Influence of Dietary Phosphorus on Renal Phosphate Reabsorption in the Parathyroidectomized Rat

THOMAS H. STEELE and HECTOR F. DELUCA

From the Departments of Medicine and Biochemistry, The University of Wisconsin, Madison, Wisconsin 53706

ABSTRACT Inorganic phosphate (P_i) reabsorption was studied during Pi infusion, after acute or chronic thyroparathyroidectomy (TPTX), in rats stabilized on a high-phosphorus (1% P) or a low-phosphorus (0.02% P) diet. After acute TPTX, there were no consistent differences in Pi reabsorption between the high- and low-phosphorus dietary groups. After chronic TPTX, the rats stabilized on the low-phosphorus diet exhibited nearly complete P_i reabsorption at every plasma P_i level, while the animals receiving the highphosphorus diet manifested a marked phosphaturic response to P_i infusion. In addition, P_i reabsorption was significantly increased in the chronic TPTX lowphosphorus rats which achieved the highest filtered P_i loads, while their urine remained essentially phosphatefree. Dietary phosphorus-dependent alterations in P_i reabsorption may play a significant role in establishing the rate of P_i excretion per nephron under certain circumstances and should be considered in the interpretation of studies investigating renal P_i handling. The ability of phosphorus-depleted animals to maintain a phosphate-free urine during P_i loading would favor the rapid repletion of body phosphorus stores.

INTRODUCTION

For many years, the renal regulation of inorganic phosphate $(P_i)^1$ excretion has been attributed to the tubular reabsorption of appropriate amounts of the P_i filtered by the glomeruli. Pitts originally observed a relationship between the fraction of filtered P_i excreted (FE_{P_i}) and the plasma P_i concentration (1). Subsequently, Pitts and Alexander demonstrated that P_i reabsorption appears to be limited by a maximum transport capacity (Tm_{P_i}) which may be demonstrated by elevating the filtered load of P_i (2). Although several endocrine, metabolic, and physiologic parameters are known to affect P_i reabsorption (3), it is generally thought that parathyroid hormone (PTH) plays a primary role in the physiologic regulation of P_i excretion.

Recent studies in the phosphorus-depleted vitamin D-deficient rat (4), as well as older observations in the rat (5) and man (6, 7), have suggested that P_i reabsorption may be accentuated during phosphorus depletion. Presumably, the excretion of a P_i -free uring during phosphorus depletion has been attributed to hypophosphatemia and the resulting decrease in filtered P_i , both of which are known to decrease the urinary P_i (1, 2). Our results indicate that renal P_i reabsorption is enhanced substantially in the chronically thyroparathyroidectomized phosphorus-depleted rat, independently of the plasma P_i concentration and the degree of extracellular fluid volume expansion.

METHODS

Renal clearance studies were performed in male Holtzman rats weighing 150–250 g which had free access to food and water. They had been stabilized for 2 wk on either a "high-phosphorus" diet containing 1.0% P, or a "low-phosphorus" diet containing 0.02% P, both of which contained adequate vitamin D (8). The high-phosphorus diet contained 1.6% calcium, and the low-phosphorus diet contained 0.6% calcium. The sodium content of the high-phosphorus diet was 10 meq/100 g, and that of the low-phosphorus diet was 14 meq/100 g.

All animals underwent thyroparathyroidectomy (TPTX), either immediately (acute TPTX) or 48 h (chronic TPTX) before the experiments, which commenced at the same hour in the morning. The rats were anesthetized with Inactin

The Journal of Clinical Investigation Volume 57 April 1976.867-874

This work was presented at the National Meeting of the American Federation for Clinical Research, 3 May 1975, and reported in abstract form in *Clin. Res.* 23: 375 A, 1975. *Received for publication 18 August 1975 and in revised form*

³ December 1975.

¹ Abbreviations used in this paper: FE_{Na} , fractional excretion of sodium; FE_{Pi} , fractional excretion of Pi; GFR, glomerular filtration rate; Pi, inorganic phosphate; PTH, parathyroid hormone; TCA, trichloroacetic acid; Tm_{Pi} , maximum transport capacity; TPTX, thyroparathyroidectomy.

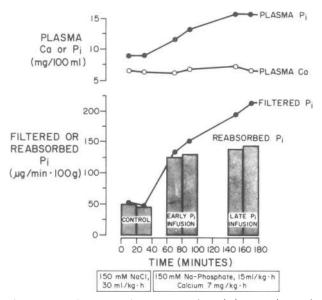


FIGURE 1 Diagrammatic representation of the experimental format. After a two-period control phase during NaCl diuresis, sodium phosphate infusion was begun at half the rate of the previous NaCl infusion. Specimens were collected for "early" and "late" phosphate infusion phases as the plasma and filtered phosphate increased.

