient (ρ) on normalized probability of failure for different mean values of 
factor of safety with COVγ = 0.1 and a) COVsu = 0.5 and b) COVsu = 0.2.  

118x96mm (300 x 300 DPI)  
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Figure 6.  
a) probability of failure (Pf)  

a) Probability of failure (Pf) and b) reliability index (β) versus (deterministic) mean factor of safety (F ̅_s) for 

cohesive soil slopes with lognormal distribution of undrained shear strength (su) and unit weight (g) and a 
range of COVsu. Note: Lines with symbols correspond to ρ = 0. Each nearest dashed line is the matching 

curve with ρ = 0.7.  
119x96mm (300 x 300 DPI)  
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Figure 6.   
b) reliability index (β) 

a) Probability of failure (Pf) and b) reliability index (β) versus (deterministic) mean factor of safety (F ̅_s) for 

cohesive soil slopes with lognormal distribution of undrained shear strength (su) and unit weight (γ) and a 
range of COVsu. Note: Lines with symbols correspond to ρ = 0. Each nearest dashed line is the matching 

curve with ρ = 0.7.  
120x99mm (300 x 300 DPI)  
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Figure 7. Unreinforced slope model geometry and mean soil property values for c�Φ soil slope example.  
190x142mm (300 x 300 DPI)  
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Figure 8. Influence of cross�correlation between c and Φ on probability of failure of the slope in Figure 7 with 
mean values of c, Φ and γ shown in the figure.  

150x120mm (300 x 300 DPI)  
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Figure 9. Effect of different combinations of ρ1, ρ2 and ρ3 on the probability of failure in c�Φ slopes. 
Parameter ρ1 is the cross�correlation coefficient between c and Φ, ρ2 is the cross�correlation coefficient 

between c and γ and ρ3  is the cross�correlation coefficient between Φ and γ.  
150x119mm (300 x 300 DPI)  

�

�

Page 38 of 44

https://mc06.manuscriptcentral.com/cgj-pubs

Canadian Geotechnical Journal



D
raft

��

�

�

Figure 10. Probabilistic slope stability design chart for �Φ= 20 degrees and COVc = 0.5, COVΦ = 0.2 and 
COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = &0.7, ρ2 = ρ3 = 0.7.  

153x151mm (300 x 300 DPI)  
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Figure 11. Probabilistic slope stability design chart for �Φ= 25 degrees and COVc = 0.5, COVΦ = 0.2 and 
COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = &0.7, ρ2 = ρ3 = 0.7.  

159x163mm (300 x 300 DPI)  
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Figure 12. Probabilistic slope stability design chart for �Φ= 30 degrees and COVc = 0.5, COVΦ = 0.2 and 
COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = &0.7, ρ2 = ρ3 = 0.7.  

159x159mm (300 x 300 DPI)  
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Figure 13. Probabilistic slope stability design chart for �Φ= 35 degrees and COVc = 0.5, COVΦ = 0.2 and 
COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = &0.7, ρ2 = ρ3 = 0.7.  

152x145mm (300 x 300 DPI)  
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Figure 14. Probabilistic slope stability design chart for �Φ= 40 degrees and COVc = 0.5, COVΦ = 0.2 and 
COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = '0.7, ρ2 = ρ3 = 0.7.  

157x156mm (300 x 300 DPI)  
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Figure 15. Probabilistic slope stability design chart for �Φ= 45 degrees and COVc = 0.5, COVΦ = 0.2 and 
COVγ = 0.1 with ρ1 = ρ2 = ρ3 = 0 and ρ1 = '0.7, ρ2 = ρ3 = 0.7.  
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