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T
hanks to their ability to generate ex-

tremely strong and confined optical

fields at the nanoscale, resonant

metallic nanostructures supporting locali-

zed surface plasmon polariton modes play a

remarkable role in current nanoscience.1 Re-

cently, it has been shown that a proper com-

bination of such metallic nanostructures can

also support Fano-like resonances.2�4 These

resonances arise from the interference be-

tween a nonradiative mode and a continuum

of radiative waves, and are distinguished

from their Lorentzian counterpart by a char-

acteristic asymmetric line shape. They have

attracted significant attention because qua-

si-localized modes with reduced radiative

damping can be excited, allowing in parti-

cular the development of plasmonic nano-

lasers.5 They also have been observed as

extraordinary transmission throughmetallic

films,6,7 in metallic photonic crystals,8 and

have been used to explain Wood's ano-

malies in metallic gratings.9 A stronger field

enhancement than that of conventional

plasmon modes also makes Fano-like reso-

nances promising for applications such as

refractive index sensing for the develop-

ment of chemical or biological sensors.10�13

Their integration with nonlinear and phase-

change media finds applications in switch-

ing and electro-optics.14�16

The control of the line shape of Fano-like

resonances for specific applications remains

however a challenging task and requires a

theory able to understand the underlying

physical mechanisms. Numerical and ex-

perimental data are usually fitted and ana-

lyzed with the two coupled mechanical

oscillators17,18 or other intuitive phenomen-

ological models.19�21 In plasmonic systems,

Fano resonances arise from the interaction

between a nonradiative (dark) mode and a

continuum generated by a radiative (bright)

mode in lossy materials, and cannot be

completely described by these models.

The quantummechanical theory developed

by Fano to explain autoionization of atoms

provides a wave-like interpretation of asym-

metric resonances,22whichcanbeadapted toa

Lorentzian distribution of the continuum.23,24

In a quantum mechanical description, in-

trinsic losses are described by transitions to

a continuum that do not interact with the

discrete state (for instance the generation of

phonons), whereas Maxwell's equations use

the average properties of matter in the

effective electric permittivity and magnetic

permeability. When considering the com-

plex electric permittivity of metals, the opera-

tor equivalent to the quantum mechanical

Hamiltonian is not hermitian and the theory
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ABSTRACT

The optical properties of plasmonic nanostructures supporting Fano resonances are investi-

gated with an electromagnetic theory. Contrary to the original work of Fano, this theory

includes losses in the materials composing the system. As a result, a more general formula is

obtained for the response of the system and general conclusions for the determination of the

resonance parameters are drawn. These predictions are verified with surface integral

numerical calculations in a broad variety of plasmonic nanostructures including dolmens,

oligomers, and gratings. This work presents a robust and consistent analysis of plasmonic Fano

resonances and enables the control of their line shape based on Maxwell's equations. The

insights into the physical understanding of Fano resonances gained this way will be of great

interest for the design of plasmonic systems with specific spectral responses for applications

such as sensing and optical metamaterials.

KEYWORDS: plasmonics . optical nanocavities . Fano resonances .

electromagnetically induced transparency . Wood anomalies
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of Fano is not applicable. To have a consistent and

general analysis and understanding of the classical

phenomenon of Fano-like resonances in plasmonic

nanostructures, a theory based onMaxwell's equations

has to be developed. The Feshbach formalism in

nuclear physics uses projection operators to model

the interaction between open and closed channels25,26

and has been used as a starting point to build an

electromagnetic theory of Fano-like resonances in

plasmonic nanostructures.27 This theory introduces

four resonance parameters which are the central fre-

quency ωa, the spectral width Wa, the asymmetry

parameter q introduced by Fano in the quantum

theory,22 and an additional parameter b, which quan-

tifies the modulation damping of the resonance by

intrinsic losses.27 The exact analytical expressions derived

for these parameters describe the electromagnetic inter-

actions underlying plasmonic Fano resonances.

In this work, we show that the general line shape of

Fano-like resonances derived from Maxwell's equations in

our previouswork27describes abroadvariety of plasmonic

systems. We also provide closed-form analytical formulas

for the resonance parameters in terms of electromagnetic

interactions, and analyze how they can be engineered in

plasmonic nanostructures. In particular, the resonance

spectral position and width are defined in a consistent

manner that takes into account the existence of the two

individualmodesandtheir interaction. First, the formula for

the resonance is introduced with its different parameters,

and then discussed with several examples of plasmonic

nanostructures: dolmen nanostructures, double metallic

gratings, plasmonic quadrumers and heptamers, and me-

tallic photonic crystals. For each example, a spectrum is

calculated with a surface integral equations method28,29

and fitted with an analytical formula describing a back-

ground spectrum modulated by the Fano-like line shape.