(Promonta, Hamburg) 80-100 mg/kg intraperitoneally, and a tracheostomy was performed with PE 360 tubing (Clay Adams, Div. of Becton, Dickinson & Co., Parsippany, N. J.). One carotid artery and both external jugular veins were cannulated with PE 50 tubing. The bladder also was catheterized with PE 50 tubing through a short abdominal incision, and ligated in such a way as to minimize dead space. Each rat received 150 mM NaCl, 10 ml/kg, to replace surgical losses and was placed on an electrically heated platform where the body temperature was maintained at 37-38°C, monitored rectally with a thermistor probe. An 8% inulin solution was administered at a priming dose of 1 ml/kg, and continued as a sustaining infusion at 4 ml/kg·h. In addition, each rat received 150 mM NaCl, 30 ml/kg·h, throughout a preliminary 1-h equilibration interval and during two 20-min control clearance periods. The control periods were not begun until at least 1 h had elapsed after all surgical procedures. Sufficient arterial blood was obtained at the midpoint of each clearance period to allow the separation of 80 μ l of plasma. Urine was collected under mineral oil and the volume determined by differential weighing.

The protocol utilized in the clearance studies is illustrated diagrammatically in Fig. 1. After two control periods. the NaCl infusion was changed to 150 mM sodium phosphate (Na₂HPO₄ and NaH₂PO₄ at approximately a 4:1 ratio, adjusted to pH 7.4) which was administered for the remainder of the study at half the rate of the previous NaCl infusion (i.e., at 15 ml/kg·h). At the time of commencing the phosphate infusion, the 8% inulin was replaced with a similar solution which also contained 0.17% calcium (as calcium chloride) and continued at 4 ml/kg·h, a rate which delivered calcium at 7 mg/kg·h, in order to prevent tetany. During the interval between 20 and 60 min after commencing the phosphate infusion, specimens for two 20-min "early" phosphate infusion clearance period were obtained. Similarly, specimens were obtained for two 20-min "late" phosphate

868 T. H. Steele and H. F. DeLuca

infusion clearance periods during the interval between 100 and 140 min.

Ultrafilterable plasma P_i was determined in separate groups of chronic TPTX rats which had been stabilized on either the high- or low-phosphorus diet. They received the same infusions as the rats in the clearance experiments, either with or without phosphate loading. Plasma was equilibrated with 5% CO₂ under mineral oil and ultrafiltrates were obtained by centrifuging through collodion bags (Schleicher & Schuell, Inc., Keene, N. H.) at 37°C.

Plasma, urine, and plasma ultrafiltrates were diluted appropriately in an acidified 1% lanthanum, 5% trichloroacetic acid (TCA) solution and determinations of inulin and P_i were made by semiautomated colorimetric methods on the lanthanum-TCA supernates as reported previously (9). Calcium was measured by atomic absorption spectrophotometry. Sodium and potassium were measured by flame photometry utilizing a lithium internal standard.

The glomerular filtration rate (GFR) was estimated by the clearance of inulin. Values of GFR, filtered load, and solute excretion are expressed per 100 g of body wt. For each experiment, the results from both clearance periods of each of the three phases were averaged separately. These averages for the control, early phosphate infusion, and late phosphate infusion phases were utilized in the figures and in computing the means for the tables. Statistical comparisons were made by utilizing the paired or unpaired Student's t test, as appropriate (10). Results are expressed in the text as mean \pm SEM.

RESULTS

In five chronic TPTX rats stabilized on the highphosphorus (1% P) diet, the concentration of P_i in plasma ultrafiltrates averaged 107.1±1.8% of the total plasma Pi concentration; ultrafilterable Pi averaged $103.5 \pm 1.4\%$ of total plasma P_i in six other high-phosphorus dietary animals which received phosphate infusions. Similarly, ultrafilterable plasma P_i averaged $103.5 \pm 2.1\%$ of total in six chronic TPTX rats stabilized on the low-phosphorus (0.02% P) diet, and $100.0 \pm 1.5\%$ in seven other low-phosphorus dietary rats which received phosphate infusions. Ultrafilterable Pi neither differed significantly between corresponding high- and low-phosphorus dietary groups, nor was there a statistically significant difference in ultrafilterable Pi between animals which did and did not receive phosphate infusions. Furthermore, ultrafilterable P_i did not differ significantly from total P_i, after phosphate infusion in either group. Because of this and because ultrafilterable Pi was not measured in the animals actually undergoing the clearance experiments, the filtered P_i loads were computed simply as the product of the GFR times the total plasma P_i concentration.

