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Abstract 

Drought is one of the major factors limiting crop production in arid and semi-arid regions. Twenty wheat 

genotypes with wide range of sensitivity to drought, including 18 varieties of bread wheat (Triticum aestivum L.) 

and two varieties of durum wheat (Triticum turgidum L.) were used in two separate field experiments in 

2009-2010 at the Experimental Station of College of Agriculture in Shiraz University. Each experiment was 

conducted as a randomized completed block design with three replications. The moisture level in one of the 

experiments was optimum (100% field capacity) while the second experiment was conducted under drought stress 

(45% field capacity). Several biochemical components including enzymatic (catalase, CAT; peroxidase, POD; 

superoxide dismutase, SOD and ascorbate peroxidase, APX) and non-enzymatic (proline and carotenoids, Car) 

antioxidant defense systems and some factors of oxidative damage (hydrogen peroxide, H2O2; lipid peroxidation, 

LPO and membrane stability index, MSI) were analyzed in the two conditions. Drought stress caused significant 

increase in enzymatic antioxidant activities, proline content, H2O2 and LPO content at the flowering stage, while 

Car content and MSI decreased significantly in all genotypes. Drought tolerant genotypes showed the highest 

enzymatic and non-enzymatic antioxidants, highest MSI and the lowest LPO and H2O2. This trend was reversed in 

susceptible genotypes. The enzymatic antioxidants had higher correlation than non-enzymatic with oxidative 

stress factors and yield stability index (YSI). POD showed the highest positive correlation with MSI and the 

highest negative correlation with LPO. H2O2 and MSI showed the highest correlation with YSI. In present study, 

Kavir and Alamut varieties were selected respectively as the most tolerant and susceptible genotypes. 

Keywords: wheat, drought stress, enzymatic and non-enzymatic antioxidants, oxidative damage 

1. Introduction 

Drought stress is one of the major factors limiting plant growth and crop productivity in arid and semi-arid 

regions and with increasing global climate change making the situation more serious. (Golestani and Assad, 

1998; Ahmadi et al., 2010) Much of the injury to plants caused by stress exposure is associated with oxidative 

damage at the cellular level. However in certain tolerant crop plants morpho-physiological and metabolic 

changes occur in response to drought, which contribute towards adaptation to such unavoidable environmental 

constraints (Sairam & Sirvastava, 2001). 

 Wheat is a staple food for more than 35% of the world population and it is also the first grain crop in Iran 

(Mohammadi et al., 2006). Wheat often experiences drought stress conditions during crop cycle. Thus, 

improvement of wheat productive for drought tolerance is a major objective in plant breeding programs for arid 

and semi-arid regions (Shao et al., 2005; Ahmadizadeh et al., 2011).  

Drought stress results in stomata closure, which limits CO2 concentration in leaf mesophyll tissue and reduces 

NADP+ regeneration by the Calvin Cycle. These adverse conditions increase the rate of reactivated oxygen 

species (ROS) such as hydrogen peroxide (H2O2), superoxide (O2
�−), singlet oxygen (1O2) and hydroxyl (OH) 

radicals by enhanced leakage of electrons toward molecular oxygen during photosynthetic and respirator 

processes (Foyer et al., 1994). These ROS can cause damage to membrane lipids, proteins and DNA leading to 

cell death (Cadenas, 1989). Plants process very efficient enzymatic (superoxide distumase, SOD; catalase, CAT; 

ascorbate Peroxidase, APX; Peroxidase, POD and glutathione reductase, GR) and non-enzymatic (carotenoids, 

ascorbic acid, glutathione and proline) antioxidant defense systems which protect cell and subcellular systems 

against oxidative damages by scavenging of ROS (Dhindsa et al., 1981; Mittler, 2002). SOD catalyzes the 
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dismutation of superoxide into oxygen and hydrogen peroxide (Alscher et al., 2002). H2O2 can be eliminated by 

CAT, APX and POD (Asada, 1999; Ramachandra et al., 2004). Carotenoid a lipid soluble antioxidant plays a 

multitude of functions in plant metabolism including oxidative stress tolerance (Sarvajeet & Narendra, 2010). 

Accumulation of protective solutes like proline and glycine betaine is a unique plant response to drought stress. 

Also proline is considered as a potent antioxidant and potential inhibitor of programmed cell death (Bates et al., 

1973; Pireivatloum et al., 2010). The objective of the present study was to understand the influence of drought 

stress on oxidative damage, enzymatic and non-enzymatic antioxidant systems in tolerant, intermediate and 

susceptible wheat genotypes and also identify the effective biochemical traits in the screening tolerant genotypes 

to drought. 

