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Abstract: The influence of damping on the dynamical behavior of the electrostatic 
parallel-plate and torsional actuators with the van der Waals (vdW) or Casimir force 
(torque) is presented. The values of the pull-in parameters and the number of the 
equilibrium points do not change whether there is damping or not. The ability of 
equilibrium points is varied with the appearance of damping. One equilibrium point is an 
unstable saddle with a different damping coefficient, the other equilibrium point is a 
stable node when the damping coefficient is greater than some critical value, and 
otherwise it is a stable focus. Then there are two heteroclinic orbits passing from the 
unstable saddle point to the stable node or focus.  
 
Keywords: damping, Casimir force (torque), vdW force (torque), heteroclinic orbit. 

 
 
1. Introduction  
 

Inherent instability such as in pull-in phenomenon and stiction exists in both 
microelectromechanical (MEM) and nanoelectromechanical (NEM) actuators. Such instability is due 
to some kind of surface force, i.e. electrostatic, van der Waals (vdW), Casimir and capillary forces. 
Although vdW and Casimir forces can be neglected when designing a MEM actuator, they play 
important roles at nanoscales [8-13].  
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A typical MEM (NEM) parallel-plate (or torsional) actuator is made up of two conducting 
electrodes, one is typically fixed and the other, which is controlled by an equivalent mechanical spring, 
is movable (or rotary) [1-4]. The corresponding system can be simplified to one degree of freedom 
(1DOF). The 1DOF is the displacement,u , of the upper movable beam for the parallel-plate model, 
and is the torsional angle, θ , for the torsional model. At a certain voltage, the movable electrode 
becomes unstable and collapses (or pulls-in) to the ground plane. The voltage and displacement (or 
torsional angle) of the actuators under this state are said to be the pull-in voltage and pull-in 
displacement (or the pull-in angle) for the parallel-plate (or torsional) actuators, respectively. They are 
briefly described as the pull-in parameters.  

Using a one-dimensional (1D) model, the pull-in parameters have been analytically obtained by 
many researchers when electrostatic [5-7], vdW and Casimir forces [8-16] are considered. The 
bifurcation analysis for an electrostatic micro-(nano-) actuator has been addressed in [9-17] with the 
consideration of electrostatic, vdW, and Casimir forces for the parallel-plate and torsional actuators. In 
[9, 11, 12], the influences of vdW or Casimir force (torque) on the electrostatic parallel-plate 
(torsional) actuators was studied. There are two bifurcation points, of which one is a Hopf bifurcation 
point, and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic 
orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit 
when meeting the unstable saddle point. 

In this paper, the influence of damping on the dynamical behavior of the electrostatic parallel-plate 
and torsional actuators with the vdW or Casimir force (torque) is presented, and the results are 
compared with those in Refs. [9, 11, 12]. The damping considered in this paper can be a kind of gas 
(squeeze film) friction which is assumed, without loss of generality, to be linearly proportional to the 
velocity. 
 
2. System models and dimensionless equations 

 
In this paper, we will use a 1D lumped model (1DLM) to discuss the influence of damping on the 

dynamical behavior of the parallel-plate and torsional models with electrostatic, vdW and Casimir 
forces. Then, as in previously published papers [9, 11, 12], MEM (NEM) actuators can be simplified 
into a 1DOF for these two models. The 1DOF is the displacement,u , of the upper movable beam for 
the parallel-plate model, and is the torsional angle, θ , for the torsional model. Here, two 
intermolecular forces, the non-retarded vdW and retarded Casimir, are considered. For convenience, 
the dimensionless equations are introduced. 
 
2.1. Parallel-plate model 

 
For the parallel-plate model with damping, the system can be simplified to a 1DOF as shown in 

Figure 1. The 1DOF is the displacement, u , of the upper movable beam, or the gap distance, r . They 
satisfy the simple geometrical relation: u g r= − , where g  is the initial gap distance between the 
upper movable beam and the ground plate.  
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Figure 1. 1DLM for the parallel-plate actuator. 
 