LINE SHAPEOF PLASMONIC FANORESONANCES

In this section, we expose the final results of the

electromagnetic theory of plasmonic Fano reso-

nances developed in our previous work27 and intro-

duce the quantities that will form the basis of the

following discussion. Fano-like resonances are built

from the interference between a continuum of radia-

tive waves and a nonradiative (dark) mode that spec-

trally and spatially overlap. Two pathways have to

be considered: the direct excitation of continuum

and the excitation of the dark mode through its coupl-

ing to the continuum (Figure 1a). The interference

between these two pathways leads to a spectrum with

a Fano-like asymmetric line shape:27

σa(ω) ¼

ω2
�ω2

a

2Waωa

þq

 !2

þ b

ω2
�ω2

a

2Waωa

 !2

þ 1

(1)

whereωa is the resonance central spectral position,Wa

gives an approximation of its spectral width in fre-

quency units for Wa , ωa, q is the asymmetry para-

meter, and b is the modulation damping parameter

originating from intrinsic losses. The frequency-depen-

dent phase difference between the direct and indirect

pathways leads to both a destructive and a construc-

tive interference at the origin of the asymmetric nature

of the resonance. The dielectric permittivity of metals

has an imaginary part accounting for intrinsic losses. In

this case, the dark mode's resonance frequency ωd þ

iγd has an imaginary part, and the phase difference

between the two direct and indirect pathways does

not lead to a complete destructive or constructive

interference (Figure 1a). This effect is quantified by

themodulation damping parameter b. The parameters

q and b are shape parameters describing the Fano-like

interference, and as such they depend on how the

resonance is monitored. If the asymmetry parameter

q is equal to zero, the resonance is symmetric and

appears as a dip in the spectrum with minimal

value σa(ωa) = b. The quantity Wa is defined such that

σa(ωa(Wa)= (1þ b)/2 forWa,ωa, where (1þ b)/2 is

the average value between the modulation minimum

and its asymptotic value.

The continuum of radiative waves can be con-

structed from the radiative (bright) mode of a plasmo-

nic nanostructure (Figure 1b). The bright mode's

resonance strength follows a symmetric pseudo-

Lorentzian line shape as a function of the frequency ω:

σs(ω) ¼
a2

ω2
�ω2

s

2Wsωs

 !2

þ 1

(2)

where a is the maximum amplitude of the resonance,ωs

is the resonance frequency, andWs gives an approxima-

tion of its spectral width in frequency units forWs , ωs.

The quantityWsgives an approximation of the resonance

spectral width and is expressed in frequency units. The

symmetric resonance (SR) given by eq 2 builds a con-

tinuum supporting a Fano-like resonance (also called

superradiant envelope13). The structure generating the

SR is placed in close vicinity to another one supporting

the dark mode;12,13,30 alternatively, one can also use the

strong coupling of two modes hybridizing into a bright

and a dark mode.31�35 The resonance strength of the

entire system represents the measurable quantity and is

given by the product of the SR σs eq 2 with the asym-

metric resonance (AR) σa:

σt(ω) ¼ σs(ω) σa(ω) (3)

The analytical function σt can be used to fit various

theoretical or experimental spectra including, for example,

reflectance, transmittance, extinction, absorbance, radar

backscattering, forward scattering, or total cross section.
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This enables the retrieval of the modes' respective

resonance frequency and width, as well as their spatial

overlap. Analytical expressions for the resonance para-

meters are derived in the case of a SR line shape given

by eq 2 (Methods), and they will be taken as references

to explain and discuss the various effects observed in

the following section. Let us mention that in most of

the examples studied in this work, and generally in

most experimentally relevant plasmonic systems, the

SR line shape is given by eq 2 because the radiative

waves are generated by a plasmon mode. It will also

be shown that an arbitrary background profile can be

chosen for eq 3. The approach summarized in this

section represents a physically meaningful, general,

and consistent way to characterize a Fano-like line

shape from a spectrum.

RESULTS AND DISCUSSIONS

In this section, we verify the validity of the electro-

magnetic theory outlined in the previous section for a

broad variety of systems that are known to support

Fano-like resonances. For each structure investigated,

a scattering spectrum is numerically computed using

the surface integral formulation for periodic nano-

structures.28,29 The spectrum is then fitted with eq 3

following the procedure described in the Methods

section, and the values of the extracted fit parameters

are discussed and reported in Table 1. As an illustration

of the tunability of the different AR parameters, the

dolmen nanostructure appears to be a very didactic

and intuitive example. It will be followed by plasmonic

oligomers and a metallic double grating in which

plasmon hybridization plays a role.36 We will finally

study the case of metallic photonic crystals deposited

on a waveguide slab. Each of the structures investi-

gated exhibits particular advantageous features of

Fano resonances such as modulation depth, width,

asymmetry, isotropy, or the fabrication process used.