2. Materials and Methods 

2.1 Plant Material and Experimental Conditions 

Eighteen bread wheat genotypes (Triticum aestivum L.) including six drought tolerant genotypes (Azar2, Pishtaz, 

Toos, Chamran, Kavir and Koohdasht), six intermediate (Roshan, Alvand, Tabasi, Niknejad, cross adl and 

Darab2) and six susceptible (Shiraz, Shiroudi, Flat, Bahar, Zarin and Alamut) and two durum wheat genotypes 

(Triticum turgidum L.), Simareh and Yavarus, were also used in two separate field experiments in 2009-2010 at 

the Experimental Station of College of Agriculture in Shiraz University (52o 46' E, 29o 50' N, altitude 1,810 m 

above sea level). Each experiment was conducted as a randomized completed block design with three 

replications. Each plot consisted of six 4 m long rows spaced 30 cm apart. The four middle rows were left intact 

for grain yield determination, and the two outside rows were used for sampling. The moisture level in one of the 

experiments was optimum (100% field capacity) while the second experiment was conducted under drought 

stress (45% field capacity), (Table 2). The amount of water needed for irrigation was calculated from the method 

of Avja and Michael (1987). The characteristics of soil and climates at the experimental station during 

2009-2010 are shown in Table 1 and 2 respectively. Flag leaves of flowering stage in two experiments were 

harvested, weighted and frozen at -70° C for later measurement of biochemical traits.  

 

Table 1. Physical and chemical properties of soil used in the experiments 

Texture pH EC     (dS/m) OC    (%) K    (mg/kg) N   (%) P†   (mg/kg) Soil characteristic 

sandy clay 7.6 0.563 1.36 581 15 15 Values 

†- P, Phosphorus; N, Nitrogen; K, Potassium; OC, Organic Carbon; EC, Electrical Conductivity, pH, level of acidity. 

 

Table 2. Mean temperature, precipitation distribution and total irrigation for each experiment 

Month Year Mean temperature 

(°C) 

Rainfall (mm) Irrigation (mm) 

  No- stressed Stressed 

November  2009 10.62 10.5 131 131 

December  2009 5.66 129 - - 

January 2009 5.1 17 - - 

February 2010 6.13 54.5 - - 

March 2010 10.4 37.5 43 19.35 

April 2010 12.23 24.5 70.42 31.69 

May 2010 17.04 13 113.1 50.89 

June 2010 22.58 0 60.4 27.18 

Total   286 417.92 260.11 

Total water used    703.92 546.11 

      

2.2 Grain Yield and Yield Stability Index Assay 

Grain yield was recorded at physiological maturity stage. The physiological maturity stage was considered when 

90% of seed changed color from green to yellowish and stopped photosynthetic activity. Yield stability index 

(YSI) was calculated using the formula suggested by Bouslama and Schapaugh (1984) as: 

YSI = Ys / Yp 

Where, Ys and Yp represent yield under stress and non-stress conditions, respectively. 
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2.3 Enzymatic Antioxidants Assay 

Frozen leaf samples (0.5 g) were used for enzyme extraction. Samples were homogenized with 2 mL of 50 mM 

phosphate buffer (pH 7.2) using a pre-chilled mortar and pestle. Phosphate buffer contained 1 mM EDTA, 1 mM 

PMSF, and 1% PVP-40. Then the homogenates were centrifuged at 4°C and 15,000×g for 15 min. 

Superoxide dismutase (SOD, EC 1.15.1.1) activity was assayed by measuring its ability to inhibit the 

photoreduction of nitroblue tetrazolium (NBT) using the method of Beauchamp and Fridovich (1971). The 

reaction mixture contained: 50 mM phosphate buffer (pH 7.8), 0.1 mM EDTA, 13 mM methionine, 75 μ M 

nitroblue tetrazolium (NTB), 2 μM riboflavin and 100 μl of the supernatant. Riboflavin was added as the last 

component and the reaction was initiated by placing the tubes under two 15 W fluorescent lamps. The reaction 

was terminated after 15 min by removing the reaction tubes from the light source. Non-illuminated and 

illuminated reac- tions without supernatant served as calibration standards. Reaction products were measured at 

560 nm. One unit of SOD activity was defined as the amount of enzyme that inhibited 50 nitroblue tetrazolium 

(NBT) photoreduction. 