 

 

 

 

 

The system is a typical mass-spring-damping one. For the different intermolecular forces, the 
applied forces on the same model are the electrostatic, vdW, or Casimir forces. Then the equation of 
motion is  

2

elec vdW2

d d
d d

u um ku F F
t t

μ+ + = + ,                                                  (1) 

when the vdW force is considered, or  

 
2

elec C2

d d
d d

u um ku F F
t t

μ+ + = + ,                                                    (2) 

when the Casimir force is considered. Here, m  is the mass of the upper movable beam, μ  is the 
damping coefficient for the parallel-plate model, and k  is the spring constant [9, 11]. 

The electrostatic force elecF  (neglecting the fringing force) acting between the planes with potential 
difference V , the vdW force vdWF  and the retarded Casimir force, respectively, are 

2
0

elec 22( )
wLVF
g u

=
−

ε , vdW 3

1
6π ( )

AwLF
g u

=
−

, 
2

C 4240( )
cwLF

g u
π

=
−

, 

where 0ε  is the permittivity of vacuum within the gap, 2 2πA C= ρ  is the Hamaker constant which lies 
in the range 19(0.4 4)10 J−− , ρ  is the volume density of graphite, C is a constant charactering the 
interactions between the two atoms,  is Planck’s constant divided by 2π , and is equal to 

341.055 10 Js−× , c  is the speed of light and is equal to 8 -12.998 10 ms× . L  and w  are the length and 
width of the upper movable beam, respectively.  

Introducing dimensionless variables: u g=Δ , /t Tτ = , = kμ μ Τ , 2 3
0 2a wLV kg= ε , 

vdW 46πb AwL kg= , C 2 5π 240b cwL kg= , and characteristic time T m k= . Equations (1) and (2) 

can be transformed into a dimensionless form: 

( ) ( )

2 vdW

2 32

d d
d d 1 1

a b
+ + = +

− −

Δ Δμ Δ
τ τ Δ Δ

,                                              (3) 

when the vdW force is considered, or  

( ) ( )

2 C

2 42

d d
d d 1 1

a b
+ + = +

− −

Δ Δμ Δ
τ τ Δ Δ

,                                              (4) 

when the Casimir force is considered.  

V 

ground plane

g 
u

Felec FvdW

k

r

μ  
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According to the definition of these parameters, physically meaningful solutions exist in the region 
0 1< <Δ . The dimensionless parameter a  denotes the order of magnitude of ratio between the 
electrostatic and elastic forces, vdWb denotes the order of magnitude of ratio between the vdW and 
elastic forces, Cb denotes the order of magnitude of ratio between the Casimir and elastic forces.  
 
2.2. Torsional model 

 
For the torsional structure, the simplified 1DLM is shown in Figure 2.  
 

Figure 2. 1DLM for the torsional actuator. 
 
 
 
 
 
 
 
 
The 1DOF is the torsional angle,θ . Similar as the parallel-plate model, the equation of motion is: 

2

elec vdW2

d d
d d

J k M M
t t
+ + = +θ θ

θ θμ θ ,                                            (5) 

when the vdW torque is considered, or  

 
2

elec C2

d d
d d

J k M M
t t

+ + = +θ θ
θ θμ θ ,                                                  (6) 

when the Casimir torque is considered. Here, 2 / 3J mL=  is the rotational inertia of the upper rotational 
beam when the mass is uniformly distributed, kθ  is the spring torque coefficient [3], θμ  is the 

damping torque coefficient. According to Ref. [12], the electrostatic torque is  
2

0
elec 2( ) ln

2
wV g L LM

g g L
ε θ θθ
θ θ

⎡ ⎤⎛ ⎞−
= +⎢ ⎥⎜ ⎟ −⎝ ⎠⎣ ⎦

, 

the vdW and the Casimir torques, respectively, are 
2

vdW 2

1( )
12π ( )
AwLM

g g L
= ⋅

−
θ

θ
, 

2 2

C 2 3

π 3( )
1440 ( )

cwL g LM
g g L

−
=

−
θθ
θ

. 