Dolmen Nanostructures. We first consider dolmen plas-

monic nanostructures made of three metallic beams

arranged as in Figure 2a. The two parallel beams

(numbers 2 and 3) of a single dolmen support a quad-

rupolar dark mode, while the third perpendicular beam

Figure 1. (a) Mechanism of Fano-like interferences between a resonant dark mode with complex resonance frequency ωd þ

iγd and a flat continuum of radiative waves. Two pathways have to be considered: the direct excitation of continuum and the
excitation of the dark mode through its coupling to the continuum. The frequency-dependent phase difference between the
direct and indirect pathways leads to both a destructive and a constructive interference. The resulting line shape modulates
the continuum and satisfies eq 1, whereωa is the Fano-like resonance frequency,Wa is its spectral width, q is the asymmetry
parameter, and b is the modulation damping parameter. (b) Fano-like interference between a resonant dark mode and a
bright mode with an amplitude satisfying eq 2 with central frequency ωs and spectral width Ws.

TABLE 1. Value of the Different Parameters Obtained by a

Fit with Equation 3 of the Spectra in Figures 2�7, Except

for Figure 6e and Figure 7b (See Text)

a ωs (eV) Ws (eV) ωa (eV) Wa (eV) q b

Figure 2b 1.000 1.284 0.121 1.080 0.034 �0.939 0.304

Figure 3a 1.000 1.287 0.120 1.079 0.038 �0.870 0.397

Figure 3c 0.934 1.269 0.130 1.117 0.023 �0.373 0.663

Figure 3e 1.000 1.248 0.130 1.554 0.025 1.297 0.148

Figure 4b 0.309 1.932 0.028 1.681 0.030 �2.826 1.385

Figure 4c 0.289 1.848 0.044 1.670 0.027 �1.096 0.257

Figure 4d 0.265 1.812 0.054 1.692 0.021 �0.490 0.258

Figure 4e 0.944 1.845 0.044 1.690 0.039 �1.355 0.586

Figure 5b 0.149 2.688 0.115 2.870 0.058 1.032 0.135

Figure 6b 0.836 1.883 0.405 1.383 0.137 0.666 0.267

Figure 6c 0.865 1.823 0.334 1.422 0.120 0.594 0.338

Figure 6d 0.913 1.565 0.431 1.754 0.130 �0.058 0.183

Figure 6e LF 0.921 1.828 0.333 1.196 0.150 0.326 0.775

Figure 6e HF 1.962 0.135 0.124 0.363

Figure 7b 1.986 0.007 1.493 1.238

Figure 7c 1.000 1.547 0.280 2.110 0.014 0.940 0.296
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(number 1) supports a dipolar bright mode (Figure 2f,g).

The numerically computed spectrum of the unper-

turbed bright mode is shown in our previous work.27

The interference between the two modes leads to a

Fano-like resonance.11,12,30,32,37 Figure 2a shows the

unit cell of the dolmens arranged in a two-dimensional

array with period 500 nm and placed in vacuum. In

Figure 2b, the reflectance spectrum of the array under

normal illumination is calculated. Using the procedure

described under Methods, we can fit this reflectance

spectrum to retrieve the underlying electromagnetic

structure. The SR is centered aroundωs = 1.284 eV and

has a spectral width of Ws = 0.121 eV (Table 1). These

parameters a,ωs, andWs are used to reconstruct the SR

of the bright mode (blue curve in Figure 2b). The

procedure adopted here is slightly different from our

previous work,27 where the SR was numerically ob-

tained from the reflectance of an array of single beams:

the bright mode was assumed to be unperturbed by

variations of the structure geometry. In Figure 2c, the

AR is reconstructed from the numerical values of the

parameters ωa,Wa, q, and b in Table 1. It is centered at

a frequency of 1.08 eV, slightly detuned from the SR

resonance frequency, and has awidth of 0.034 eV. Even

though the AR central frequency ωa is not located at a

particular point of the total spectrum (neither a local

minimum or a maximum), its position is consistently

defined by eq 3 which considers the collective excita-

tion of the two modes. Calculations of the electric

intensity in the vicinity of the dolmen nanostructure

shows that the value of the AR central frequency

obtained from the fit exactly corresponds to the reso-

nant excitation of the darkmode.38 The AR frequency is

shifted from the isolated dark mode's resonance fre-

quency ωd = 1.14 eV. A quantitative comparison

between the AR and SR widths can also be made: in

this case, the AR width Wa represents 28% of the SR

width Ws. As expected, the AR displays a steeper

amplitude modulation than its SR counterpart. How-

ever, as the AR is built upon a collective effect, its width

is not only determined by the spectral width of the dark

mode.

