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Abstract

For a semiprime that consists in two distinct odd prime divisors, this article makes an investigation on the distribution of
the small divisor by analyzing the divisor-ratio that is calculated by the big divisor divided by the small one. It proves that,
the small divisor must be a divisor of an odd integer lying in an interval that is uniquely determined by the divisor-ratio,
and the length of the interval decreases exponentially with the increment of the ratio. Accordingly, a big divisor-ratio
means the small divisor can be found in a small interval whereas a small divisor-ratio means it has to find the small divisor
in a large interval. The proved theorems and corollaries can provide certain theoretical supports for finding out the small
divisor of the semiprime.
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1. Introduction

A semiprime is an odd composite number N that has exactly two distinct prime divisors, say p and q, such that 3 ≤ p < q.
Factorization of the semiprimes has been an active topic in the world since the RSA challenge was published due to the
close relationship between the semiprimes and the RSA numbers, as were introduced books (Surhone, 2011 and 2013).
It is believed that, a valid and successful method to factorize a large semiprime rapidly might be a key to open the door
of solving the difficult problem of integer factorization. It is known that the GNFS is regarded to be the fastest known
general-purpose method to factorize large integers, but the vast amounts of memory that it requires in the computation
leaves less chance for an ordinary computer to perform it (Wang Q, 2016). Accordingly, finding an effective approach
to factorize a semiprime still remains a research work for researchers all over the world, as stated in (Duta, 2016) and
(WANG X,2017 RSA). In fact, there have been many papers to investigate new effective approaches. For example, Silva
J (Silva J, 2010) gave an approach to factorize the semiprime of two equal-sized divisors, Wilson K E (Wilson K E, 2011)
attempted factoring semiprimes using PG2

N prime graph multiagent search, Kloster K ( Kloster K, 2011) and Kurzweg U H
(Kurzweg U H, 2012) tried to factorize a semiprime n by estimating the Euler’s totient ϕ(n) , Verkhovsky B S (Verkhovsky
B S, 2012) attempted to do the factorization of semiprimes based on analysis of a sequence of modular elliptic equations,
Grosshans F and his partners ( Grosshans F, 2015) imagined to factorize the safe semiprimes with Quantum computer,
Khadir (Khadir, 2016) experimented factoring multi-power RSA moduli with primes sharing least or most significant bits,
Zhang H (Zhang H, 2013) and Zheng M (Zheng M, 2017) tested respectively factorization with small prime difference. It
can see from these literatures that, a better approach is still in need because there has no report to factorize a big semiprime
on an ordinary computer except Kurzweg(Kurzweg U H,2018) who factorized a semiprime of 40 decimal digits with the
help of MAPLE in April,2018.

In February 2017, WANG X (WANG X, 2017 Genetic) introduced an approach that can exactly locate the divisors of
a composite odd number in respectively definite intervals and proposed an algorithm that can factorize composite odd
integers. Nevertheless,since the algorithm is still slow in factoring big semiprimes, as stated in (WANG X, 2017 RSA),
this article, in order to know clearly the semiprimes and to develop more efficient algorithms to factorize a big semiprime,
follows the ideas in (WANG X, 2017 Genetic) and (WANG X, 2017 RSA) to make an investigation on distribution of the
semiprime’s divisor. By analyzing the divisor-ratio k = q/p of a semiprime N = pq with 3 ≤ p < q, this paper proves
several theorems and corollaries to discover p’s distribution, as presented in the following sections. Section 2 lists the
preliminaries for the later sections; section 3 proves the mathematical foundations.
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2. Preliminaries

This section lists the preliminaries that include definitions, symbols and lemmas, which are necessary for later sections.

