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Abstract 

In this study, the influence of basic design parameters and tooth surface 

modifications on the mechanical (friction induced) power losses of a helical gear 

pair is studied.  A helical gear mechanical efficiency model based on 

elastohydrodynamic lubrication (EHL) is introduced.  The model is used to 

simulate the gear contact conditions of an example helical gear pair within the 

ranges of basic design parameter such as pressure and helix angles, number of teeth 

(module), and major diameters to quantify their impact on mechanical power 

losses.  Variation of gear efficiency with these parameters are then weighed 

against other functional requirements such as transmission error amplitudes, and 

contact and bending stresses to demonstrate that many designs that have high 

efficiency might perform poorly in terms of noise, pitting, and tooth breakage. A 

representative design that is acceptable in all aspects is considered next with 

varying amounts of tooth modifications to demonstrate their impact on power 

losses.  At the end, recommendations are made on how to reduce helical gear 

mechanical power losses while meeting other functional requirements as well. 
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1. Introduction 

Power losses at gear mesh interfaces of automotive drive train systems such as 

transmissions, transfer cases and axles represent a sizable portion of overall losses. While a 

helical gear pair could already be considered as a highly efficient power transmission 

component with mechanical efficiencies often exceeding 99.5% 
(1)(2)

, these losses multiply 

to sizable amounts in multi-stage arrangements.  Under such conditions, minimizing power 

losses of the transmission requires a design methodology that considers efficiency as a 

requirement together with others regarding noise and durability (including pitting and tooth 

bending failure modes). Such a methodology would not only quantify the impact of basic 

design parameters on mechanical power losses of helical gear trains but also allow one to 

weigh efficiency against noise and durability to achieve a product that is balanced in all 

aspects.  This paper focuses on development of such a methodology. 

Several published studies focused on losses at the gear meshes, considering mostly spur 

gears 
(3)-(11)

. These models either assumed a constant or empirically determined friction 

coefficient µ.  Some of them computed µ from an EHL model for smooth surfaces. Xu et 

al 
(2)

 showed that  accuracy of these models were limited to the empirical µ formula used 

and developed a hybrid helical gear mechanical efficiency model that uses a customized 

gear contact friction formula developed up-front by using EHL theory instead of relying on 

real-time EHL simulations.  They used the EHL model of Cioc et al 
(12)

 to perform a large 

design of experiment for a particular gear oil of interest (75W90) including gear specific *Received 17 Mar., 2009 (No. 09-0112) 
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ranges of key parameters such as temperature, normal load, rolling speed, sliding ratio, radii 

of curvature and surface roughness amplitude.  They reduced the predicted surface traction 

data into a single µ formula using the linear regression technique.  In addition, they 

coupled their efficiency model with a computationally efficient load distribution model 
(13)

 

to perform gear mechanical power loss predictions in less than a second.  Xu et al 
(2)

 

showed this hybrid approach gives the same results as the real-time EHL runs in the 

simulation and compares well to the published gear power loss experiments 
(1)

. 

The model of Xu et al 
(2)

 was limited to gear contacts that has no or limited asperity 

interactions due to the type of the EHL model used.  Most automotive gears have 

reasonably large surface roughness originating from shaving or grinding processes and 

operate under low speed, heavy load and high temperature conditions with lubricants that 

are suboptimal, such that mixed EHL conditions with severe metal-to-metal contacts are 

common.  Hence, the first objective of this study is to develop a new mixed EHL model 

and incorporate with the modeling methodology proposed earlier 
(2)

 to obtain an accurate 

mechanical efficiency model for spur and helical gear pairs.  The second objective is to 

utilize the proposed gear power loss model to (i) identify and quantify the influence of key 

gear design parameters impacting efficiency, (ii) demonstrate simultaneous influence of the 

same parameters on transmission error and gear stresses, and (iii) obtain well-balanced 

designs that are acceptable in all aspects (efficiency, durability and noise) instead of being 

the best for any given attribute at the expense of others. These good solutions will then be 

refined further through profile modifications to quantify the combined influence of 

micro-geometry on the gear stresses, noise metrics and mechanical efficiency.   