In 16 acute TPTX and 20 chronic TPTX rats undergoing clearance experiments (Fig. 1), GFR remained stable during phosphate infusion (Table I). In both of the low-phosphorus dietary groups, the plasma P_i remained significantly less than in the corresponding high-phosphorus groups, until the late

GFR GFR			Plasma P _i			$FE_{P_i} \times 100$			$FE_{Na} \times 100$		
Control	Early Pi infusion	Late Pi infusion	Control	Early Pi infusion	Late P _i infusion	Control	Early Pi infusion	Late Pi infusion	Control	Early Pi infusion	Late Pi infusior
ml/min · 100 g		mg/100 ml							%		
Acute TPTX											
High-phosphorus	: (1% P) die	t (n = 8)									
0.80	0.77	0.91	8.3	13.6	17.6	1.24	3.34	23.3§	0.75	0.55	0.75
±0.13	±0.10	±0.12	±0.3	±0.5	±1.1	±0.72	±1.34	±5.7	±0.22	±0.10	± 0.12
Low-phosphorus	(0.02% P) d	liet $(n = 8)$									
1.07	0.98	0.84	4.6	10.9	17.5	0.16	0.10	9.29	0.86	0.75	0.62
±0.06	±0.14	± 0.10	± 0.2	± 0.8	± 1.5	±0.03	±0.02	±5.30	±0.26	± 0.22	± 0.30
NS	NS	NS	P < 0.001	P < 0.05	NS	NS	P < 0.05	NS	NS	NS	NS
Chronic (48-h) TP	тх										
High-phosphorus	(1% P) die	t (n = 7)									
1.28	1.15	1.08	9.9	15.1	18.9	10.1	20.85	30.6	1.4	1.5	1.0
±0.10	± 0.13	± 0.10	±0.3	±0.5	± 0.6	±1.9	±3.1	±1.8	±0.3	±0.3	± 0.1
Low-phosphorus	(0.02% P)	diet $(n = 13)$	5)								
1.11	0.86*	0.97	4.3	10.0	17.5	0.19	0.15	0.20	1.1	1.0	0.62
± 0.08	±0.09	±0.09	±0.2	±0.5	±0.9	± 0.02	± 0.06	± 0.05	±0.2	± 0.3	± 0.21
NS	NS	NS	P < 0.001	P < 0.001	NS	P < 0.001	P < 0.001	P < 0.001	NS	NS	NS
Acute vs. chronic											
High-phosphorus P < 0.01	P < 0.05	NS	P < 0.01	P < 0.05	NS	P < 0.005	P < 0.001	NS	NS	P < 0.01	NS
Low-phosphorus	¥ < 0.05	110	1 < 0.01	1 < 0.05	IN D	1 < 0.005	1 < 0.001	113	C M	1 \ 0.01	14.3
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

 TABLE I

 Dietary Phosphorus and P_i Excretionin Acute and Chronic TPTX Rats

Values are mean ±SEM. Symbols indicate significant paired changes from control, within the same experimental group: P < 0.05; P < 0.02; P < 0.01; P < 0.01; P < 0.001. P values indicate unpaired comparisons between different groups during similar experimental phases. NS, not significant.

phosphate infusion phase. During control and early phosphate infusion phases, plasma P_i was elevated significantly in the high-phosphorus chronic TPTX group, as compared to acute TPTX.

In the high phosphorus acute TPTX group, fractional P_i excretion (FE_{P_i}) increased significantly during the late phosphate infusion phase (Table I). In contrast, late phosphate infusion FEP, values in the low-phosphorus acute TPTX group did not increase to a statistically significant degree because of wide variation. In the chronic TPTX rats, FEP, in the high-phosphorus group significantly exceeded that in the low-phosphorus group in all three phases (Table I). Whereas plasma P_i was significantly increased in the former group during control and early phosphate infusion phases, there was no significant difference during late phosphate infusion. Yet, FE_{P_i} averaged 30.6 \pm 1.8% in the high-phosphorus chronic TPTX group, as compared to $0.20\pm0.05\%$ in the low-phosphorus group (P < 0.001). In the lowphosphorus chronic TPTX rats, the urine remained essentially phosphate-free, and FEP, uniformly remained less than 1%, even with plasma Pi values as high as 20 mg/100 ml (Fig. 2).

In the *acute* TPTX animals, corresponding values of filtered P_i and absolute P_i reabsorption never differed significantly between the high- and low-phosphorus dietary groups (Table II). P_i reabsorption per unit GFR was significantly increased in the high-phosphorus

dietary group during control and early phosphate infusion phases. During late phosphate infusion, however, P_i reabsorption per unit GFR was significantly increased in the *low*-phosphorus dietary group. In both acute TPTX groups, absolute P_i reabsorption increased significantly during early phosphate infusion as compared to control values (P < 0.01), but did not show a significant *additional* increase during late phosphate infusion.

In the chronic TPTX animals, filtered P_i, absolute P_i reabsorption, and P_i reabsorption per unit GFR were significantly greater in the high-phosphorus dietary group during the control and early phosphate infusion phases (Table II). During late phosphate infusion, when the filtered P_i loads became nearly equal in these two groups, their absolute Pi reabsorption rates did not differ significantly. As was the case in the acute TPTX rats, P_i reabsorption per unit GFR continued to increase further in the low-phosphorus animals during late phosphate infusion. The low-phosphorus chronic TPTX rats reabsorbed amounts of P_i statistically indistinguishable from their filtered Pi loads during all three experimental phases (Table II, Fig. 3). Absolute P_i reabsorption in the high-phosphorus chronic TPTX rats was significantly less than the filtered load during late phosphate infusion (P < 0.001), and P_i reabsorption never increased to values significantly greater than control.