Introducing dimensionless variables: maxΘ =θ θ , /t T= θυ , = kΘ θ θ θμ μ Τ , 3 2 3
0 2a wL V k g=Θ θε , 

vdW 3 412πb AwL k g=Θ θ , C 2 3 5π 1440b cwL k g=Θ θ , and the characteristic time T J k=θ θ  , equations 

(5) and (6) can be transformed into the dimensionless form as follows: 

( )
( )

vdW2

22 2

d d ln 1
d d 1 1

Θ Θ
Θ

a bΘ Θ ΘΘ Θ
Θ Θ Θ

⎡ ⎤+ + = − + +⎢ ⎥−⎣ ⎦ −
μ

υ υ
,                                  (7) 

when the vdW torque is considered, or: 

g 

V 

MvdW (MC) θ

Melec 

,kθ θμ  
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 ( ) ( )
( )

C2

32 2

3d d ln 1
d d 1 1

ΘΘ
Θ

b ΘaΘ Θ ΘΘ Θ
Θ Θ Θ

−⎡ ⎤+ + = − + +⎢ ⎥−⎣ ⎦ −
μ

υ υ
,                              (8) 

when the Casimir torque is considered.  
According to the definition of these parameters, physically meaningful solutions exist in the region 

0 1Θ< < . The dimensionless parameter Θa  denotes the order of magnitude of ratio between the 
electrostatic and elastic torques, vdW

Θb denotes the order of magnitude of ratio between the vdW and 
elastic torques, C

Θb  denotes the order of magnitude of ratio between the Casimir and elastic torque.  

In the following sections, the four dimensionless equations (3), (4), (7) and (8) will be used to 
discuss the stability of stationary equilibrium and the dynamical behavior for the two different models 
as referred before. For each model, we will discuss three different cases, according to the different 
forces applied on the actuators. First, we just consider the electrostatic force (or torque); secondly, we 
consider the electrostatic and vdW forces (or torques); and last, we consider the electrostatic and 
Casimir forces (or torques). 
 
3. Pull-in parameters 

 
In this section, we discuss the stability of the stationary equilibrium of the above equations, then we 

should set zero the velocity and acceleration for each model. 
 
3.1. Parallel-plate model 

 
Case I: just with electrostatic force 
 
In this part, we just consider the electrostatic force and the corresponding equation from equations 

(3) or (4) is  

( )

2

22

d d
d d 1

a
+ + =

−

Δ Δμ Δ
τ τ Δ

.                                                       (9) 

Setting 2 2d / d 0,  d / d 0τ τΔ = Δ = , we get the following equation to obtain the stationary 
equilibrium solution: 

( ) ( )2, 1 0f a a= − =Δ Δ Δ− .                                                    (10) 

According to the critical condition ( ) 0f∂ ∂ =Δ Δ [18] and equation (10), we get 
2

0 PI
PI PI 3

1 4, .
3 2 27

wLVa
kg

Δ ε
= = =                                                 (11) 

 
Case II: with electrostatic and vdW forces 
 
For this case, using the same procedure as Case I and using equation (3), we get the pull-in 

parameters as follows: 
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( )( )
( )( )

3 vdW
PI PI

2
PI PI PI

3 1 1 0,

1 1 .

b

a

Δ Δ

Δ Δ

⎧ − − + =⎪
⎨

= 4 − −⎪⎩
                                           (12) 

The variation of the pull-in parameters PIΔ  and PIa  with vdWb are plotted in Figures 3 and 4 by 

equation (12). In these two figures, we notice two special points. The point “ ” corresponds to 
vdW( , ) (0,1/ 3)o ob =Δ  in figure 3, and vdW( , ) (0,4 / 27)o ob a =  in Figure 4. The second point “ ∗ ” 

corresponds to vdW
* *( , ) (27 / 256,1/ 4)b =Δ in Figure 3, and vdW

* *( , ) (27 / 256,0)b a = in Figure 4.  

