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Influence of End Constraint in the

Testing of Anisotropic Bodies

N. J. PAGANO
AND

J. C. HALPIN

Nonmetallic Materials Division
Air Force Materials Laboratory
Wright-Patterson AFB, Ohio

One of the most elementary concepts in elasticity theory is that
of a uniform state of stress. Producing such a state of stress in the
laboratory, however, is not a trivial task. A common experiment in
composite mechanics&mdash;the tension test of off-angle composites-is
discussed in this paper and the influence of end constraint on the
uniform stress field is investigated. Analytical and experimental
evidence is presented to show the serious effects caused by con-
ventional clamping devices.

INTRODUCTION

ONE of the more common experiments currently being utilized tocharacterize composite materials is the tension test of off-angle
specimens, i.e., specimens in which the unidirectional filaments are
neither parallel nor perpendicular to the direction of the applied
tensile force. In order to interpret the data from such experiments, it
is assumed that uniform states of stress and strain exist within the

gage section. In this paper, we shall present analytical and experi-
mental evidence which indicates that conventional modes of end
constraint induce severe perturbations in the stress and strain fields.
Owing to the restraint caused by clamping devices, significant shear
and bending effects are present.

Consider the off-angle composite specimen (or simply, a homo-
geneous anisotropic material) under uniform normal stress (To as

shown in Figure 1. The deformed configuration is indicated by solid
lines. Of particular concern is the shear strain

where S16 is the shear coupling compliance, which causes the bar to
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Figure 1. Uniform state of stress. Figure 2. Effect of clamped ends.

distort into a parallelogram. Suppose, however, that the ends of the
bar are constrained to remain horizontal, a condition which approxi-
mates the effect of clamped ends. As shown in Figure 2, the applica-
tion of constant end displacements induces shearing forces and
bending couples at the ends of the bar, which result in the non-
uniform deformation shown in the figure.
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ANALYTICAL SOLUTION

In order to gain insight as to the influence of the constraint pro-
duced by gripping the ends of a tensile specimen, we shall simulate
these displacement boundary conditions and solve the appropriate
boundary value problem in the linear theory of elasticity (see Figure
3). Since composite specimens are thin members, we assume that the
bar is in a state of plane stress in the xy plane. We also consider a
macroscopically homogeneous material, which is consistent with the
nature of the response to be studied. In Figure 3 the axes of material
symmetry are at an angle a with the x and y coordinate axes, and xy is
a plane of material symmetry. Hence, the governing equations which
must be satisfied in the orthotropic medium [1] are the equations
of equilibrium,

the strain-displacement relations,

Figure 3. Specimen geometry.
=zi»

 at MICHIGAN STATE UNIV LIBRARIES on October 31, 2010jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


21

and the constitutive relations,

where Sij are the compliance coefficients with respect to the xy
coordinate system, four of these being independent. Eliminating the
strain and displacement components from eqs. (3) and (4) and using
(2), we obtain the following stress compatibility equation:

Therefore, in the stress formulation, the governing equations are (2)
and (5).

If an end surface of the bar in Figure 3, say x = 0, is supported by a
rigid clamp, the boundary conditions on this end can be expressed by

while on the surfaces y = -h, the prescribed boundary conditions are
given by

since these edges are free surfaces.
The boundary value problem described by the solution of eqs. (2)

and (5) which satisfies (7) and the end conditions corresponding to (6)
is a very complicated one, and can probably only be solved by numer-
ical methods. Furthermore, photographs shown later illustrate that
the displacements at a clamped end do not satisfy eqs. (6) in an actual
experiment. Rather, the specimen tends to be pulled out of the clamp
due to the Poisson contraction in the thickness direction. In view of

this, we shall seek a solution that satisfies eqs. (2), (5), and (7), and
replace eqs. (6) by boundary conditions on the center line, i.e.,

and

where Eo (center-line strain) is a constant which is directly propor-
tional to the magnitude of the applied axial force.
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Since the shearing force in the bar is independent of x, we assume
a solution for Txy of the form

where f ( y ) is an arbitrary function of y alone. Substituting eq. (10)
into (2) and integrating, we find that

where h (x) and g ( y ) are arbitrary functions of the respective vari-
ables. Putting eqs. (11) into the compatibility equation (5) and using
(7) yields

where Co, C1, C2 are constants. Thus the stress and strain components
are given by

and

Integrating the strain-displacement relations (3) after inserting eqs.
(14) gives the following displacement functions: 

-
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By use of boundary conditions (8) and (9), the various constants are
determined as

which completes the solution. We observe that the stress and strain
components on the center line y = 0 assume constant values. In

particular, we see that

Suppose that the tension test of an off-angle composite is used as
the basis for determining Ell, the composite modulus of elasticity in
the x direction. If the effects noted here are not taken into account,
this modulus will be erroneously recorded as E1~, where