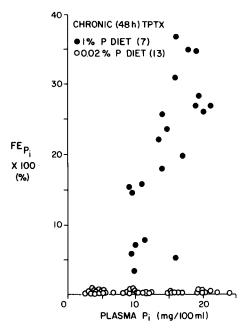


FIGURE 2 FE_{Pi} as a function of plasma P_i in chronically TPTX rats on a high- (1% P) or low- (0.02% P) phosphorus diet. In this and the following figures, each point represents the mean of two clearance periods. Even at plasma P_i concentrations of 20 mg/100 ml, P_i excretion was virtually absent in the rats stabilized on the low-phosphorus diet.

Eight rats of the low-phosphorus chronic TPTX group and all the high-phosphorus chronic TPTX rats achieved filtered P_i values greater than $150 \mu g/min \cdot 100$ g body wt. At these high filtered P_i loads, which averaged 204 ± 16 and $189\pm 9 \mu g/min \cdot 100$ g body wt in the low- and high-dietary phosphorus groups,

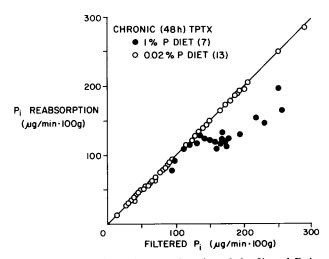


FIGURE 3 P_i reabsorption as a function of the filtered P_i in chronic TPTX rats. In animals stabilized on the low-phosphorus diet, more than 99% of the filtered P_i was reabsorbed. In contrast, rats on the high-phosphorus diet did not increase P_i reabsorption significantly during phosphate loading.

870 T. H. Steele and H. F. DeLuca

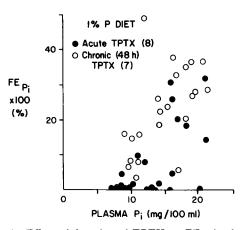


FIGURE 4 Effect of duration of TPTX on FE_{P_i} in the highphosphorus rats. Because studies commenced at lower plasma P_i values in the acute TPTX rats, FE_{P_i} values tended to be low in many of those animals. After phosphate infusion, FE_{P_i} values in the acute TPTX group did not differ significantly from the corresponding chronic TPTX animals.

respectively, the simultaneous absolute P_i reabsorption values averaged 203 ± 16 and 138 ± 7 µg/min·100 g body wt, respectively (P < .001). Also, when filtered P_i was greater than 150 µg/min·100 g body wt, P_i reabsorption per unit GFR averaged 172 ± 12 and 118 ± 6 µg/ml, respectively, in the low- and highdietary phosphorus chronic TPTX groups (P < 0.001). Therefore, absolute P_i reabsorption was enhanced significantly in the phosphorus-depleted chronic TPTX rats with the largest filtered P_i loads.

Fractional sodium excretion (FE_{Na}) was variable, but did not change in any consistent manner during phosphate infusion in the four groups of rats (Table I). FE_{Na} was correlated significantly with FE_{Pi} in the low phosphorus acute (r = 0.51) and chronic TPTX (r = 0.31) groups (P < 0.05 for both), but not in the high-phosphorus groups.

Control plasma calcium did not differ significantly between the two acute TPTX groups, but plasma calcium decreased significantly during late phosphate infusion in the low-phosphorus acute TPTX group (Table III). Conversely, control plasma calcium was increased in the chronic TPTX low-phosphorus group (P < 0.001), although not when compared to the acute TPTX groups. During phosphate infusion, plasma calcium values decreased in the low-phosphorus chronic TPTX group and increased in the highphosphorus chronic TPTX group (P < 0.001) in both) so that, by late phosphate infusion, they were similar (Table III).

Substantive differences in renal P_i handling between corresponding acute and chronic TPTX groups were not present (Table I). Although the degree of variation was wide, FE_{P_i} values tended to be similar in magnitude, at any plasma P_i level in the high-phosphorus

	Filtered Pi			Absolute P _i reabsorption			P _i reabsorption per unit GFR		
	Control	Early Pi infusion	Late Pi infusion	Control	Early Pi infusion	Late Pi infusion	Control	Early Pi infusion	Late Pi infusion
	µg/min · 100 g			μg/min · 100 g			µg/ml		
Acute TPTX									
High-phosphorus (1% P)	65	103§	154‡	64	99§	119	82	132	138
diet $(n = 8)$	±10	±13	±19	±10	±12	±17	±3	±6	±6
Low-phosphorus (0.02% P)	49	103§	145*	49	102\$	130	46	109	161
diet $(n = 8)$	±4	±13	±19	±4	± 13	±18	± 2	±8	±9
	NS	NS	NS	NS	NS	NS	P < 0.001	P < 0.05	P < 0.05
Chronic (48 h) TPTX									
High-phosphorus (1% P)	126	171‡	201*	121	135	143	89	120§	132
diet $(n = 7)$	±9	±16	±13	±12	±12	±9	± 3	±7	±7
Low-phosphorus (0.02% P)	48	84§	169	47	84§	169	42	100	174
diet $(n = 13)$	±4	±10	±16	±4	±10	±16	±2	±5	±9
	P < 0.001	P < 0.001	NS	P < 0.001	P < 0.01	NS	P < 0.001	P < 0.05	P < 0.005
Acute vs. chronic TPTX									
High-phosphorus	P < 0.005	P < 0.01	NS	P < 0.01	P < 0.05	NS	NS	NS	NS
Low-phosphorus	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE II Effect of Dietary Phosphorus on P_i Reabsorption