 

2. Gear Pair Mechanical Power Loss Methodology  

The mechanical power loss methodology shown in Fig. 1 
(2)

 relies on three main 

modules:  (i) a gear load distribution module 
(13)

, (ii) an EHL-based friction coefficient 

computation module, and (iii) a gear pair mechanical power loss computation module. The 

load distribution model predicts the contact stress distribution of a helical gear pair with or 

without certain manufacturing and assembly errors as well as profile modifications.  It also 

yields sliding and rolling velocities and radii of curvature at the contact zones of the gear 

mesh.  These parameters are fed into a friction coefficient model to find the instantaneous 

  

 

Fig. 1 Helical gear mechanical power loss computation methodology (2) 



 

 

Journal of  Advanced Mechanical Design,
Systems, and   

Manufacturing  

Vol. 3, No. 2, 2009

148 

friction coefficient ( , , )mzµ θ φ  of every contact point ( , )z θ  on the gear tooth surfaces at 

each roll angle position mφ .  Next, ( , , )mzµ θ φ  is used by the mechanical power loss 

module to determine the instantaneous efficiency ( )mP φ  of the gear pair at the m-th 

incremental rotational position.  The above sequential procedure is repeated for an M 

number of discrete positions ( [1, ]m M∈ ) spaced at an increment of ∆φ  ( m mφ = ∆φ ) that 

covers a complete mesh cycle 
(2)

. 

For the computation of the contact loads of helical gears, a load distribution model 

(LDP) that is initially proposed by Conry and Seireg 
(13)

 is used in this study.  This model 

computes elastic deformations at any point of the gear surface, given the tooth compliance, 

applied torque, and the initial unloaded tooth separations. For the solution of the gear 

contact problem, conditions of compatibility and equilibrium are considered.  The 

condition of compatibility ensures for any point within the contact zone that the sum of 

elastic deformations of two bodies and the initial separation are greater than or equal to the 

rigid body displacement.  The condition of equilibrium states that the sum of the moments 

applied on a gear body must be equal to zero.  With these two conditions in hand, the load 

distribution problem is solved iteratively by using a modified Simplex algorithm for the 

values of the unknown force vector.    

2.1 Computation of the Friction Coefficient  

By discretizing a helical gear pair into a number of thin slices of spur gears that are 

staggered according to the helix angle, the contact on each slice pair can be modeled as a 

line contact between two cylinders of radii of curvature 1r  and 2r  and surface velocities 

1 1 1u r= ω  and 2 1 2 1 2u N r N= ω  where 1N  and 2N  are the numbers of teeth of gears 1 

and 2 and 1ω  is the rotational speed of gear 1 in rad/s.  This contact segment has a 

normal load W  predicted by the load distribution model.  For this lubricated contact, the 

transient Reynolds equation governs the non-Newtonian fluid flow in the contact areas with 

no asperity interactions 

 
( ) ( )ru hp h

f
x x x t

∂ ρ∂ ∂ ∂ ρ  = + ∂ ∂ ∂ ∂ 
  (1.a) 

where the parameters p, h  and ρ  denote the pressure, thickness and density of the fluid, 

respectively, all of which are dependent on x and t, and 1 2( ) 2ru u u= + is the rolling 

velocity.  The fluid flow coefficient is defined as 
(14)

 

 
3

0

cosh
12

mh
f

 τρ
=  η τ 

  (1.b) 

where η  is the lubricant viscosity, 0τ  is any lubricant reference stress, and the viscous 

shear stress [ ]1
0 0sinh ( )m su h−τ = τ η τ .  Here, 1 2su u u= −  is the sliding velocity of the 

contact.  Equation (1) describes the lubricant flow within the contact regions where the 

fluid film thickness is greater than zero such that the surfaces are separated.  In the regions 

where the asperity contact occurs ( 0h = ), the Reynolds equation is set to 
(15)

  

 
( ) ( )

0ru h h

x t

∂ ρ ∂ ρ
+ =

∂ ∂
  (2) 

Assuming a smooth transition between the fluid and asperity contact areas, Eq. (1) and 

(2) constitute a “unified” Reynolds equation system that governs the mixed EHL behavior 

of the contact, considering both the fluid and the asperity contact regions simultaneously.  