Ascorbate peroxidase (APX; EC 1.11.1.11) activity was measured using the method of Nakano and Asada 

(1981). The assay mixture contained of 50 mM potassium phosphate buffer (pH 7.0) containing 0.5 mM ascorbic 

acid, 0.15 mM H2O2, 0.1 mM EDTA, and 50 μL of enzyme extract (supernatant). Ascorbate peroxidase was 

spectrophotometrically assayed following a decrease in the absorbance at 290 nm. One unit of APX oxidises 1 

mM ascorbic acid in 1 min at 25°C. 

Catalase (CAT, EC 1.11.1.6) activity was measured by following the reduction of H2O2 (ε = 39.4 mM− 1 cm− 1) at 

240 nm according to the method of Dhindsa et al. (1981). The assay solution contained 50 mM potassium 

phosphate buffer (pH 7.0) and 15 mM H2O2. The reaction was started by the addition of 100 µl enzyme extract 

to the reaction mixture and the change in absorbance was followed 1 min after the start of the reaction. One unit 

of activity was considered as the amount of enzyme which decomposes 1 mM of H2O2 in one minute. 

Peroxidase (POD, EC 1.11.1.7) activity was determined according to the method of Chance and Maehly (1955). 

The tetraguaiacol formed in the reaction has a maximum absorption at 470 nm and thus the reaction can be 

readily followed spectrophotometrically. The enzyme was assayed in a solution containing 50 mM phosphate 

buffer (pH 7.0), 5 mM H2O2 and 13 mM guaiacol. The reaction was initiated by adding of 33 µl enzyme extract 

at 25°C. One unit of enzyme was calculated on the basis of the formation of guaiacol to tetraguaiacol for 1 min. 

2.4 Non-enzymatic Antioxidants Assay 

The content of proline was extracted and determined by the method of Bates et al. (1973). Leaf tissues (0.5 g) 

were homogenized in 3 % sulfosalicylic acid and the homogenate was centrifuged at 3,000×g for 10 min. The 

supernatant was treated with acetic acid and ninhydrin, boiled for 1 h, and then the absorbance was determined at 

520 nm. Proline concentration was calculated with a standard curve and expressed as µmolg-1 fresh mass. 

The amount of carotenoids (Car) was determined according to Lichtenthaler and Wellburn (1983). Leaf tissues 

(0.5 g) were homogenized in acetone (80%). Extract was centrifuged at 3,000×g and absorbance was recorded at 

646.8 nm and 663.2 nm for chlorophyll assay and 470 nm for Car determine by spectrophotometer. Car and 

Pigments content were calculated due to the following formulae: 

Chl a = (12.25 A663.2– 2.79 A646.8) 

Chl b = (21.21 A646.8 – 5.1 A663.2) 

Car = (1000 A470 – 1.8 Chl a – 85.02Chl b)/198 

2.5 Oxidative Damage Assay  

Hydrogen peroxide (H2O2) content was determined according to Alexieva et al. (2001). Leaf tissue (0.5 g) was 

homogenized in ice bath with 5 cm3 of cold 0.1% (m/v) trichloroacetic acid (TCA). The homogenate was 

centrifuged (10,000×g, 20 min, 4°C) and 0.5 cm3 of the supernatant was added to 0.5 cm3 of 100 mM potassium 

phosphate buffer (pH 7.0) and 1 cm3 of 1 M KI. The absorbance was read at 390 nm. The concentration of H2O2 

was determined using a standard curve plotted with a known concentration of H2O2.  

Lipid peroxidation (LPO) rates in plant tissues were determined by measuring the malondialdehyde (MDA) 

according to the method of Heath and Packer (1968). MDA content was determined with thiobarbituric acid 

(TBA) reaction. 0.5 g tissue sample was homogenized in 5 ml 0.1% trichloroacetic acid (TCA). The homogenate 

was centrifuged at 10,000×g for 10 min. 4 ml of 20% TCA containing 0.5% TBA was added to 1 ml aliquot of 

the supernatant. The mixture was heated at 95°C for 30 min and quickly cooled in ice bath. After centrifugation 

at 10, 000×g for 10 min. The non-specific absorbance of the supernatant at 600 nm was subtracted from the 
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maximum absorbance at 532 nm for MDA measurement. The level of lipid peroxidation was expressed as µmol 

of MDA formed using an extinction coefficient of 155 mM-1 cm-1.  

Membrane stability index (MSI) estimated according to Sairam (1994). Two sets of leaf tissues (0.1 g) were 

placed in 10 ml of double-distilled water. One set was kept at 40°C for 30 min and its conductivity recorded 

using a conductivity bridge (C1). The second set was kept in a boiling water bath (100°C) for 10 min and its 

conductivity also recorded (C2). The membrane stability index was calculated as: 

MSI= [1 – (C1/C2)] × 100 

2.6 Statistical Analysis of Data  

Analysis of variance and Pearson correlations coefficients in all the measurements were conducted by SPSS 16. 