Values are mean ±SEM. Symbols reflect paired statistical comparisons with the preceding phase, within the same group (i.e., between "early" and "control" phases, and between "late" and "early" phases) as follows: * P < 0.05; * P < 0.02; * P < 0.01; || P < 0.001; otherwise, P > 0.1. P values given within the table reflect unpaired statistical comparisons, for the same phase, between high- and low-phosphorus dietary groups and between corresponding acute and chronic TPTX groups. NS, not significant (P > 0.05).

acute and chronic TPTX groups (Fig. 4). Similarly, at any filtered P_i value, P_i reabsorption was not significantly enhanced in the acute TPTX high-phosphorus group (Fig. 5).

Because all the rats were studied at body weights of 150-250 g, the high-phosphorus groups were younger at the time of study because of impaired growth within the phosphorus-deficient groups. To determine if age differences were important in the control of P_i reabsorption, four older chronic TPTX rats were studied after stabilization on the 1% phosphorus diet. These animals weighed 395-398 g, and their GFR averaged

 1.11 ± 0.09 ml/min·100 g. Control plasma P_i, 48 h after TPTX, averaged 8.8 ± 0.3 mg/100 ml and the corresponding FE_{P_i} was $10.9 \pm 2.3\%$. During early phosphate infusion, plasma P_i averaged 13.5 ± 0.9 mg/100 ml and FE_{Pi} was 22.6 \pm 2.2%. During late phosphate infusion, plasma P_i was 19.0 ± 0.9 mg/100 ml and FE_{P_i} averaged $42.8 \pm 2.5\%$. Thus, P_i reabsorption was not accentuated in these older rats.

DISCUSSION

These experiments suggest that the dietary phosphorus content directly or indirectly influences P_i transport

Plasma Calcium during P _i Infusion								
	Control periods							
	mg/100 ml							
Acute TPTX								
High-phosphorus diet $(n = 8)$	7.2 ± 0.3	NS	7.7±0.3*	P < 0.005				
Low-phosphorus diet $(n = 8)$	6.9±0.5		$5.6 \pm 0.3^*$	- (0.000				
Chronic TPTX								
High-phosphorus diet $(n = 7)$	4.1 ± 0.4	<i>P</i> < 0.001	5.3 ± 0.4‡	NS				
Low-phosphorus diet $(n = 13)$	7.4 ± 0.3		5.7 ± 0.2 ‡					

TABLE III

Values are mean \pm SEM. Symbols indicate paired comparisons within the same group: * P < 0.01; $\ddagger P < 0.001$. P values indicate unpaired statistical comparisons between high- and low-phosphorus groups. NS, not significant (P > 0.05).

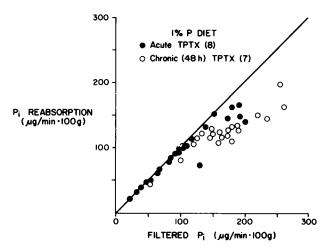


FIGURE 5 Absolute P_i reabsorption in acute and chronic TPTX rats receiving the high-phosphorus diet. Filtered P_i was lower in many acute TPTX studies, and the corresponding P_i reabsorption was nearly complete. After phosphate infusion, P_i reabsorption in the acute and chronic TPTX groups did not differ significantly.

after prolonged absence of PTH, and independently of the plasma Pi and filtered Pi. Chronic TPTX animals receiving the 0.02% phosphorus diet manifested a markedly elevated renal P_i threshold as demonstrated by FE_{P_i} values consistently less than 1%, even when the plasma was as great as 20 mg/100 ml. In the acute TPTX rats, only three of the low-phosphorus group manifested FE_{Pi} values greater than 5% during late phosphate loading. In contrast, several high-phosphorus acute TPTX rats manifested very low FE_{Pi} values during hyperphosphatemia (Fig. 4). Amiel and his collaborators reported that chronically parathyroidectomized rats had an FEPi of 10.9% at a plasma Pi of 10.9 mg/100 ml, while acutely parathyroidectomized rats had an FE_{P_i} of 2.5% at a plasma P_i of 9.2 mg/100 ml (11). Many investigators have reported low FE_{P_i} values in the rat after acute parathyroidectomy (11-16). Our results demonstrate that the acute TPTX rat on a high-phosphorus intake can readily increase FE_{Pi} during phosphate loading (Fig. 4).