It has been shown that the field overlap between

the twomodes plays an important role into the control

of the ARwidth and position.27 Themodes electric field

distribution in Figure 2d,e shows that the major con-

tribution to the field overlap lies in the gap between

the individual and the two parallel beams, which can

be tuned by changing the gap size g (Figure 2a). This is

investigated in Figure 3c,d, where the same geometry

as in Figure 2b,c is considered, but now with a larger

gap g = 45 nm. From Table 1, the width of the

resonance is strongly influenced by such a variation

of the gap size, going from 0.034 eV for g = 30 nm in

Figure 2b to 0.023 eV for g = 45 nm in Figure 3c. This

effect of the coupling to the AR line shape has also

been observed in terahertz split ring resonators, where

the control of the coupling of the dark mode to the

bright mode is performed by symmetry breaking.39

The increase of themodes coupling decreases the time

spent for the power transfer through the indirect

pathway and results in a spectral broadening of the

AR. The field overlap is also at the origin of a spectral

shift of the AR frequency from the dark mode reso-

nance frequency eq 4. Losses engineering is another

way of optimizing the AR parameters. In Figure 3a, the

Drudedampingparameterused for themetal is increased

Figure 2. Reflectance of dolmen plasmonic nanostructures
under normal illumination with the electric field polarized
along x. (a) Structure dimensions and discretization: w =
40 nm, l0= 160 nm, t=80 nm, g=30nm and l1 = l2= 300 nm.
The dolmens material is chosen to satisfy the Drude model
with plasma frequency ωp = 1.37 � 1016 s�1 and damping
γ = 0.009ωp, describing the dielectric permittivity of gold.
(b) (Black dashed) numerical simulations; (red thick) fit with
σt (eq 3); (blue thin) background resonance σs extracted
from the fit (eq 2). (c) Respective asymmetric line shapes σa
extracted from the fit (eq 1); the blue dashed line and red
rectangle show respectively the resonance frequency ωa

and width Wa. (d�g) Normalized near-field distribution of
the electric field intensity in the z-symmetry plane at
frequency (d) 1.32 eV and (e) 1.13 eV. (f,g) Normalized
near-field distribution of the z-component of the instanta-
neous electric field 5 nm above the array at frequency (f)
1.13 eV and (g) 1.32 eV, revealing the quadrupolar (f) and
dipolar (g) distributions of the modes. At the frequency of
1.32 eV, the dipolar and quadrupolar modes coexist.
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in the beams 2 and 3. As predicted from the electro-

magnetic theory, intrinsic losses damp the AR and

strongly affect the AR width, asymmetry, and mod-

ulation depth (compare the first and second lines in

Table 1). A very small shift of the AR frequency is also

observed.

The modes coupling has a strong influence on the

shape parameters q and b (Methods). In the presence

of intrinsic losses, the interference between the direct

and indirect pathways is not total and the Fano mod-

ulation is damped. The b parameter quantifies this

effect and is given by the ratio between the intensity

lost to the metallic structure and the intensity trans-

ferred from the bright mode to the dark mode. If the

coupling between the two modes is too weak com-

pared to intrinsic losses, almost no modulation is

observed. The parameter b increases from 0.304 for a

gap size of g = 30 nm (Figure 2b) to 0.663 for g = 45 nm

(Figure 2b): this gives a quantitative description of a

phenomenon that has been observed in previous

works on dolmen nanostructures.12,37 An increase of

the parameter b is also observed with an increase of

the intrinsic losses (Figure 3a). The parameter b deter-

mines the maximal amount of light that can be trans-

mittedand is therefore critical for achieving theplasmonic

equivalent of electromagnetically induced transparency.