 
Figure 3. Comparison between vdW and Casimir forces with variation of the pull-in 

displacement PIΔ  with parameter b .  

 

 
 

Figure 4.  Comparison between vdW and Casimir forces with variation of the pull-in 
parameter PIa  with parameter b .  

 
Case III: with electrostatic and Casimir forces 
 
Similarly, by using the equation (4), we get the two pull-in parameters with Casimir force as: 

( )( )

( )( )

4 C
PI PI

2
PI PI PI

3 1 1 2 0,
1 1 1 .
2

b

a

Δ Δ

Δ Δ

⎧ − − + =
⎪
⎨

= 5 − −⎪
⎩

,                                                (13) 
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The variations of the pull-in parameters PIΔ  and PIa  with Cb are plotted in Figures 3 and 4, 

respectively, by equation (13). Two special points are also noticed. The point “ ” is the same as in 
Case II. The point “ ∗ ” corresponds to C

* *( , ) (256 / 3125,1/ 5)b =Δ  in Figure 3, and 
C
* *( , ) (256 / 3125,0)b a =  in Figure 4.     

At the point “ ”, it implies that there is no vdW or Casimir force on the structure. The results are 
consistent with those in equation (11). With increasing of the vdW or Casimir force, the pull-in 
parameters decrease. Until vdW C

* *( )b b or b> , a  is negative. It implies the structure will lose its 

stability even though there is no voltage applied at the parallel-plate structure. 
 
3.2. Torsional model 

 
Case I: just with electrostatic torque 

 
The governing equation for the system just subjected to the electrostatic force is: 

( )
2

2 2

d d ln 1
d d 1

aΘ Θ ΘΘ Θ
Θ Θ

⎡ ⎤+ + = − +⎢ ⎥−⎣ ⎦
Θ

θμυ υ
, 

by setting zero the vdW
Θb  or C

Θb  in equations (7) or (8). 
To get the pull-in parameters, we also set 2 2d d 0,  d d 0Θ/ Θ/υ υ= = . As Ref. [12], we obtain the 

pull-in parameters as:  

PI PI0.4404,  0.4137ΘΘ a= = .                                                 (14) 

 
Case II: with electrostatic and vdW torques 
 
Using equation (7), we obtain the two critical equations: 

( )

( )

3 vdW 2 2 vdWPI
PI PI PI PI PI PI PI

PI

vdW

PI 2
2 PI

PI PI
PI

PI
PI

(1 ) 3 (1 ) 2 ln 1 (1 ) ,
1

(1 ) .
ln 1

1

Θ Θ

Θ

Θ

ΘΘ Θ Θ b Θ Θ Θ Θ b
Θ

bΘ
Θa Θ ΘΘ

Θ

⎧ ⎡ ⎤
⎡ ⎤ ⎡ ⎤− − − − + = − −⎪ ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎣ ⎦⎪

⎪
⎨ −

−⎪ =⎪
− +⎪

−⎩

        (15) 

The variations of the pull-in parameters PIΘ and PIΘa with vdW
Θb  are plotted by equation (15) in 

Figures 5 and 6, respectively. The point “ ” corresponds to vdW( , ) (0,0.4404)o ob =Θ Θ  in Figure 5, and 
vdW( , ) (0,0.4137)o ob a =Θ Θ  in Figure 6. The point “∗ ” corresponds to vdW

* *( , ) (4 / 27,1/ 3)b =Θ Θ in Figure 5, 
and vdW

* *( , ) (4 / 27,0)b a =Θ Θ in Figure 6.  
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Figure 5.  Comparison between vdW and Casimir torques with variation of the pull-in 
angle PIΘ  with parameter bΘ .  