2.1 Symbols and Notations

In this whole article, a semiprime N = pq means p and q are both odd prime numbers and 3 ≤ p < q. An odd interval
[a, b] is a set of consecutive odd numbers that take a as the lower bound and b as the upper bound; for example, [3, 11] =
{3, 5, 7, 9, 11}. Symbol ⌊x⌋ is the floor function, an integer function of real number x that satisfies ⌊x⌋ ≤ x < ⌊x⌋+1; symbol
GCD means the greatest common divisor; symbol TN means a valuated binary tree that is rooted by N and symbol N(k, j)
is a node at the j-th position on level k of TN , as defined in [?]; when m > 0, eb

m = N(m+1,2m−1−1) = 2mN − 1 is the rightmost
node on level m in the left branch of TN , ep

m = 2mN − p and eq
m = 2mN − q are respectively the first p’s multiple-node and

the first q’s multiple-node that are left to eb
m; by default, e0

m = eb
m − 2(

⌊ √
N+1
2

⌋
− 1). Symbol A ∆

= B
2 ,which was defined in

(WANG X, 2018 Integer Function), means A is half of B.

2.2 Lemmas

Lemma 1 (See in (FU D,2017)) An odd interval [a, b] contains b−a
2 + 1 consecutive odd numbers.

Lemma 2 (See in (WANG X, 2017 Genetic)) Let N = pq be an odd composite number such that 2α+1 + 1 ≤ N ≤ 2α+2 − 1
, where p, q and α are positive integers with 3 ≤ p < q and α > 2; let symbol eb

m+i be the rightmost node on level m + i in
the left branch of TN , symbols ep

m+i and eq
m+i be respectively the first p’s-multiple-node and the first q’s multiple-node that

are left to eb
m+i, where m =

⌊
log2N

⌋ − 1 and i = 0, 1, ...; let odd interval [en
m+i, e

b
m+i] contains n consecutive odd numbers;

then the following statements hold.
(1). en

m+i = eb
m+i − 2(n − 1);

(2). ep
m+i lies in odd interval [e0

m+i, e
b
m+i] and there are p+1

2 nodes from ep
m+i to eb

m+i, where e0
m+i = eb

m+i − 2(
⌊ √

N+1
2

⌋
− 1) from

which to eb
m+i there are

⌊ √
N+1
2

⌋
nodes, as illustrated in figure 1.

Figure 1. Locations of p’s multiple-nodes (m > 4)

Lemma 3 (See in (WANG X, 2017 Bound and 2018 Integer Function)) Let θ be a positive real number and Θ(x) =
1
2

√
1
x −

θ+1
2

√
1

x+1 +
θ
2

√
1

x+2 ; then 0 < θ ≤ 1 yields Θ(x) > 0, and θ > 1 plus x > 2
3√
θ2−1

yields Θ(x) < 0. Particularly, when
x ≥ 2 , it holds

− 512

(x + 2)
√

x + 2
<

1
√

x
− 3
√

x + 1
+

2
√

x + 2
< − 1

512x3
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Lemma 4 (See in (WANG X, 2018 Integer Function)) Let a be a given positive constant real number and x be a variable
on (0,∞). Define d(x) and its first order difference ∆x by

d(x) =
⌊
1
2

(1 +
√

a
x

)
⌋

and

∆x = d(x) − d(x + 1) =
⌊
1
2

(1 +
√

a
x

)
⌋
−
⌊
1
2

(1 +
√

a
x + 1

)
⌋

then
(1) It is always holds  √

a

2((x + 1)
√

x + x
√

x + 1)

 ≤ ∆x ≤
 √

a

2((x + 1)
√

x + x
√

x + 1)

 + 1

(2) For a given positive real number ω, it holds

∆x − ω∆x+1 ≥
⌊
1
2

√
a
x
− ω + 1

2

√
a

x + 1
+
ω

2

√
a

x + 2

⌋
+ 2{ω}(

⌊
1
2

√
a

x + 1
− 1

2

√
a

x + 2

⌋
− ω − 1

and

∆x − ω∆x+1 ≤
⌊
1
2

√
a
x
− ω + 1

2

√
a

x + 1
+
ω

2

√
a

x + 2

⌋
+ ω + 2

Furthermore, for given real numbers αand β with 0 ≤ α < 1 and β > 1, there always exists an x0 such that, when x > x0
it holds