The chronic TPTX *low*-phosphorus rats with the greatest filtered P_i loads demonstrated significantly increased absolute P_i reabsorption when compared to the corresponding high-phosphorus animals with filtered P_i loads in excess of $150 \,\mu g/\min \cdot 100 \,g$ body wt. Indeed, the high-phosphorus chronic TPTX rats manifested a Tm_{P_i} of $120-140 \,\mu g/\min \cdot 100 \,g$ (Table II), while no such tendency to develop a Tm_{P_i} could be discerned in the low-phosphorus group. Finally, during late phosphate infusion, P_i reabsorption per unit GFR was significantly greater in both the acute and chronic TPTX low-phosphorus rats than in their corresponding high-phosphorus counterparts.

Calcium infusion has been reported both to increase (17) and to decrease (18) P_i reabsorption, and hypercalcemia has been reported to reduce the phosphaturic response to volume expansion in the rat (19). In our two groups of acute TPTX rats, control plasma calcium values were similar, but plasma calcium decreased substantially during phosphate infusion in the lowphosphorus dietary group. If Pi reabsorption varies directionally with the plasma calcium (17, 19), then P_i reabsorption in the low-phosphorus acute TPTX rats might have been impaired secondary to hypocalcemia during late phosphate infusion. Within the chronic TPTX groups, plasma calcium was initially greater in the low-phosphorus rats, but values in the two groups became nearly equal by late phosphate infusion. Yet, P_i reabsorption remained virtually complete in the low-phosphorus group.

A correlative relationship between P_i and sodium reabsorption has been demonstrated for both the proximal tubule (20) and whole kidney (21, 22) of the dog during saline loading. Gradowska and co-workers could not elicit a phosphaturic response in the dog during saline loading after acute TPTX, but a brisk phosphaturic response did occur during volume expansion in the chronic TPTX dog (23). Hebert et al. demonstrated that P_i reabsorption could be diminished by saline loading in the acute TPTX dog when the plasma P_i was elevated by phosphate infusion (24). Our studies were performed after a moderate degree of saline loading, but the protocol was designed to diminish the amount of progressive volume expansion because sodium infusion during phosphate loading occurred at only half the previous rate. That this was relatively successful is suggested by the lack of a progressive increase in FE_{Na} (Table I). FE_{Pi} and FE_{Na} were correlated slightly in both low-phosphorus groups. However, a diminished sodium excretion was not required for the increased urinary P_i threshold and the relatively increased absolute Pi reabsorption accompanying the low-phosphorus intake.

Vitamin D (25, 26) and its metabolites (26, 27), when administered in pharmacologic doses, accelerate P_i reabsorption, although the presence of PTH may be required for such an action in the rat (28). Recently, we have carried out phosphate loading studies in chronic TPTX phosphorus-depleted rats which were also vitamin D-deficient (4). Even at very high plasma P_i levels during phosphate infusion, those animals reabsorbed essentially all the filtered P_i , similarly to the present chronic TPTX low-phosphorus animals which were not deficient in vitamin D. Thus, the avid reabsorption of P_i during phosphorus depletion is not impaired during vitamin D deficiency, at least if PTH is absent. Costanzo et al., on the other hand, have reported the presence of a vitamin D-reversible urinary

872 T. H. Steele and H. F. DeLuca

 P_i "leak" in *acutely* parathyroidectomized D-deficient rats (29). Vitamin D and its metabolites probably are not necessary for the development of phosphaturia during phosphate loading in rats stabilized on a high phosphorus intake. In acute TPTX rats stabilized on a vitamin D-deficient 1% phosphorus diet, both FE_{Pi} and absolute P_i reabsorption are similar to values encountered in animals receiving the same diet not deficient in vitamin D (T. H. Steele and H. F. DeLuca, unpublished observations). Therefore, vitamin D deficiency in high- and low-dietary phosphorus TPTX animals does not appear to measurably accelerate or impair P_i reabsorption.

Because the kidney provides a major route for the elimination of P_i from the body, the rate of P_i excretion per nephron must reflect phosphorus intake if balance is to be maintained. In the dog with experimental chronic renal disease, Slatopolsky and coworkers demonstrated that fractional P_i reabsorption was strikingly diminished, but increased to nearly normal values after TPTX (30). They postulated that PTH increases P_i excretion per nephron under those conditions where the dietary phosphorus intake per functioning nephron is disproportionately great (30). Indeed, studies in normal man have demonstrated that phosphate ingestion results in a decline in the ionized serum calcium and in an elevated serum PTH (31). Slatopolsky et al. also have shown that the reduction in fractional P_i reabsorption, normally accompanying a sequential reduction of the nephron population, can be prevented in dogs maintained on a low-phosphorus diet (32). Other studies from the same laboratory have demonstrated that a progressive reduction in the dietary phosphorus intake, proportionate to the degree of reduction in GFR, resulted in the maintenance of a normal fractional P_i reabsorption in dogs with reduced nephron populations (33). Furthermore, an inverse relationship between fractional Pi reabsorption and serum PTH levels suggested that the parathyroids were responsible for the adaptive increase in Pi excretion per nephron (32, 33).