The absolute value of the asymmetry parameter q

depends on the ratio between the intensity lost to

the metallic structure and the intensity transferred

from the bright mode to the dark mode: from Table 1,

it decreases from 0.939 to 0.373 when the gap size is

increased from 30 to 45 nm. The sign of the asymmetry

parameter is determined by the frequency difference

between the dark and the bright mode. In Figure 3e,

the length of the beams 2 and 3 is shortened from 300

to 200 nm, resulting in a blue-shift of the dark mode's

resonance frequency. As a consequence, the AR fre-

quency is shifted from 1.117 to 1.554 eV. The bright

mode's phase is reversed, and as a consequence the

modulation shape: the asymmetry parameter flips its

sign from�0.373 to 1.297. It has been shown that owing

to retardation effects, the quadrupolar mode can be

excited under grazing incidence illumination.12 As the

excitation angle θ increases, a radiative channel, which

was forbidden by the periodic symmetry of the array at

normal incidence, opens and the reflectance spectrum

becomes that of two radiative modes rather than an

asymmetric modulation of the radiative mode's ampli-

tude. This case does not satisfy the basic assumptions

of the electromagnetic theory27 and the classical

oscillators model.18 Placing the dolmens in sub-

wavelength arrays also ensures that the quadrupolar

Figure 3. Influence of electromagnetic interactions on the
resonance line shape of dolmen nanostructures (geometry
of Figure 2): (a,b) modified Drude damping γ = 0.0012ωp for
beams 2 and 3, (c,d) modified gap size g = 45 nm, (e,f)
modified gap size g = 45 nm and length l1 = 200 nm. (a,c,e)
(Black dashed) numerical simulations; (red thick) fit with σt
(eq 3); (blue thin) background resonance σs extracted from
the fit (eq 2). (b,d,f) Respective asymmetric line shapes σa
extracted from the fit (eq 1); the blue dashed line and red
rectangle show, respectively, the resonance frequency ωa

and width Wa.

Figure 4. Optical properties of a two-dimensional array of
gold quadrumers at normal incidence. (a) Geometry of a
single structure with dimensions R = 80 nm, r = 75 nm, and
t = 80 nm. The quadrumers are made of metal with Drude
model with plasma frequency ωp = 1.37 � 1016 s�1 and
damping γ = 4.08� 1013 s�1, placed in a two-dimensional
array of period 1400 nm, and embedded in a dielectric
background of refractive index 1.25. (b�d) Reflectance and
(e) extinction. (b�e) (Black dashed) numerical simulations;
(red thick) fit with σt (eq 3); (blue thin) background reso-
nance σs extracted from the fit (eq 2).
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mode is a true dark mode, but near-field interactions

with nearest neighbors have to be taken into

account.

Plasmon Hybridization and Plasmonic Oligomers. Plasmonic

oligomers;suchas thequadrumer shown inFigure 4a;
use the hybridization of a circular chain of nanoparticles

with a central nanoparticle to produce a dark and a

bright mode, whose interference gives rise to a Fano-like

resonance.40,41 Owing to the metallic character of the

particles, the dark and bright modes are not completely

orthogonal. Their coupling and the subsequent genera-

tion of the Fano resonance does not require a structural

symmetry breaking. In the bright mode's configuration,

the central particle is in phase with the outer ring's

particles, whereas in the dark mode's configuration, the

central particle is out of phase, reducing theoverall dipole

moment of the structure. A structure supporting such

modes with a minimal amount of nanoparticles is a

quadrumer whose outer ring is composed of three

particles and carries the symmetry D3h (or C3v if

placed on a substrate) as shown in Figure 4. The

reflectance of plasmonic quadrumers placed in an

array is calculated in Figure 4 panels b, c, and d for

separation distances between the central particle

and the outer ring of 25, 55, and 70 nm, respectively.

The electric field distribution in the structure at the

AR frequency shows that the central particle oscil-

lates out of phase with the exterior particles, there-

fore reducing the overall dipole moment. The bright

mode is relatively narrow, but its spectral overlap

with the AR ensures the validity of eq 3. Since the two

modes interfering to produce a Fano-like resonance

are supported by the same structure, the SR back-

ground cannot be explicitly computed. Neverthe-

less, the fit of the total spectrum enables the

extraction of the SR for both reflection and extinc-

tion (blue curve in Figure 4b�e) in the same way as in

Figure 2 and Figure 3. Similarly to that of the dolmen

nanostructure, an increase of the gap g leads to a

decrease of the field overlap between the twomodes

and consequently of the AR width (Table 1). This

suggests that the bright mode resembles the reso-

nance of the same structure without the central

particle.41 The asymmetry parameter has a relatively

large absolute value compared to the other struc-

tures investigated in this paper, so that the overall

optical response has the appearance of two distinct

peaks (Figure 4b�d). In the extinction spectrum of

Figure 4e, similar results for the spectral positions

and width of the SR and AR are obtained, but the

asymmetry parameter is even higher, resulting in an

even more pronounced peak. This drastic change

of q and b when comparing the reflectance and the

extinction spectra of the same structure under the same

illumination condition, shows that they are interference

parameters: they depend not only on the near-field

interactions between the bright and dark modes, but

also on how the resonance ismonitored (see for instance

Babic et al.42 for a discussion on the asymmetry para-

meter in photonic crystal slabs). This fact has been

observed for the case of Mie scattering against a metallic

sphere:2,43 the dipolar and quadrupolar modes of the

sphere interfere together to formaFano resonance in the

vicinity of the quadrupolar mode's resonance frequency.