 
 
Figure 6. Comparison between vdW and Casimir torques with variation of the pull-in 

parameter PIaΘ  with parameter bΘ .  

 
 
Case III: with electrostatic and Casimir torques 

 
Similarly by equation (8), we obtain the pull-in parameters as: 

( ) ( )

( )

4 C 2 3 CPI
PI PI PI PI PI PI PI PI

PI

C PI
PI 3

2 PI
PI PI

PI
PI

PI

3 1 (1 ) 2 ln 1 (1 ) (3 ) ,
1

3
(1 ) .

ln 1
1

b b

b
a

Θ Θ

Θ

Θ

ΘΘ Θ Θ Θ Θ Θ Θ Θ
Θ

Θ
ΘΘ ΘΘ
Θ

⎧ ⎡ ⎤
⎡ ⎤ ⎡ ⎤− − − − + = − − −⎪ ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎣ ⎦⎪

⎪ −⎨ −
−⎪ =⎪

− +⎪ −⎩

Θ
        (16) 

The variations of the pull-in parameters PIΘ and PIΘa with C
Θb  are plotted by equation (16) in Figures 

5 and 6, respectively. The point “ ” is same as in Case II. The point “ ∗ ” corresponds to 
C

* *( , ) (0.0385,0.2679)b =Θ Θ in Figure 5, and C
* *( , ) (0.0385,0)b a =Θ Θ in Figure 6.  

At the point “ ”, it implies that there is no vdW or Casimir torque on the structure. These results 
are consistent with those in equation (14). The pull-in parameters decrease with increasing vdW or 
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Casimir torque. Until vdW C
* *( )b b or bΘ Θ> , a  is negative. It implies the structure will lose its stability 

even though there is no voltage applied at the parallel-plate structure. 
 
4. Dynamical behavior 

 
In this section, we just discuss the dynamical behavior of the parallel-plate model with the 

electrostatic and vdW forces.  
To discuss the dynamical behavior of equation (3), first we transform the second-order ordinary 

differential equation (ODE) (3) into the first-order ODE. Then we set ,  d / dx yΔ τ= = Δ , and obtain: 

                       (17) 

The stationary solutions of this system can be obtained by setting zero of the right-hand side of 
equation (17). From the first equation of (17), we easily get 0y = . Substituting 0y =  into the second 
equation of (17), we obtain an equivalent function: 

( ) ( )3 vdW1 1 0x x a x b− − + − + = ,                                               (18) 

to solve x . The critical condition of this equation has solved in Section 2.1. Now, in order to see 
clearly the variation of the equilibrium point x with the continuous change of parameters a  and vdWb , 
we solve equation (18) numerically for x  as a function of a  and vdWb . We plot the variation of x  with 
parameter a  for different parameter vdWb , the solution is shown in Figure 7. Because 

2 3
0 / 2a wLV kg= ε  is positive, then the solution is physical meaningful when the solution curves are on 

the right of 0a = . So from this figure, we notice that equation (18) has one or two equilibrium points 
for 0a ≥  just when vdW vdW

*0 b b< < , otherwise there is no equilibrium point.  

 
Figure 7. Variation of equilibrium points with parameter a  for different parameter 

vdWb with vdW force. 
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In order to check the stability of the equilibrium points, we need the Jacobian matrix of equation 
(17): 

vdW

0 1
( , , )J f x a b

x

⎡ ⎤
⎢ ⎥= ∂⎢ ⎥−
⎢ ⎥∂⎣ ⎦

μ
.                                                     (19) 

We first discuss the stability of the equilibrium points with the given parameters 0a =  and 
vdW vdW

*0 b b< < . According to Figure 7, there are two equilibrium points 1( ,0)x and 2( ,0)x  satisfying 
the inequality 1 * 2x x x< < .  