On the other hand, Van Stone and Hano have reported that P_i excretion varies directly with the dietary phosphorus in parathyroidectomized rats receiving a constant amount of exogenous PTH (34). Although their experiments indicated that varying amounts of PTH were not necessary for the regulation of P_i excretion per nephron, the presence of PTH might have been necessary to promote P_i excretion. Also, their changes in P_i excretion could have resulted from alterations in plasma P_i . Recently, Swenson et al. have indicated that TPTX vitamin D-treated dogs subjected to partial renal ablation could increase FE_{P_i} and maintain plasma P_i values comparable to control non-TPTX animals with similar reductions

in renal function (35). In those experiments, the role of vitamin D. the dietary phosphorus content, and the degree of extracellular fluid volume expansion can not be evaluated.

The data presented here indicate that the renal P_i threshold and Pi reabsorption can be modulated according to the dictates of the antecedent dietary phosphorus intake, independently of the plasma P_i and filtered Pi per se, even after PTH has been absent for nearly 48 h. Although the action of PTH is vitally important to the maintenance of normophosphatemia under usual circumstances, an additional phosphorusdependent system for the regulation of P_i reabsorption also appears to exist. This system might function primarily to facilitate the rapid repletion of body phosphorus stores during the correction of phosphate depletion. At present, however, the physiologic importance of this putative PTH-independent system is not known. Nevertheless, the present results do emphasize the necessity of controlling the dietary phosphorus intake in studies of renal P_i reabsorption, especially if observations are made during the hypofunction or absence of the parathyroid glands.

ACKNOWLEDGMENTS

We gratefully acknowledge the highly capable assistance of Kathryn Dudgeon, Catherine Larmore, and Yoko Tanaka in the performance of these experiments.

This work was supported by U. S. Public Health Service grants AM-14881, AM-15512, and AM-15162.

REFERENCES

- Pitts, R. F. 1933. This excretion of urine in the dog. Am. J. Physiol. 106: 1-8.
- 2. Pitts, R. F., and R. S. Alexander. 1944. The renal reabsorptive mechanism for inorganic phosphate in normal and acidotic dogs. Am. J. Physiol. 142: 648-662.
- 3. Knox, F. G., E. G. Schneider, L. R. Willis, J. W. Strandhoy, and C. E. Ott. 1973. Site and control of phosphate reabsorption by the kidney. *Kidney Int.* 3: 347-353.
- Steele, T. H., J. E. Engle, Y. Tanaka, R. S. Lorenc, K. L. Dudgeon, and H. F. DeLuca. 1975. On the phosphatemic action of 1,25-dihydroxyvitamin D₃. Am J. Physiol. 229: 489-495.
- Shikita, M., S. Tsurufuji, and Y. Ito. 1962. Adaptation in renal phosphorus excretion under the influence of parathyroids; a study of unilaterally catheterized rats. *Endocrinol. Jpn.* 9: 171-180.
- Thompson, D. D., and H. H. Hiatt. 1957. Renal reabsorption of phosphate in normal human subjects and in patients with parathyroid disease. J. Clin. Invest. 36: 550-556.
- Thompson, D. D., and H. H. Hiatt. 1957. Effects of phosphate loading and depletion on the renal excretion and reabsorption of inorganic phosphate. J. Clin. Invest. 36: 566-572.
- Tanaka, Y., and H. F. DeLuca. 1974. Role of 1,25dihydroxy-vitamin D₃ in maintaining serum phosphorus and curing rickets. *Proc. Natl. Acad. Sci.*, U. S. A. 71: 1040-1044.