α∆x+1 < ∆x < β∆x+1

Lemma 5 (See in (WANG X, 2018 Integer Function)) Suppose k1 and k2 are positive integers with k1 < k2, a is real

with a > max(k1 + 1, k2 + 1) and b is a constant real number; let s1 =

⌊
1
2 (1 +

√
a

k1+1 )
⌋
+ 1, s2 =

⌊
1
2 (1 +

√
a

k2+1 )
⌋
+ 1,

b1 =

⌊
1
2 (1 +

√
a
k1

)
⌋

and b2 =

⌊
1
2 (1 +

√
a
k2

)
⌋
; then it holds

l1 < r1 = l2 < r2

where l1 = b− 2(b1 − 1), l2 = b− 2(b2 − 1), r1 = b− 2(s1 − 1) and r2 = b− 2(s2 − 1). Lemma 6 (See in (WANG X, 2018
Integer Function)) For real number a > 0, let ∆0 =

⌊ √
a+1
2

⌋
, ∆1 =

⌊ √
a

4+2
√

2

⌋
, ∆2 =

⌊ √
a

2(2
√

3+3
√

2)

⌋
and ∆3 =

⌊ √
a

2(4
√

3+3
√

4)

⌋
; then

∆0 ≥ 26 yields ∆1 + ∆2 >
1
4∆0 and it always holds ∆1 + ∆2 + ∆3

∆
= 1

2∆0.

3. Main Results and Proofs

Theorem 1 Suppose N = pq is an odd composite number such that 3 ≤ p < q and kp ≤ q < (k + 1)p for some

positive integer k; then p can be found in interval [ekl
m, e

kr
m ] whose length is at most 1 +

⌊ √
N

2((k+1)
√

k+k
√

k+1)

⌋
, where ekl

m =

eb
m − 2(

⌊
1
2 (1 +

√
N
k )
⌋
− 1), ekr

m = eb
m − 2

⌊
1
2 (1 +

√
N

k+1 )
⌋

and eb
m = 2mN − 1.

Proof The inequality kp ≤ q < (k + 1)p yields kp2 ≤ N = pq < (k + 1)p2; namely,√
N

k + 1
< p ≤

√
N
k

(1)

That is
1
2

(1 +

√
N

k + 1
) <

p + 1
2
≤ 1

2
(1 +

√
N
k

) (2)

Referring to the definition of the floor function and its property (P13) in (WANG X, 2017 Floor Function), it yields12(1 +

√
N

k + 1
)

 < p + 1
2
≤
12(1 +

√
N
k

)
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namely 12(1 +

√
N

k + 1
)

 + 1 ≤ p + 1
2
≤
12(1 +

√
N
k

)

 (3)

Let ls =
⌊

1
2 (1 +

√
N

k+1 )
⌋
+ 1 and lb =

⌊
1
2 (1 +

√
N
k )
⌋
; then (3) is rewritten by

ls ≤ p + 1
2
≤ lb (4)

Consider the level m of TN with m > 2. Let ekl
m = eb

m − 2(lb − 1) = eb
m − 2(

⌊
1
2 (1 +

√
N
k )
⌋
− 1) and ekr

m = eb
m − 2(ls − 1) =

eb
m−2

⌊
1
2 (1 +

√
N

k+1 )
⌋
; then by Lemma 2 it knows ep

m, which has a common divisor p with N, is in the odd interval [ekl
m, e

kr
m ],

as shown in figure 2. Let

Figure 2. Locations of ep
m(m > 2)

∆k =
ekr

m − ekl
m

2
+ 1 =

12(1 +

√
N
k

)

 − 12(1 +

√
N

k + 1
)

 (5)

then by Lemma 1, ∆k is the number of nodes contained in the odd interval [ekl
m, e

kr
m ]. By Lemma 5(1), it knows √

N

2((k + 1)
√

k + k
√

k + 1)

 ≤ ∆k ≤
 √

N

2((k + 1)
√

k + k
√

k + 1)

 + 1 (6)

�

Corollary 1 Suppose N = pq is an odd composite number; then N can be factorized in at most 1 +
⌊ √

N
4+2
√

2

⌋
steps of

searches.

Proof k = 1 is the smallest value of k in Theorem 1; hence it takes at most 1 +
⌊ √

N
4+2
√

2

⌋
steps of searches to find ep

m that
has a common divisor p with N.