The film thickness at a contact point of any coordinate x

 

and time t  under elastic 

conditions is defined as 

 0 0 1 2( , ) ( ) ( ) ( , ) ( , ) ( , )h x t h t g x V x t R x t R x t= + + − −  (3) 
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where 0 ( )h t  is the reference film thickness, and 1( , )R x t  and 2 ( , )R x t  are the roughness 

profiles of the two surfaces at time t.  Here, 1( , )R x t  and 2 ( , )R x t  move at velocities of 

1u  and 2u  that correspond to a slide-to-roll ratio 1 2 1 22( ) ( ).s rSR u u u u u u= = − +  The 

term 0 ( )g x  is the geometric gap between the two surfaces that is given as a function of 

the equivalent radius of curvature 1 2 1 2( )eqr r r r r= +  and the x  coordinate in the 

direction of sliding as 
2

0 ( ) (2 )eqg x x r= .  The elastic deformation ( , )V x t  due to the 

normal load W  applied is given as 
(16)

 

 ( , ) ( ) ( , )
e

s

x

x

V x t K x x p x t dx′ ′ ′= −∫   (4) 

where ( ) 4ln ( )K x x E′= − π  is the influence coefficient with 
1

2 2
1 1 2 22 (1 ) (1 )E E E

−
 ′ = − υ + − υ   where iυ  and iE  are the Poisson’s ratio and the 

Young’s modulus of contact body i. 

A two-slope viscosity-pressure model is used here 
(17)

 

 [ ]

0 1

2 3
0 0 1 2 3 ,

0 1 2

exp( ), ,

exp( ),

exp ( ) , ,

a

a b

t t b

p p p

c c p c p c p p p p

p p p p p

η α <
η = η + + + ≤ ≤


η α + α − >
  

    (5) 

where 1α  and 2α  are the viscosity-pressure coefficients for the low ( ap p< ) and high 

( bp p> ) pressure ranges, respectively, tp  is the transition pressure value between these 

two ranges, and ap  and bp  are the threshold pressure values of the low and high 

pressure ranges, respectively.  In addition, the density-pressure relationship can be defined 

as 
(18)

 

 
0

(1 )

(1 )

p

p

+ γ
ρ = ρ

+ λ
  (6) 

where 9 -12.266 10 Pa−γ = ×  and 9 -11.683 10 Pa−λ = × .  The last equation of interest 

here is the load balance equation, which is used to check whether the total contact force due 

to the pressure distribution (both hydrodynamic and asperity contact) over the entire contact 

area is balanced by the normal tooth load applied at that instant 

The computational domain for the mixed EHL analysis is defined as 2.5 1.5a x a− ≤ ≤ , 

where a is the half width of the corresponding Hertzian contact zone.  In order to capture 

the surface roughness geometry sufficiently, a sufficiently fine contact grid mesh consisting 

of N  grid elements is used.  At a given time increment nt , the lubricant viscosity, 

density, film thickness, and pressure are all assumed to be uniform within each contact 

element i  ( [ ]1,i N∈ ), represented by the values at the center of the grid cell.  

Considering an asymmetric control volume, Eqs. (1)~(6) are discretized to obtain a 

numerical solution.    