Means were separated using Tukey's test at P < 0.05. To compare the effects of stress and non-stress, and 

genotypes by moisture conditions interaction, a combined analysis of variance was used. 

3. Results and Discussion 

3.1 Enzymatic Antioxidants Defense Response 

The results of the present study showed that considerable variations among genotypes for antioxidant activity 

were observed when grown under drought stress and non-stress conditions (Table 3). Peroxidase (POD) activity 

increased significantly (P< 0.01) under water stress condition. POX is one of the major enzymes that have a role 

in the biosynthesis of lignin and defense against water stress by scavenges H2O2 in chloroplasts (Mittler, 2002; 

Sarvajeet & Narendra, 2010). The highest POD activity were observed in genotypes Toos, Pishtaz, Chamran, 

Kavir and Koohdasht (drought tolerance, group 1), and the lowest activity in Bahar, Shiraz, Zarin, Alamut and 

Shiroudi (susceptible, group 3) under water stress condition. The ratio was intermediate in Alvand, Niknejad 

Cross Adl and Roshan (intermediate tolerance, group 2). From Figure 1, we observed that genotypes in group1, 

group 2 and group 3 had the highest, intermediate and lowest yield stability index (YSI), respectively. 

 

Table 3. Changes in enzymatic antioxidant (catalase, CAT; superoxide dismutase, SOD; peroxidase, POD and 

ascorbate peroxidase, APX) activity and non-enzymatic antioxidant (Proline and carotenoids, Car) content in 

wheat genotypes in response to drought stress. 

Genotypes 
CAT        

(Ug-1 FW) 

SOD         

(Ug-1 FW) 

POD         

(Ug-1 FW) 

APX         

(Ug-1 FW ) 

Proline        

(µmol g-1 FW) 

Car         

(mg g-1 FW) 

 Non-stress Stress Non-stress Stress Non-stress Stress Non-stress Stress Non-stress Stress Non-stress Stress 

Bahar 39.1 j-l 44.2 c-k 370.8 j-o 426.1 g-k 56.1 o-q 60.5 l-p 138.5 k-n 159.4 f-k 4/84 h 27/31 b-e 7/47 a 5/91 c-i 

Chamran 37.8 kl 48.5 a-e 354.1 k-o 640.7 b 86.8 b-d 94.8 ab 148.7 g-n 206.0 a-d 8/83 f-h 23/03 c-e 5/53 d-m 4/87 g-o 

Cross Adl 34.0 l 42.3 e-k 339.7 m-p 493.9 c-g 54.3 pq 73.2 e-j 130.7 mn 148.9 g-n 4/15 h 33/37 a-c 7/43 a 4/90 g-o 

Shiraz 39.3 j-l 44.8 b-j 339.5 m-p 352.5 k-o 62.9 i-p 63.2 i-p 140.7 j-n 168.9 d-i 3/10 h 35/82 ab 6/36 a-f 4/86 h-o 

Kavir 39.2 j-l 49.0 a-d 315.0 n-p 560.7 c 48.8 q 88.2 a-d 144.9 i-n 223.5 a 3/20 h 36/11 ab 6/02 a-f 6/14 a-f 

Shiroudi 37.9 kl 47.3 a-g 330.9 m-p 377.5 i-n 61.9 k-p 69.4 f-m 151.5 f-n 154.0 f-m 4/49 h 22/73 c-e 3/36 pq 2/66 q 

Koohdasht 41.4 g-k 51.9 a 319.4 n-p 687.8 ab 58.9 m-q 91.1 ac 158.8 f-l 209.0 a-d 5/05 h 33/06 a-c 7/32 ab 7/05 a-c 

Darab2 43.6 c-k 49.8 a-c 397.6 h-m 502.0 c-f 71.6 f-k 95.0 ab 172.3 d-h 216.9 ab 3/27 h 28/75 a-e 4/38 k-p 3/79 o-q 

Seimare 40.3 h-l 51.6 a 325.5 m-p 673.8 ab 54.7 pq 78.9 d-f 141.5 j-n 194.9 b-d 5/78 h 40/15 a 6/03 b-h 5/18 f-n 

Falat 34.8 l 39.9 j-l 345.1 m-p 389.8 h-n 62.4 k-p 74.3 e-h 135.0 k-n 148.0 g-n 6/90 g-h 22/56 c-e 5/60 d-l 4/49 j-p 