�

Corollary 2 Suppose N = pq is an odd composite number and k =
⌊

q
p

⌋
≥ 1 ; then ep

m ∈ [ekl
m, e

kr
m ], where m =

⌊
log2N

⌋ − 1,

ekl
m = eb

m − 2(
⌊

1
2 (1 +

√
N
k )
⌋
− 1), ekr

m = eb
m − 2

⌊
1
2 (1 +

√
N

k+1 )
⌋

and eb
m = 2mN − 1.

Proof (Omitted)

�
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Theorem 2 Suppose N > 1 is an odd integer and k1 < k2 are positive integers. Let lsk1 =

⌊
1
2 (1 +

√
N

k1+1 )
⌋
+ 1,

lsk2 =

⌊
1
2 (1 +

√
N

k2+1 )
⌋
+ 1, lbk1 =

⌊
1
2 (1 +

√
N
k1

)
⌋

and lbk2 =

⌊
1
2 (1 +

√
N
k2

)
⌋
; then it holds

ekl1
m < ekr1

m ≤ ekl2
m < ekr2

m

where ekl1
m = eb

m − 2(lbk1 − 1), ekl2
m = eb

m − 2(lbk2 − 1), ekr1
m = eb

m − 2(lsk1 − 1) and ekr2
m = eb

m − 2(lsk2 − 1).
Particularly, when k2 = k1 + 1 it holds

ekl1
m < ekr1

m = ekl2
m < ekr2

m

Proof Taking a = N in Lemma 6 immediately results in the theorem, which can be illustrated with figure 3. as illustrated
in figure 3.

Figure 3. Distribution of ekr2
m , e

kr1
m , e

kl2
m and ekl1

m

�

Ccorollary 3 For arbitrary odd number N > 1, let lsi =

⌊
1
2 (1 +

√
N

i+1 )
⌋
+ 1, lbi =

⌊
1
2 (1 +

√
N
i )
⌋
,eil

m = eb
m − 2(lbi − 1) and

eir
m = eb

m − 2(lsi − 1), where i = 1, 2, ...ω are positive integers; then odd intervals Ii = [eil
m, e

ir
m] satisfy

(1) Ii ∩ Ii+1 = eir
m ;

(2)
i=ω
∪
i=1

Ii = [e0
m, e

ωr
m ];

(3)
i=∞
∪
i=1

Ii = [e0
m, e

b
m]; as illustrated in figure 4.

Figure 4. Odd intervals’ subdivision and coverage

Proof (Omitted)

�
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Corollary 4 Let ∆0 =

⌊ √
N+1
2

⌋
be the length of the odd interval I0 = [e0

m, e
b
m], ∆i and ∆i+1 be respectively the lengths of

the odd intervals Ii and Ii+1 defined in corollaryllary 3; then when 1 < i ≤
⌊

6√N
16

⌋
, it holds 1

2∆i < ∆i+1 < ∆i.

Proof Taking a = N, x = i, α = 1 and β = 2 in Lemma 4 (2) yields

∆i − 2∆i+1 ≤
12
√

N
i
− 3

2

√
N

i + 1
+

1
2

√
N

i + 2

 + 4 (7)

and

∆i − ∆i+1 ≥
12
√

N
i
−
√

N
i + 1

+
1
2

√
N

i + 2

 (8)

By definition of the floor function, it holds12
√

N
i
− 3

2

√
N

i + 1
+

1
2

√
N

i + 2

 ≤ 1
2

√
N
i
− 3

2

√
N

i + 1
+

1
2

√
N

i + 2
(9)

By Lemma 3, 1
2

√
1
i −

3
2

√
1

i+1 +
1
2

√
1

i+2 < −
1

1024i3 , hence when−
√

N
1024i3 + 4 < 0, namely,i <

6√N
16 , it holds∆i − 2∆i+1 < 0.

Again by Lemma 3, it always holds 1
2

√
N
i −
√

N
i+1 +

1
2

√
N

i+2 > 0, hence i ≤
⌊

6√N
16

⌋
yields ∆i − ∆i+1 > 0.

�

Corollary 5 Let ∆0 =

⌊ √
N+1
2

⌋
be the length of the odd interval I0 = [e0

m, e
b
m], ∆1, ∆2 and ∆3, be respectively the lengths of

I1, I2 and I3; then ∆1 + ∆2 + ∆3
∆
= 1

2∆0 and when ∆0 ≥ 26 it holds ∆1 + ∆2 >
1
4∆0.