Firstly, we consider the equilibrium point stability of the special state that there is no electrostatic 
force on the upper movable beam. Then substituting vdW vdW

*0,a b b= <  and 1 *x x x= <  into equation 

(19), we get: 

1

vdW

4
1

0 1
3 1

(1 )
x x

J b
x

=

⎡ ⎤
⎢ ⎥= ⎢ ⎥− −
⎢ ⎥−⎣ ⎦

μ
. 

Its corresponding eigenvalues are  

( )

vdW
2

4
1

1,2

12 4
1

2

b
x

− ± + −
−

λ =

μ μ

.                                                (20) 

Here, we discuss the property of the eigenvalues when the damping coefficient is positive. 

Because 1 *x x< , then
( )

vdW

4
1

12 4
1

b
x

−
−

 is absolutely negative. When 
( )

vdW
2

4
1

12 4 0
1

b
x

+ − >
−

μ , the two 

eigenvalues 1,2λ  are all real, and they all are absolutely negative. This means the equilibrium point 

1( ,0)x  is a stable node. According to the property of node, this point is an equilibrium point at first. At 

this position, the elastic force is equal to the vdW force, and the parallel-plate actuator keeps balance 
state. When we add a small perturbation on the upper movable beam, the perturbation will die out at 

the stable node. When 
( )

vdW
2

4
1

12 4 0
1

b
x

+ − <
−

μ , the two eigenvalues 1,2λ  are a pair of complex 

conjugates, and the real parts of them are absolutely negative. This means the equilibrium point 1( ,0)x  

is a stable focus. According to the property of focus, this point is also an equilibrium point at first. 
When we add a small perturbation on the upper movable beam, then the trajectory close to the 
equilibrium position resembles a spiral. Above all, at the point of 1( ,0)x , the real parts of the 
eigenvalues are negative, this equilibrium point 1( ,0)x  is always stable. Subsequently, we take 

vdW vdW
*0,a b b= <  and 2 *x x x= >  into equation (19), solve its eigenvalue equation, we know that it has 

two real roots, of which one is positive, the other is negative. This means that the equilibrium point 
2( ,0)x  is a saddle point. At equilibrium position, if we add a small perturbation on it, the trajectory of 

the upper movable beam will leave the equilibrium position because one of the eigenvalues is positive. 
We then call this equilibrium state unstable. 
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Secondly, applying the same method to discuss the stability of the two solutions with any different 
given a  and vdWb , we plot the bifurcation diagram as Figure 8. In Figure 8, all the points of the lower 
branch represent the stable points, and all the points of the upper branch are the unstable saddle points, 
the upper beam is unstable.  
 

Figure 8. Bifurcation diagram: variation of equilibrium points with parameter vdWb  for different a . 

 
According to the properties of the stable node, stable focus, and saddle point, there exist two 

heteroclinic orbits which depart from the unstable saddle point and be end at the stable point. In order 
to see the movement process of the equilibrium points, we draw the phase portraits with 0a =  by 
setting parameter vdWb  equal to 0.03, 0.07 and 0.09, respectively. These phase portraits are shown in 
Figures 9-12. From the discussion in the paragraph above, one knows that the ability of the stable point 
is different with the variation of damping coefficient μ .  

 
Figure 9. Heteroclinic orbits with 0a = and vdW 0.03,0.07,0.09b = , respectively when 3μ = . 
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Figure 10. Heteroclinic orbits with 0a = and vdW 0.03b =  when 0.5μ = . 

 
Figure 11. Heteroclinic orbits with 0a = and vdW 0.07b =  when 0.5μ = . 