In this case, the q parameter reverses its sign depending

whether a forward or backward scattering cross section is

considered. For the quadrumers, a vectorial symme-

try analysis shows that in-plane dipolar modes are

always 2-fold degenerate.44,45 The dark mode of the

quadrumer structure is also degenerate, so that a Fano

resonance at similar energies is obtained for the ortho-

gonal polarization. A Fano-like resonance can be found in

plasmonic oligomers with a higher number of surround-

ing particles, such as heptamers.35,40 In Figure 5, we

consider an arrangement of seven silver spheres. From

Table 1, the AR appears larger with this geometry than

the other cases treated in this work, but it has on the

other hand the lowest value of b. This quantitatively

asserts that the line shape almost reaches zero values

with a very large modulation depth. Plasmonic hep-

tamers show a high degree of tunability by control-

ling the spacing, shape, and dimensions of the

particles, and the various ways of breaking its high

symmetry.35,40,41 How the variation of these para-

meters affect the shape of the AR can be quantified

following the same procedure provided that no

radiative channel for the dark mode is open. The

heptamer structures carry the high symmetry D6h =

CsX C6v. Similarly to the quadrumers withD3h symmetry,

the bright and dark modes are 2-fold degenerate.

Figure 5. Reflectance of a two-dimensional array of hepta-
mers of spherical nanoparticles at normal incidence. (a)
Geometry of a single structure with dimensions r = 30 nm
and d = 65 nm. The heptamers are separated by a period of
900 nm and placed in vacuum. Experimental data for silver
has been taken for the particles material.46 (b) (Black
dashed) numerical simulations; (red thick) fit with σt
(eq 3); (blue thin) background resonance σs extracted from
the fit (eq 2). (c) Respective asymmetric line shapes σa
extracted from the fit eq 1; the blue dashed line and red
rectangle show, respectively, the resonance frequency ωa

and width.
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A similar resonance is obtained for the orthogonal

polarization. Unlike the other structures investigated in

this work, plasmonic oligomers are able to generate

quasi-isotropic Fano resonances.35�41

Asymmetry Reversal in Metallic Double Gratings. In the

metallic double grating structure in Figure 6, the in-

dividual modes of each metallic wire hybridize to a

symmetric bright mode and an antisymmetric dark

mode. The offset ds between the two wires introduces

a symmetry breaking in the structure which is used to

tune the resonance frequency of the two modes.31,47

The parameters used for fitting the reflectance spectra

are reported in Table 1. The AR frequencies do not

correspond to a particular point of the spectrum (neither

a local minimum nor a local maximum) but can be

shown to correspond to the resonance frequency of

the dark mode.38 For the bright mode, charges of

identical sign aremoved further apart by the symmetry

breaking, resulting in a red-shift of the SR (from 1.883

to 1.565 eV in Figure 6b�d). On the other hand, for the

dark mode the symmetry breaking brings charges of

identical sign closer to each other, resulting in a blue-

shift of the AR (from 1.42 to 1.75 eV in Figure 6b�d. The

reduction of the modes detuning makes the AR shape

more symmetric. If the wires' separation Lsp is de-

creased to 10 nm, the AR frequency shifts from 1.42 to

1.19 eV because charges of opposite sign are brought

close to each other; the inverse shift is observed for the

bright mode. Furthermore, an additional AR appears

for ds = 20 nm at 1.96 eV (Figure 6e), resulting from the

interference between an octupolar mode and the

dipolar mode.31 Four additional parameters have been

added to the fit in order to take this higher order AR

into account. In Figure 6b�e, the sign of the asymme-

try parameter is positive even though the AR is located

on the low frequency shoulder of the SR, unlike all

previous examples (Figures 2�6). This sign reversal is

due to the antisymmetric nature of the dark modes

with respect to the z = 0 plane (Figure 6f). The phase

difference between the direct and indirect pathways

is opposite to the phase difference induced by a

z-symmetric dark mode, and as a result also the sign

of the asymmetry parameter (see Methods).