Niknejad 38.9 j-l 45.9 a-i 421.9 g-l 524.0 cd 65.5 h-o 83.4 c-e 127.8 mn 165.6 e-j 4/60 h 21/99 c-e 6/37 a-f 4/70 i-o 

Yavarus 39.8 i-l 47.9 a-f 326.7 m-p 449.5 d-i 63.7 h-p 69.7 f-l 148.8 g-n 190.1 c-e 5/23 h 39/70 a 4/65 j-p 6/29 a-h 

Roshan 38.5 j-l 48.8 a-d 301.0 op 522.3 cd 63.47 i-p 83.5 c-e 143.6 i-n 172.7 d-g 7/38 g-h 33/23 a-c 5/69 d-k 5/36 e-m 

Azar2 40.4 h-l 47.2 a-g 337.6 m-p 520.1 cd 72.2 f-k 83.3 c-e 141.6 j-n 174.5 d-g 8/52 f-h 28/01 a-e 5/79 c-j 5/47 d-m 

Tabasi 39.3 j-l 46.4 a-h 275.9 p 434.2 f-j 73.7 e-i 71.5 f-k 133.0 l-n 158.7 f-l 9/42 f-h 31/40 a-d 5/21 f-n 3/34 p 

Zarin  41.5 f-k 41.4 g-k 347.8 l-p 398.5 h-m 58.5 n-q 64.2 h-p 127.7 n 151.0 f-n 3/99 h 19/18 d-g 6/03 b-i 4/35 l-p 

Alamot 40.1 h-l 43.9 c-k 338.3 m-p 378.3 i-n 66.9 h-n 68.1 g-n 146.2 g-n 157.3 f-l 4/66 h 18/96 e-g 6/76 a-d 4/01 n-p 

Toos 43.3 d-k 50.9 ab 339.8 m-p 516.4 c-e 69.0 f-n 98.7 a 157.6 f-l 206.8 a-d 5/26 h 27/26 b-e 6/20 a-g 6/27 a-f 

Pishtaz 37.8 kl 44.9 b-j 455.7 d-h 725.2 a 73.6 e-i 94.9 ab 133.4 k-n 211.1 a-d 4/07 h 20/50 d-f 6/60 a-e 5/77 c-j 

Alvand 37.9 kl 42.6 d-k 332.4 m-p 443.7 e-j 78.4 d-g 85.2 b-d 158.1 f-l 175.8 d-f 5/74 h 24/80 b-e 6/44 a-f 4/23 m-p 

Average 39.7 b 46.5 a 345.7 b 500.8 a 65.2 b 79.5 a 143.9 b 179.6 a 5/42 b 27/90 a 5/97 a 4/99 b 

Means of three replicates followed by the same letter in each column and two columns (non-stress and drought 

stress) related to same indicator are not significantly different according to Tukey's test (probability level of %5). 
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Our result clearly indicated efficient role of antioxidant defense machinery in protection of cell systems against 

oxidative damage. The enzymatic antioxidants had a higher correlation than non enzymatic with all oxidative 

stress factors (H2O2, MDA and MSI). It may be reflected more efficient role antioxidant enzymes in compare to 

non-enzymatic in protects cell systems against oxidative damage. These results are similar to works of Amjad et 

al. (2011) and Shao et al. (2005). H2O2 and MSI had the highest correlation with YSI in all the traits. Thus, it can 

be concluded that H2O2 and MSI are more effective indicators for screening drought tolerant genotypes in stress 

condition. Sairam and Sirvastava (2001) had reported that H2O2 and MSI were good indicators of drought 

tolerance.  

4. Conclusion 

The results showed that genotypes respond differentially to oxidative damage as a result of variations in their 

antioxidant defense systems. Under water stress condition, activity of CAT, POD, APX and SOD, proline 

content, H2O2 and LPO significantly (P < 0.01) increased while Car and MSI decreased significantly (P < 0.01). 

Drought tolerant genotypes which had lowest membrane damage (MDI) and H2O2 content and the highest MSI 

also showed the highest enzymatic antioxidants activity (CAT, POD, APX and SOD) and non-enzymatic 

antioxidants (Proline and Car) while drought susceptible genotypes showed the lowest antioxidants defends and 

MSI, and highest H2O2 and MDA content. Intermediate drought tolerant genotypes showed a moderately 

response. Also durum wheat indicated similar behavior of tolerant bread wheat under drought stress. We found 

that enzymatic antioxidants had play more effective role than non-enzymatic antioxidants in protects cell 

systems against oxidative damage.  
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