The surface shear traction consists of the viscous shear exerted by the lubricant within 

the lubricated regions and the asperity friction force results from the metal-to-metal contacts 

within the boundary lubrication regions.  The viscous shear stress acting on surface 1 is 

defined as  

 
* 2 1( )

2
x

u uh p
q

x h

−∂ = − + η ∂ 
  (7) 

where *
0cosh( )x mη = η τ τ  is the effective viscosity in the direction of rolling.  Within 

the asperity regions, the shear stress is defined as ,dq p= µ  where dµ  is the coefficient 

of friction for dry contact condition.  With these, the friction coefficient at a given time 

instant nt  is  
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1

( , ) .
e

n

s

x

t n
x

q x t dx
W

µ =
′ ∫   (8) 

where W ′  is load per unit face width. Each simulation is carried out for a total of tN  

time steps and the average friction coefficient for the contact condition considered is 

defined as 1 .t

n

N
t tn N=µ = µ∑

  

 

Here, instead of using the mixed EHL model directly in real time to determine the 

traction force at every contact cell on the tooth surface, an up front parametric study is 

performed by considering all combinations of the key parameter values.  Here, ranges 

suitable for automotive gears are defined for each key parameter hp  ( 0.5 2.5 GPa− ), eqr  

( 5 80 mm− ), ru  (1 20 m/s− ), SR  ( 0 1− ), and viscosity through oil temperature ranging 

from 25 CD  to 100 CD .  In addition, a measured roughness profile from a shaved gear 

surface with 0.5 µmqR =  is considered and different RMS roughness profiles with 

different amplitudes are obtained from this baseline profile by multiplying it by a constant.  

A typical automatic transmission fluid is used as the example lubricant. 

A total of 42,000 combinations covering a wide range of contact conditions experienced 

by automotive gearing are obtained from the parameter values listed above.  The predicted 

µ values for these combinations are plotted against the lambda ratio λ  (ratio of the 

minimum film thickness calculated by using Dowson-Higginson formula for line contacts 
(18)

 

to the RMS surface roughness value) to reveal a piecewise linear relationship as shown in 

Fig. 2.  Here, linear scales are used for λ  and µ to show that there is a two-slope 

piecewise-linear relationship between them for a majority of the contact conditions.   For 

1λ ≤  , µ varies quite linearly with λ  with a very steep negative slope representing the 

boundary or mixed EHL conditions, while another linear relation with much smaller 

negative slope is observed for 1λ >  when there is little of no asperity interactions.  The 

histogram of the entire friction coefficient data points to two different populations, 

indicating that any curve fitting effort must treat the data for 1λ >  and 1λ ≤  separately.  

With these the EHL µ  data of this parametric study is divided into two subsets at the 

threshold value of 1λ = , and a regression analysis is carried out for each subset separately.  

The first order parameters selected for the general linear regression model for the response 

parameter of ln µ  are 10log ( )hW p E′= − , 10 1log ( )E′α = α , 10log ( )eq eqr r E W′ ′= , 

[ ]10 0log rV u W ′= − η , λ , SR  and two roughness parameters c cS S E W′ ′=  and 

eq eqS S E W′ ′= .  Here, W W L′ =  is the load density along the contact line of length 

L , 2 2
1 2c q qS R R= +  and 1 2 1 2( )eq q q q qS R R R R= + .  In addition, the higher order 

parameters, which are the combination of those first order parameters, are also considered.  

Utilizing the statistical software, MINITAB, the following regressed µ formula is obtained 

with an adjusted R-square value of about 92%: 

For 1:λ ≤
 

  ( )7 8 95 6

0 1 2 3 4

ln

exp

( )

W
c eq eq

a SR a V aa a
eq c

a a S a W r a a S

SR S S

λ

 + + λλ λ  

 µ = + λ + + λ +  

  

(9.a)

 

For 1:λ >   

  ( ) ( )7 8 9 10 11 1312

0 1 2 3 4 5 6

ln

exp ( ) eq eqr rW V
eq eq

b b V b b b bb
c

b b V b r b V b b b r

SR W S
+  + λ+ α λλ 

 µ = + λ + + + α + α +  

λ  

(9.b) 

 



 

 

Journal of  Advanced Mechanical Design,
Systems, and   

Manufacturing  

Vol. 3, No. 2, 2009

151 

 

Fig. 2 Variation of µ  with λ  for all the contact combinations considered 

 

Here, coefficients 0 9a a−  and 0 13b b−  are constants representative of the lubricant 

considered. 