Excitation of First Orders in Metallic Photonic Crystals. The

Fano resonance is also supported by periodic metallic

crystals.48 In Figure 7, the reflectance spectra of an

array of gold nanowires placed on a single-mode slab

waveguide is calculated for both polarizations at nor-

mal incidence. The metallic grating on top is made of

gold (data from Johnson and Christie46), thewaveguide

Figure 6. Reflectance of a plasmonic double grating for
varying gratings separation Lsp and symmetry breaking ds
at normal incidence. (a) The structure dimensions are d =
100 nm, p = 200 nm, and w = 15 nm. The wires are made of
gold (data from Johnson and Christie46) and embedded in a
silica matrix (refractive index 1.46). (b�e) (Black dashed)
numerical simulations; (red thick) fit with σt (eq 3); (blue
thin) background resonance σs extracted from the fit (eq 2).
In panel e, two resonances of different order occur,
labeled as Low Frequency (LF) and High Frequency (HF),
in which the quadrupolar and octupolar modes are re-
spectively excited. (f�g) Near-field electric intensity dis-
tribution and instantaneous electric field lines for the
geometry of panel b at (f) 1.37 and (g) 1.91 eV, respec-
tively, revealing the distributions of the quadrupolar and
dipolar modes.

Figure 7. Reflectance of a planar metallic photonic crystal
structure at normal incidence. (a) The structure dimensions
are t=20nm, d= 100nm, p=400nm, andw=140 nm. (b) TE
illumination (electric field parallel to the gold wires). (c) TM
illumination (electric field perpendicular to the gold wires):
(black dashed) numerical simulations; (red thick) fit with σt
(eq 3); (blue thin) background resonance σs extracted from
the fit (eq 2).
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layer of ITO (refractive index 1.9), and the substrate

of quartz (refractive index 1.46). In Figure 7b, the

excitation of TE quasi-guided modes induces an AR.

Another waveguide mode is excited through the grat-

ing for a TM polarization in Figure 7c. For TE polarization,

the background is not created from a plasmon

resonance,8 and has been fitted with the function of the

frequency σs(ω) = gω þ h, corresponding to a Taylor

expansion of the background profile around the AR

frequency: with such procedure, one can fit a Fano-like

resonance with any background by considering its local

behavior in a small frequency interval. We also stress that

this spectrum cannot be fitted with Fano formula (b = 0).

The substrate can induce a phase shift between the direct

and indirect pathways that is different from an homo-

geneous medium and the model of a real q parameter is

not valid anymore.42 In such case, the modulation damp-

ing parameter also contains contributions from the ima-

ginary part of q. The value of the AR parameters are

reported in Table 1 together with g =�0.27 eV�1 and h =

0.70. The frequency window used for the fit is robust: the

parameters remain identical up to the second digit. In TM

polarization, the individual metallic wires support a plas-

mon resonance at lower frequency, and the coupl-

ing between plasmons and waveguide mode can form

waveguide plasmon polaritons.48 In this case, the back-

ground can be fitted with eq 2. With the dielectric

character of the ITO layer chosen in the simulations, the

waveguidemodes do not have strong intrinsic losses and

even a very weak coupling from the metallic grating is

sufficient to induce the AR. As a result, the two ARs of

Figure 7 panels b and c are the narrowest withWa= 0.007

eV andWa=0.014 eV, respectively, but donot correspond

to a localized dark mode. It is worth mentioning that the

excitation of quasi-guided first order waves from a me-

tallic grating, also known as the Wood or Rayleigh

anomaly, has been recently unified with the concept of

Fano interferences,9,49 and is at the origin of extraordinary

transmissions in subwavelength hole arrays.6,7 All these

physical phenomena fall into the range of applications

of eq 1.

CONCLUSIONS

The optical properties of plasmonic nanostructures

supporting Fano resonances have been investigated

with surface integral numerical simulations and com-

pared to the predictions of an electromagnetic theory.

By fitting the analytical formula to the numerical

simulations, we have shown that the line shape of

Fano resonances satisfies the predictions of the elec-

tromagnetic theory in a broad variety of plasmonic

nanostructures, and that this procedure is applicable

for any continuum of radiative waves.

In most plasmonic nanostructures, Fano-like reso-

nances arise from the interference between a radiative

and a nonradiative mode. We have derived closed-form

analytical expressions of the resonance parameters for

this particular case and quantitatively verified their be-

havior. Our results indicate that the frequency position of

the asymmetric resonance is determined by the dark

mode's frequency and perturbed by its coupling to the

bright mode. The width of the asymmetric resonance is

mainlydeterminedby themodes coupling,while intrinsic

losses drastically affect the modulation depth and asym-

metry of the resonance. The asymmetry and modulation

damping parameters describe the interference and de-

pend on the observable that is chosen to monitor the

resonance, for instance reflectance or extinction spectra.

This work presents a general, robust, and consistent

analysis of plasmonic Fano resonances and enables the

control of their line shape based on Maxwell's equa-

tions. The insights into the physical understanding of

Fano resonances gained this way will be of great

interest for the design of plasmonic systems with

specific spectral responses for applications such as

sensing and optical metamaterials.