However, eqs. (17) and (18) show that

. 

where

and

In other words, 71 is a measure of the error in the observed modulus.
The value of T can be quite large for certain values of a (see Figure 3)
in highly anisotropic composites like boron-epoxy and graphite-
epoxy, but for materials like glass-epoxy, it is quite small. Using data
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and transformation curves presented by Tsai [2] on boron-epoxy
composites for a fiber volume fraction of .65, a = 30°, and t/w = 2,
the value of T is found to be .33, whereas for t/w = 6, ~ = .07; these
represent errors in the observed value of E11 of 50% and 7%, respec-
tively, according to eq. (19). For large values of t/w, the value of T
approaches zero.

The numerical values presented in the previous paragraph are
given as an estimate of the error produced by end constraint. We
must recall that eq. (19) is based upon an approximate version of the
displacement boundary conditions at the clamped ends, i.e., we have
assumed restraint at one point (on the center line) at each end. Al-
though subsequent photographs indicate that this assumption is

reasonable, it appears that bending effects would be more pro-
nounced if a finite width of the specimen is restrained. It might seem
that errors can be reduced by allowing an end clamp to rotate, which
is a common practice in conventional testing machines. The major
factor, however, is the clamping or gripping per se, rather than the
orientation of the end fixture, so that rotation of an end has little effect
on the strain field. We shall return to these points in the discussion
of our experimental results.
We may also express our results in terms of the applied axial force

P as shown in Figure 2, rather than using the parameter Eo, since
... , ......... ~ -

where t is the thickness of the bar and Co and C2 are given by eqs. (16).
It is interesting to determine the solution of the present problem

as ~ becomes very large. Consideration of eqs. (13)-(16) as Z ~ 00
yields

Theoretically then, the strain components correspond to the uniform
state of stress in Figure 1, although the displacement field does not.
This paradox is due to the disappearance of certain displacement
gradients as .t ~ 00. Hence, the stress field approaches uniformity
with increasing len gth..... =. , ..=t:.~ n:: ,-_,~ ;;_.. ; , >&dquo;7
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Figure 4. Deformed bar, analytical solution.

Another interesting case arises when 516 = 0. In this case, we see
from eqs. (16) that

and from eqs. (13) and (14), we find that the stress and strain fields are
uniform.

The deformed shape of a &dquo;tensile&dquo; specimen, as predicted by
eqs. (15), is drawn to scale in Figure 4. The compliance coefficients
used in the calculations were (in.2/#):

which corresponds to the material discussed in the next section for an
angle a = 30°. In order to clearly illustrate the response character-
istics, the longitudinal strain Eo is taken as .20 in the figure.

EXPERIMENTAL RESULTS

In order to demonstrate the response discussed in the previous
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section, it is convenient to utilize a relatively soft material, capable of
sustaining deformations which can be detected visually. The material
selected was a nylon-reinforced rubber which has the following
properties (in.2/#):

where sij are the compliances with respect to the axes of material
symmetry, with the 1 direction being oriented along the fibers as
shown in Figure 3. These coefficients were determined by the method
described in [3]. In order to relate the elastic response of this
material to more conventional composites, it may be helpful to note
the modulus ratios

Figure 5 is a photograph of the initial (undeformed) configuration
of a specimen with fibers at an angle a of 30° with the vertical in an
Instron testing machine. In Figure 6, a longitudinal strain of .20 is
applied to the specimen, which is supported by rigid clamps (no
rotation). The character of the response is quite similar to that given

Figure 5. Undeformed 300 specimen.
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Figure 6. Deformed 30° specimen: rigid
clamps.

Figure 7. Deformed 30° specimen: rotating
clamp.

by the analytical solution (Figure 4), but an exact correlation is not
possible due to the large strains imposed. Specimens subjected to
smaller strains exhibit fair agreement with the analytical solution for
a given value of Eo, however the analytical solution tends to under-
estimate the magnitude of the shear strain. One can observe the

specimen pulling out from the clamps in the regions of high tensile
stress. The applied loads are not shown in the various figures in this
section since we do not feel that the load recorded on the dial in-
dicator is accurate owing to the large bending moment and shearing
force acting at the clamps.