Proof Direct calculation by (5) yields ∆0 =

⌊ √
a+1
2

⌋
, ∆1 =

⌊ √
a

4+2
√

2

⌋
, ∆2 =

⌊ √
a

2(2
√

3+3
√

2)

⌋
and ∆3 =

⌊ √
a

2(4
√

3+3
√

4)

⌋
, which is the

case of Lemma 6.

�

Corollary 6 If k ≥
⌊

3α√
Nβ
⌋

for some positive integers β ≥ 1 and α > β, then ∆k is at most
⌊

1
4

2α√
Nα−β
⌋

; otherwise it

is at least
⌊

1
4

2α√
Nα−β
⌋
− 1. Particularly, arbitrary α ≥ 2 yields ∆k ≤

⌊
2α√N
4

⌋
for k ≥

⌊ 3α√
Nα−1
⌋

and ∆k ≥
⌊

2α√N
4

⌋
− 1 for

k ≤
⌊ 3α√

Nα−1
⌋
− 1.

Proof Referring to (6) it knows that ∆k take two possible values given by

∆b
k =

 √
N

2((k + 1)
√

k + k
√

k + 1)

 + 1

and

∆s
k =

 √
N

2((k + 1)
√

k + k
√

k + 1)


Then since 2(k + 1)

√
k > 2k

√
k and 2k

√
k + 1 > 2k

√
k hold for arbitrary positive number k, it knows

∆b
k <

 √N

4k
√

k

 + 1 (10)

Meanwhile,2(k + 1)
√

k < 2(k + 1)
√

k + 1 and 2k
√

k + 1 < 2(k + 1)
√

k + 1 yields

∆s
k >

 √
N

4(k + 1)
√

k + 1

 (11)

Taking in (10) k ≥ 3α√
Nβ ≥

⌊
3α√

Nβ
⌋

yields ∆b
k <
⌊ √

N

4N
3
2 ×
β

3α

⌋
+ 1 =

⌊
1
4 N

α−β
2α

⌋
+ 1, namely,

∆b
k ≤
⌊
1
4

N
α−β
2α

⌋
(12)
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Taking in (11) k ≤
⌊

3α√
Nβ
⌋
− 1 ≤ 3α√

Nβ − 1 leads to ∆s
k >
⌊ √

N

4N
3
2 ×
β

3α

⌋
=
⌊

1
4 N

α−β
2α

⌋
, namely,

∆s
k ≥
 √N

4N
β

2α

 − 1 =
⌊
1
4

N
α−β
2α

⌋
− 1 (13)

Obviously, taking α > 1 and β = α−1 yields ∆k ≤
⌊

2α√N
4

⌋
when k ≥

⌊ 3α√
Nα−1
⌋

and ∆k ≥
⌊

2α√N
4

⌋
−1 when k ≤

⌊ 3α√
Nα−1
⌋
−1.

�

Corollary 7 Let I1, I2, ..., Iω be odd intervals defined in Corollary 3; then there are intervals that contain at most
⌊

4√N
4

⌋
nodes and there are intervals that contain at least

⌊
4√N
4

⌋
− 1 nodes.

Proof This is just the case taking α = 2 and β = 1 in Corollary 3.

�

4. Conclusion and Future Work

Based on the previous lemmas, theorems and corollaries, one can easily draw the following conclusions.

1. If N = pq is a semiprime, then there is a term ep
m that lies in the odd interval I0 and satisfies p = GCD(N, ep

m);

2. If I0 is subdivided into a series of subintervals that are defined in Corollary 3, then ep
m ∈ Ik with k =

⌊
q
p

⌋
, and the bigger

k is the fewer nodes are contained in Ik. Among all the subintervals, I1, I2 and I3 dominate half of I0. Corollary 6 shows
that, when k ≤

⌊
3α√

Nβ
⌋
− 1 there are at least

⌊
1
4

2α√
Nα−β
⌋
− 1 nodes in Ik. These provide a guideline for designing new

algorithm for integer factorization. We are now working on the work and are sure that new algorithms will soon come
into being.
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