METHODS

We would like to refer the reader to the work where the
electromagnetic theory describing Fano resonances in plasmo-
nic systems is derived.27 This theory leads to equations 1 and 3.
In this section, we show how to retrieve the characteristic
resonance parameters from fitting eq 3 with numerical simula-
tions. Numerical simulations were performed with a surface
integral formulation method for periodic nanostructures.28,29

Open boundary conditions and illumination conditions are
explicitly included in the equations. To compute reflectance
spectra, the scattered electric field is sampled sufficiently far
away from the array (typically 30wavelengths). The zeroth order
of its discrete Fourier transform in the unit cell is calculated and
multiplied by its complex conjugate. For extinction spectra, the

transmittance is first calculated from the total electric field
(incident þ scattered) in a similar way as the reflectance, but
on the other side of the array. The extinction is then calculated
as to be 1 � transmittance. The fit of the spectra with eq 3 is

performed in most cases by variations of the seven parameters

a, ωs, Ws, ωa, Wa, q, and b (eq 1 and 2). To fulfill energy

conservation, the SR amplitude a is constrained to be inferior

to 1. In Figure 6e with two ARs, the fit has been performed

with two sets of four parameters and a set of three para-

meters for the background. In Figure 7b, only two parameters

have been used for fitting the background as it is not generated
by a plasmon resonance. These two parameters correspond to a
Taylor expansion of the background reflectance around the AR
frequency.
The AR parameters in eq 1 can be calculated analytically in

the far-field for the particular case where the optical response of

the bright mode satisfies eq 2. The resonance frequency of the

dark mode is ωd þ iγd, where γd is related to intrinsic losses in

the metallic scatterers. The AR parameters are assumed to be

constant in the AR spectral region and are evaluated at ωd. The

AR frequency is related to the real part of the dark mode's

resonance frequency ωd by

ω2
a ¼ ω2

d þωdΔ (4)
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whereΔ is the AR frequency shift due to coupling cbetween the

dark and bright modes:

Δ ¼ (
c2(ω2

d �ω2
s )Γs

2ω2
d((ω

2
d �ω2

s )
2
þΓ

2
s )

(5)

where Γs = 2Wsωs is the SR width in units of frequency squared.

The quantityWs represents an approximation of the SR width in

frequency units for Ws , ωs. The parameter Δ (as well as the

asymmetry parameter q) is written in an integral form involving

a dyadic Green's function. The principal value of these singular

integrals can be calculated using the residue theorem. The þ

(�) sign arises from a phase degree of freedom for the Green's

function, and corresponds to a situation where the radiative

continuum supported by the bright mode oscillates in (out of)

phase with its reciprocal.19 In the classical oscillators model,18,27

the equivalent effect is obtained by assuming a purely imagin-

ary coupling constant. The sign of Δ is also determined by the

frequency difference between the two modes, and its magni-

tude linearly depends on the coupling strength, which is a

signature of weak coupling. The AR width in units of frequency

squared is given by

Γa ¼
c2Γ2

s

2ωd((ω
2
d �ω2

s )
2
þΓ

2
s )(1 � Rγd=c

2)
(6)

where

R ¼
4ω2

d((ω
2
d �ω2

s )
2
þΓ

2
s )

(ω2
d �ω2

s )
2
þ 16γ2dω

4
d((ω

2
d �ω2

s )
2
þΓ

2
s )

2=c4
(7)

is a constant. Previously called Γ in the original theory,28 the

quantity Γa is linked to the AR width in frequency units Wa by

Γa = 2Waωa. The asymmetry parameter q and modulation

damping parameter b depend on the optical response that is

considered for the resonance. Considering this response similar

to the one in eq 2, the q parameter becomes

q ¼ ( 1 �
Rγd
c2

� �

ω2
d �ω2

s

Γs

(8)

Only the case of a real asymmetry parameter, corresponding

to structures embedded in a homogeneous dielectric back-

ground, is considered in this work. For more general struc-

tures, the asymmetry parameter q is expected to have

imaginary parts and contribute to the AR modulation

damping.42 Finally, the modulation damping parameter b

includes contributions of the intrinsic losses and the modes

coupling:

b ¼ 4
γ2dq

2

Δ
2

¼ 1 �
Rγd
c2

� �2
16γ2dω

4
d((ω

2
d �ω2

s )
2
þΓ

2
s )

2

Γ
4
s c

4
(9)

In the parameters Γa, q, and b, intrinsic losses appear in the

ratio γd((ωd
2
� ωs

2)2 þ Γs
2)/c2, that is, the ratio between the

power lost in the metallic structure and the power trans-

ferred from the bright mode to the dark mode. This ratio also

appears in the expressions for the AR width (eq 6) and

asymmetry (eq 8) and accounts for its efficiency.
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