 
Figure 12. Heteroclinic orbits with 0a = and vdW 0.09b =  when 0.5μ = . 
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In Figure 9, we set 3μ= . This value of μ  makes sure that 
( )

vdW
2

4
1

12 4 0
1

b
x

μ + − >
−

 for three 

different vdWb . By observing Figure 9, there are two equilibrium points for three different vdWb , one is 
the stable node (marked by “ o ”), and the other is the unstable saddle point (marked by “×”). There 
are two heteroclinic orbits between the unstable saddle point and the stable node. We note that the 
heteroclinic orbit is convergent to the stable node from the unstable saddle point with exponent. In 

Figures 10-12, we set 0.5μ= . This value of μ  makes sure that 
( )

vdW
2

4
1

12 4 0
1

b
x

μ + − <
−

 for three 

different vdWb . By observing Figures 10-12, there are also two equilibrium points for three different 
vdWb , one is the stable focus (marked by “ o ”), and the other is the unstable saddle point (marked by 

“×”). There are two heteroclinic orbits between the unstable saddle point and the stable node. We note 
that the heteroclinic orbit is convergent to the stable focus from the unstable saddle point spirally，
which is different from the stable node because of the difference of their eigenvalues. 

From these four figures, we also note that the stable point which is node or focus, and unstable 
saddle point move to the point “∗ ” from opposite direction with vdWb  is increasing. These two points 
turn into the pull-in point *( ,  d / d ) (1/ 4,0)x x τ∗ =  with vdW 27 / 256b∗ = . At this critical condition, the 

pull-in phenomenon occurs, the reason of structure invalidation is that the original two equilibrium 
points merge as one with the changing of parameter vdWb .  

 According to the eigenvalue equation (20), at least the real part of one of eigenvalues 1 2,λ λ  is 

positive when the damping coefficient is negative. At this time, the system is unstable, which should 
be avoided in engineering applications. 

Until now, the dynamical behavior of equation (3) is thoroughly discussed, that is, the dynamical 
behavior of the parallel-plate model with the electrostatic and vdW forces. For equations (4), (7), and 
(8), their dynamic behavior can be discussed similarly to equation (3).  
 
5. Discussion and Conclusions 

 
The influence of damping on the dynamical behavior of the electrostatic parallel-plate and 

torsional actuators with the vdW or Casimir force (torque) is presented. First, we studied the variation 
of two pull-in parameters with another parameter with different surface forces (torques), we get two 
special points for each case shown in Figures 3-6. The first special point plotted by “ ” shows that the 
vdW or Casimir force (torque) is zero on the actuator. The second point plotted by “*” illustrates the 
actuator will lose its stability even though there is no applied voltage. With the appearance the vdW or 
Casimir force (torque), the pull-in parameters are all decreasing. From Figures 3-6, we also know that 
the influence of Casimir force (torque) is stronger than that of vdW force (torque) for the same 
parallel-plate (torsional) actuators with the same geometrical parameters. This result is the same as [9, 
11, 12]. Then we can conclude that the damping does not affect the number of equilibrium points. 

Secondly, we studied the stability of equilibrium points. One equilibrium point is an unstable 
saddle with different damping coefficient, the other is a stable node when damping coefficient is 
greater than some critical value, and otherwise it is a stable focus. Then there are two heteroclinic 
orbits passing from the unstable saddle point to the stable node or focus. Compared with the results in 
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[9, 11, 12], we find that the Hopf bifurcation point is changed into the stable node or focus with 
different damping coefficient with the appearance of damping, the unstable saddle point is still the 
same. 

As a matter of fact, there are numerous possible sources of dissipation and damping in NEM 
actuators, which may broadly be classified as either intrinsic or extrinsic. Extrinsic dissipation or 
damping, such as gas (squeeze film) friction, clamping loss and surface loss, results from interaction of 
the actuator microstructure with the environment; whereas intrinsic dissipation or damping, such as 
thermoelastic relaxation, phonon-phonon and phonon-electron interaction, results from properties of 
the resonating material. The dissipation and damping mechanisms in NEM actuators are quite 
complicated [19]. This paper only considered the simplest case of damping in the NEM actuators. To 
gain a better understanding of the dynamic behavior of nano-resonators, more studies are needed on 
the dissipation or damping mechanisms and their roles in attenuation of the vibration.  
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