2.2 Computation of Gear Pair Mechanical Power Losses  

Once the friction coefficient ( , , )mzµ θ φ  at each contact point ( , )z θ  at each 

rotational angle mφ  ( 1,2, ,m M= … ) are known, the friction force at each contact position 

can be calculated via 

 ( , , ) ( , , ) ( , , )f m m mF z z W zθ φ = µ θ φ θ φ   (10) 

where ( , , )mW z θ φ  is the normal load at the contact point of interest.  The instantaneous 

mechanical power loss and the mechanical efficiency of the gear are given as  

 [ ]
1

( )
Q

m s q
q

P Wu
=

φ = µ∑ ,       
( )

( ) 1 m
m

in in

P

T

φ
η φ = −

ω
 (11.a,b) 

where Q is the total number of loaded contact segments at mesh position mφ , inT  is the 

input torque, and inω  is the input speed.  These instantaneous values are averaged over 

an entire mesh cycle to find the average gear mesh mechanical power loss and mechanical 

efficiency as 1
1 ( )

M
mmM

P P== φ∑  and 1 ( )in inP Tη = − ω .   

 

3. A Parameter Sensitivity Study 

The efficiency model proposed in the previous section was validated this efficiency 

model in two levels.  First, the EHL model predictions and the resultant friction coefficient 

formula, Eq. (9), were compared to twin-disk and ball-on-disk traction measurements to 

show that they are indeed accurate within the ranges of load, rolling and sliding velocity 

and surface roughness amplitudes.  Comparisons between the gear mesh power loss 

predictions of proposed model and experiments of Petry-Johnson et al.
 (1)

 were also made to 

show that the predictions are typically within 0.1 kW of measurements.   
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The proposed helical gear mechanical efficiency model will be used here to perform an 

example design study.  The predicted parameters in this study will include peak-to-peak 

transmission error (TE) as a noise metric, and maximum contact and root bending stresses 

( cσ  and bσ ) as gear fatigue life metrics. In addition, the mechanical power loss P is 

computed using the proposed model to represent the efficiency of the gear design.  The 

ultimate goal here is to find a design that results in minimum values for all of P, TE, cσ , 

and bσ .  

An example condition with a fixed center distance of 91.5 mm and unity (1:1) ratio is 

considered here.  Both gears of the pair (gear and pinion) are kept identical to reduce the 

number of parameters.  In addition, the face width of all gears was kept constant at 25 mm.  

Four basic gear design parameters, normal pressure angle ( Φ ), helix angle ( Ψ ), the 

number of teeth (N) and the working depth ratio ( wdΛ ) are varied. The working depth 

constant is defined here as the ratio of the sum of addendum and dedendum of the gears to 

normal module (m).  wdΛ  is varied between 1.85 and 3.38 at an increment of 0.218 (8 

levels) to obtain a range of tooth heights.  Meanwhile, N is varied from 20 to 53 with an 

increment of 1 to represent a range of fine to coarse gear teeth.  Discrete values between 

15 and 30 degrees are considered for both Φ  (increment of 2.5 deg)  and Ψ  (increment 

of 1 deg).  A profile crown of 15PM =  µm and a lead crown of 12LM =  µm are 

applied to all of the gears.  An automatic transmission fluid at 90 CD  is used in the 

simulations.  Input torque and speed are kept at 250inT =  Nm and 

60 2 4000in inΩ = ω π =  rpm.  The surface roughness amplitudes of the gears are 

1 2 0.4q qR R= = µm.  

All combinations of values of all four parameters specified above resulted in more than 

30,000 different designs, of which only 13,500 deemed acceptable as the rest were 

eliminated due to reasons such as inadequate backlash, tip thickness or root clearance 

(minimum acceptable backlash, tip thickness and root clearance values were chosen as 0.04, 

0.2 and 0.2).  