In Figure 7, the experiment is repeated, but in this case the upper
clamp is allowed to rotate. Considerable bending is noted again-in
fact, the strain distributions in Figures 6 and 7 are practically
identical. This supports the earlier observation that the gripping re-
straint is the dominant factor in disturbing the uniform stress field.
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As shown in [3], the compliance S16 vanishes when a is approxi-
mately 60° for this material. A specimen of this configuration was
deformed with Eo = .20 as shown in Figure 8(b). The resulting uniform
state of strain, as predicted in eqs. (24) and (14), is quite evident. Of
course, the constraint of lateral contraction in the grips gives the
specimen a dogbone appearance. This constraint is accompanied by
self-equilibrating lateral forces, in contrast to the type of constraint
under discussion in this paper. Figure 8(c) shows the reversal of the
direction of bending as the shear coupling compliance S16 changes
sign, as predicted by eqs. (15). The fibers in Figure 8(c) are at 75° to
the applied axial force. For contrast, Figure 6 is repeated as Figure
8(a). The corresponding uniform states of strain are depicted in
[3], Figure 9.

The effect of length to width ratio is illustrated in Figures 9, 10,
and 11. The deformations of specimens having length to width ratios
of 2, 4, and 6 are shown in these figures. The strain field in the central
region of the bar in Figure 11 is closely approaching the uniform state
of strain given by eqs. (23). This is verified further by comparison
of Figures 11 and 12. In Figure 12, a uniform state of stress is induced
by the method discussed in reference [3]. In Figures 11 and 12, the
longitudinal strain Eo has the value 0.20. We can see that the strain
fields are nearly equivalent in the central region of the bar.

Figure 8 (a). 30° specimen. (b). 60° specimen. (c). 7S° specimen.
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Figure 9. 30° specimens = 2.
w

Figure 10. 30° speCImen, - = 4.
w

DISCUSSION AND CONCLUSIONS

We have shown that bending effects resulting from end constraint
can produce serious consequences in the testing of off-angle com-
posites. The analytical model presented includes the description of
the various important response characteristics, and gives an approxi-
mate solution for the response. A more exact solution would entail a

study of the displacement boundary conditions in an effort to simulate
them more closely.

Although we have pointed out some difficulties which arise in
performing and interpreting this experiment, we have not suggested
an acceptable test method. One possibility is to study the length
effect observed earlier in some depth to determine any theoretical or
practical limitations on the generality of eqs. (23). As discussed earlier,
it is quite possible that eq. (19) underestimates the error caused by
gripping owing to the approximation employed to represent the dis-
placement boundary conditions.

An alternative to the off-angle tension test for elastic moduli is the
use of angle-ply (Ia) composites. However, the shear-coupling
factors cannot be directly observed in such an experiment, and
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t
Figure 1 1. 30° specimen, -; = 6.

w
Figure 12. 30° specimen, uniform state of

stress.

boundary layer effects near the free edges preclude an exact analytical
description of the experiment.

An apparatus similar to that discussed by Halpin and Pagano [3]
can be utilized to introduce a uniform state of stress in an off-angle
composite. Although the design of this apparatus may need modifica-
tion in the testing of hard materials such as structural composites, it
appears to be the most promising method to induce uniform stress.
This approach is obviously limited to the determination of elastic
moduli, i.e., it cannot be expected to yield reliable strength data. The
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latter problem can conceivably be solved by suitable modification of
the ends of the test specimen. Considerable caution must be ex-
ercised in this regard since building up the ends of a test piece will
induce similar effects to those observed in this paper, but probably
on a smaller scale. It must be emphasized, however, that careful
experimental verification of any such scheme must be undertaken in
order to ensure the existence of a uniform state of strain, at least in a
region away from the ends of the bar.

Although we have restricted our attention to a specific material
and a particular experiment, the nature of the influence of end con-
straint is considerably more general. For example, any material which
is macroscopically anisotropic, such as metals or polymers which are
anisotropic because of their fabrication processes, are subject to these
effects. In compression testing of anisotropic bodies, the conse-
quences of end constraint tend to be more serious since these speci-
mens are relatively short. Similar arguments can be advanced to
illustrate the influence of gripping in torsion experiments as well as
in the testing of plates and shells.

NOMENCLATURE

x, y = Cartesian coordinates.
(TX, U&dquo;y, ’Txy = Stress components.
Ex, Ey = Normal strain components.
yxy = Engineering shear strain.
u, v = Displacement components in x and y directions.
ss = Compliance coefficients with respect to x, y axes.
811 --- 866 = Compliance coefficients with respect to material sym-

metry axes.
Eo = Applied longitudinal strain.
f ( y ) , g ( y ) , h ( x ) = Arbitrary functions.
Co --- Cs = Constants.
w = 2h, ~9 t = Dimensions of specimen.
Ei? = Observed modulus of elasticity.
T = Factor reflecting error in observed modulus of elasticity.
EL, Er = Longitudinal and transverse moduli of elasticity.
GLT = Longitudinal-transverse shear modulus.
a = Angle of rotation.
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