Dietary P and PO, Reabsorption 873

- 9. Steele, T. H., and K. L. Dudgeon. 1974. Reabsorption of lithium and phosphate by the rat kidney: Role of the parathyroids. *Kidney Int.* 5: 196-203.
- Snedecor, G. W., and W. G. Cochran. 1967. Statistical Methods. Iowa State University Press, Ames. 6th edition. 91-119.
- Amiel, C., H. Kuntziger, and G. Richet. 1970. Micropuncture study of handling of phosphate by proximal and distal nephron in normal and parathyroidectomized rat. Evidence for distal reabsorption. *Pfluegers Arch. Eur. J. Physiol.* 317: 93-109.
- Brunette, M. G., L. Taleb, and S. Carriere. 1973. Effect of parathyroid hormone on phosphate reabsorption along the nephron of the rat. Am. J. Physiol. 225: 1076-1081.
- 13. Frick, A. 1969. Mechanism of inorganic phosphate diuresis secondary to saline infusions in the rat. *Pfluegers Arch. Eur. J. Physiol.* **313**: 106-122.
- Frick, A. 1971. Parathormone as a mediator of inorganic phosphate diuresis during saline infusion in the rat. *Pfluegers Arch. Eur. J. Physiol.* 325: 1-13.
- 15. Frick, A. 1972. Proximal tubular reabsorption of inorganic phosphate during saline infusion in the rat. Am. J. Physiol. 223: 1034-1040.
- Maesaka, J. K., M. F. Levitt, and R. G. Abramson. 1973. Effect of saline infusion on phosphate transport in intact and thyroparathyroidectomized rats. Am. J. Physiol. 225: 1421-1429.
- 17. Lavender, A. R., and T. N. Pullman. 1963. Changes in inorganic phosphate excretion induced by renal arterial infusion of calcium. Am. J. Physiol. 205: 1025-1032.
- Eisenberg, E. 1965. Effects of serum calcium level and parathyroid extracts on phosphate and calcium excretion in hypoparathyroid patients. J. Clin. Invest. 44: 942-946.
- 19. Popovtzer, M. M., and J. B. Robinette. 1974. The effects of 25-OH-vitamin D_a and hypercalcemia on renal handling of phosphorus: evidence for two reabsorptive mechanisms for phosphorus. *Clin. Res.* 22: 477A (Abstr.).
- Puschett, J. B., Z. S. Agus, D. Senesky, and M. Goldberg. 1972. Effects of saline loading and aortic obstruction in proximal phosphate transport. Am. J. Physiol. 223: 851-857.
- Massry, S. G., J. W. Coburn, and C. R. Kleeman. 1969. The influence of extracellular volume expansion on renal phosphate reabsorption in the dog. J. Clin. Invest. 48: 1237-1245.
- Suki, W. N., M. Martinez-Maldonado, D. Rouse, and A. Terry. 1969. Effect of expansion of extracellular fluid volume on renal phosphate handling. J. Clin. Invest. 48: 1888-1894.
- Gradowska, L., S. Caglar, E. Rutherford, H. Harter, and E. Slatopolsky. 1973. On the mechanism of the phospha-

turia of extracellular fluid volume expansion in the dog. *Kidney Int.* 3: 230-237.

- Hebert, C. S., D. Rouse, G. Eknoyan, M. Martinez-Maldonado, and W. N. Suki. 1972. Decreased phosphate reabsorption by volume expansion in the dog. *Kidney Int.* 2: 247-252.
- 25. Gekle, D., J. Ströder, and D. Rostock. 1971. The effect of vitamin D on renal inorganic phosphate reabsorption of normal rats, parathyroidectomized rats, and rats with rickets, *Pediatr. Res.* 5: 40-52.
- Puschett, J. B., J. Moranz, and W. S. Kurnick. 1972. Evidence for a direct action of cholecalciferol and 25hydroxycholecalciferol on the renal transport of phosphate, sodium, and calcium. J. Clin. Invest. 51: 373-385.
- Puschett, J. B., P. C. Fernandez, I. T. Boyle, R. W. Gray, J. L. Omdahl, and H. F. DeLuca. 1972. The acute renal tubular effects of 1,25-dihydroxycholecalciferol. *Proc.* Soc. Exp. Biol. Med. 141: 379-384.
- Popovtzer, M. M., J. B. Robinette, H. F. DeLuca, and M. F. Holick. 1974. The acute effect of 25-hydroxycholecalciferol on renal handling of phosphorus. Evidence for a parathyroid hormone-dependent mechanism. J. Clin. Invest. 53: 913-921.
- Costanzo, L. S., P. R. Sheehe, and I. M. Weiner. 1974 Renal actions of vitamin D in D-deficient rats. Am. J.. Physiol. 226: 1490-1495.
- Slatopolsky, E., L. Gradowska, C. Kashemsant, R. Keltner, C. Manley, and N. S. Bricker. 1966. The control of phosphate excretion in uremia. J. Clin. Invest. 45: 672-677.
- Reiss, E., J. M. Canterbury, M. A. Bercovitz, and E. L. Kaplan. 1970. The role of phosphate in the secretion of parathyroid hormone in man. J. Clin. Invest. 49: 2146-2149.
- 32. Slatopolsky, E., S. Caglar, J. P. Pennell, D. D. Taggart, J. M. Canterbury, E. Reiss, and N. S. Bricker. 1971. On the pathogenesis of hyperparathyroidism in chronic experimental renal insufficiency in the dog. J. Clin. Invest. 50: 492-499.
- 33. Slatopolsky, E., S. Caglar, L. Gradowska, J. Canterbury, E. Reiss, and N. S. Bricker. 1972. On the prevention of secondary hyperparathyroidism in experimental chronic renal disease using "proportional reduction" of dietary phosphorus intake. *Kidney Int.* 2: 147-151.
- 34. Van Stone, J. C., and J. Hano. 1972. Phosphate excretion in the parathyroidectomized rat receiving parathyroid hormone. *Metab. Clin. Exp.* 21: 849-854.
- 35. Swenson, R. S., J. R. Weisinger, J. L. Ruggeri, and G. M. Reaven. 1975. Evidence that parathyroid hormone is not required for phosphate homeostasis in renal failure. *Metab. Clin. Exp.* 24: 199-204.