 

 

Fig. 3  Variation of P with (a) N, (b) m, (c) od  (d) fε , (e) pε , and (f) tε . The vertical 

scales of the charts in the first column apply to the respective charts in the other two 

columns as well. 
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In Fig. 3(a-c), the variation of the mechanical power loss P of all of the 13,500 designs 

are plotted against N, m and wdΛ , respectively (small lighter color dots).  In Fig. 3(a), 

about a 0.3 to 0.6 kW spread in P is observed for each N value due to variations coming 

from the other parameter ranges.  In general, P tends to reduce with increase in number of 

teeth.  When the other parameters are fixed at 22.5Φ = D , 20Ψ = D  and 2.286wdΛ = , 

the database is reduced to 32 designs represented by larger symbols in Fig. 3(a).  This 

subset of data points shows the sole influence of N on P.  Along the curve formed by these 

data points, 0.6P ≈ kW for 20N =  teeth, which is reduced to half when the number of 

teeth is increased to 50.  This suggests that finer pitch gears should have lower mechanical 

power losses as observed experimentally 
(1)

 and theoretically 
(2)

.  Figure 3(b) that plots P 

against normal module m supports the same conclusion in an even more convincing way.  

The 13,500 designs consider cover a module range of 1.5 to 4.4 mm.  Again focusing on 

the subset of data with 22.5Φ = D , 20Ψ = D  and 2.286wdΛ = , an almost linear 

relationship between P and m is observed in Fig. 3(b) obtained by changing N.   In Fig 

3(c), meanwhile, variation of P with the major (outside) diameter od  of gears is illustrated.  

The general trend observed from the larger population is that P increases with od .  In 

other words, longer teeth that result in more sliding increases power losses as well.  

Looking at the same sub-set of the data as Fig. 3(a,b), P is shown to increase in linear 

manner with od , changing from 0.25 kW at 94od =  mm to 0.6 kW at 99od =  mm.  

Figures 3(d-f) show the variation of P with face, profile and total contact ratios 

( t f pε = ε + ε ).  Here, there is no apparent trend between P and fε  and pε .  This is 

because these contact ratios can be changed in different ways that might cause reductions or 

increases in P.  For instance, pε  can be increased conveniently by reducing module as 

well as increasing the major diameter of gears.  The former was shown in Fig 3(b) to 

reduce the P while the latter in Fig 3(c) was shown to increase it.  As a result, the 13,500 

designs plotted in Fig. 3(e) do not follow a trend.  Meanwhile, the same subset of the data 

with 22.5Φ = D , 20Ψ = D  and 2.286wdΛ =  (larger symbols) indicate that P reduces 

with both fε  and pε , influence of pε  being more drastic. 

Figure 4(a) plots P versus normal pressure angle Φ , suggesting that an increase in Φ  

helps reduce P.  Defining a sub-set of the data with 30N =  teeth, 20Ψ = D  and 

2.286wdΛ = , the same figure also shows the variation of this group of designs with Φ .  

This subset of data shows that P is reduced from almost 0.8 kW to 0.4 kW by increasing 

Φ  from 15D  to 25D .  The same trend is observed in Fig. 4(b) for Ψ , but now in a less 

significant way.  On the same figure, it was also shown that increasing Ψ  from 

15D to 30D  for a group of candidate designs with 30N =  teeth, 22.5Φ = D  and 

2.286wdΛ =  reduces P by only about 20%.  Finally, in Fig. 4(c), the sole influence of 

wdΛ  is illustrated, with a sub-set formed by designs having 30N = , 22.5Φ = D  and 

20Ψ = D  showing a sizable increase in P with wdΛ .   

 

Fig. 4 Variation of P with (a) Φ , (b) Ψ , and (c) wdΛ . 

 

Figures 3 and 4 reveal certain trends that help reduce P such as increasing Φ  or 
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reducing od .  Some of these trends can be expected to increase noise excitations while 

hurting the contact and bending stresses as well.  In other words, a design that is very good 

for power loss characteristics might indeed be very poor for its other attributes.  In order to 

illustrate this, the same 13,500 designs were evaluated for their peak-to-peak transmission 

error (TE), and maximum contact and root bending stresses ( cσ  and bσ ) as shown in  

Fig. 5(a-c).  In Fig. 5(a), P versus TE, we choose a candidate Design A (see Table 1 for its 

parameters) that is has the lowest P and TE values (i.e. most efficient and potentially the 

quietest design).  The same Design A is also located in Fig. 5(b,c) to show its cσ  and 

bσ  values.  It is clear here that design A is rather marginal in terms of cσ  and it is 

absolutely one of the worst designs in terms of its bending strength as it has a very high bσ  

value.  Similarly, in Fig. 5(c), we choose a Design B based on combined P and bσ  as a 

favorable design and locate the same design in Fig. 5(a,b) to show that it has very high TE 

value. Similarly, Design C that is good for P and cσ  in Fig. 5(b) is shown to have very 

high bσ .  This indicates clearly that the selection of a design that is good in all attributes 

is complex engineering trade-off.  Using the methodology proposed here, one can sort the 

database of candidate design to identify a design that is acceptable on all five attributes P, 

TE, cσ  and bσ  while it might not necessarily be the best in any single attribute.  

Design D marked in Fig. 5 (and listed in Table 1) represent such a design.  This design was 

obtained by searching the 13,500 candidate designs such that 0.3P < kW,  235bσ <  

MPa, 1.175cσ <  GPa, and the peak-to-peak 0.25TE <  mµ . 

The entire candidate designs used in Figs. 3-5 used a profile crown of 15PM =  µm 

and a lead crown of 12LM =  µm.  Input torque and speed was kept at 250inT =  Nm.  

Design D from Fig. 5 and Table 1 will be used next to determine the combined influence of 

tooth modifications in the form of PM  and LM , and inT  on the efficiency, noise and 

durability metrics.  Tooth modification studies are performed by varying PM  and LM  

between 0 and 30 mµ  for various inT  values.  Figure 6(a) shows variation of P with 

PM  and LM  at three of these discrete inT  values.  Data point D from Fig. 5(a) is also 

marked in this figure.  Here, regardless of inT , increases in PM  help reduce P  with 

severe consequences on TE as shown in Fig. 6(b). Likewise, the corresponding cσ  and 

bσ  in Fig. 6(c) and (d) are shown to increase with PM  and LM , further suggesting that 

the efficiency concerns must be balanced by the other attributes in defining tooth 

modification. 

 

4. Conclusions 

The influence of basic design parameters and tooth surface modifications on the 

mechanical (friction induced) power losses of a helical gear pair was studied.  A helical 

gear mechanical efficiency model based on a mixed EHL lubrication formulations was 

proposed and used to simulate the gear contact conditions of an example helical gear pair 

within ranges of pressure and helix angles, numbers of teeth (module), and working depth 

ratio to assess their impact on mechanical efficiency. Combined influences these parameters 

on power losses were then weighed against transmission error amplitudes, and contact and 

bending stresses to indicate that many designs that have high efficiency might perform 

poorly in terms of noise and durability.  A multi-torque tooth modification study was 

performed at the end by using a design that is equally good in various aspects to show that 

similar contradictions appear in terms of selection of the tooth modifications as well.  The 

proposed helical gear mechanical efficiency model is very computationally efficient 

allowing its use as a tool to aid a gear designer to include gear efficiency as a requirement in 

the development of the gear systems. 
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Fig. 5  Variation of P against (a) peak-to-peak TE, (b) maximum cσ , 

and (c) maximum bσ . 
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Fig. 6  Variation of (a) P, (b) TE, (c) cσ   and (d) bσ with the profile crown PM and lead 

crown LM  at 50,inT =  250 and 500 Nm. 
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 Candidate Designs 

Parameter A B C D 

N 49 28 49 32 

Φ  [deg] 30 30 22.5 30 

Ψ  [deg] 27 19 30 19 

wdΛ  1.85 1.85 2.504 2.068 

od  [mm] 94.16 96.44 95.15 96.42 

Root diameter [mm] 88.01 85.01 87.05 85.23 

m [mm] 1.6638 3.0898 1.6172 2.7036 

Face width [mm] 25 25 25 25 

  

 Table 1 Gear parameters of 4 designs identified in Fig. 4 
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