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Abstract: Nowadays, the automotive market has showed great interest in the diffusion of Hybrid
Electric Vehicles (HEVs). Despite their low emissions and energy consumptions, if compared with
traditional fossil fuel vehicles, their architecture is much more complex and presents critical issues
in relation to the combined use of the internal combustion engine (ICE), the electric machine and
the battery pack. The aim of this paper is to investigate lithium-ion battery usage when coupled
with an optimization-based strategy in terms of the overall energy management for a specific hybrid
vehicle. A mathematical model for the power train of a Peugeot 508 RXH was implemented. A
rule-based energy management system (EMS) was developed and optimized using real data from the
driving cycles of two different paths located in Messina. A mathematical model of the battery was
implemented to evaluate the variation of its voltage and state of charge (SOC) during the execution
of driving cycles. Similarly, a mathematical model was implemented to analyze the state of health
(SOH) of the battery after the application of electrical loads. It was thus possible to consider the
impact of the energy management system not only on fuel consumption but also on the battery pack
aging. Three different scenarios, in terms of battery usage at the starting SOC values (low, medium,
and maximum level) were simulated. The results of these simulations highlight the degradation and
aging of the studied battery in terms of the chosen parameters of the rule-based optimized EMS.

Keywords: hybrid electric vehicle; rule-based energy management system optimization; battery aging

1. Introduction

Nowadays, hybrid vehicles (HV) represent probably the most important response
of the automotive market to anti-pollution regulations with the purpose of limiting air
pollution emissions caused by road transport.

Hybrid vehicles, with both thermal and electric propulsion, are able to combine the
use of the internal combustion engine (ICE) and one or more electric engines to reduce the
use of fossil fuels up to 50% in comparison with traditional vehicles [1–4].

Battery electric vehicles (BEV) or fuel cell vehicles (FCV) are also considered an alter-
native to traditional vehicles. FCVs are still not considered a mature technology for the
transport system, since hydrogen distribution systems are still inadequate to guarantee a
massive diffusion of this technology [5]. In addition, BEVs are not adequate for worldwide
diffusion because they present high costs and charging times that are not generally compat-
ible with market needs [6]. For these reasons, HVs, at this time, represent the short-term
best response [7].

All vehicles with hybrid propulsion, regardless of their engine or mechanical architec-
ture, are equipped with an energy management system (EMS) of the power unit.

The EMS performs the task of improving the overall efficiency of the system in terms
of fuel savings, manages the drivers’ power demand and limits the operating points at high
emissions [8]. Therefore, the optimization of this system approach is of crucial interest to
achieve goals for both dynamic and efficiency performances. The literature presents several
approaches in terms of EMS, which may be divided into two main groups as follows:
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• Rule-based Energy Management Systems: these approaches manage the power de-
mands by implementing fixed rules. Usually, the rules are based on the efficiency
maps of the thermal engine and the electric installed motors in order to define the best
working points in terms of efficiency. The simplest version of rule-based EMS follows a
determinist approach, that is when these control systems operate only on the switching
on/off of the thermal engine to convert mechanical power to electrical energy and lead
the state of charge (SOC) of battery back to an acceptable level. These types of control
systems are generally used when the thermal engine does not provide traction [9,10].
On the other hand, control systems are based on power demand, where the main input
is the driver’s power request, and the main goal of the electric engine is to guarantee
adequate support to the thermal engine. The latter would always operate at optimal
working points, while an electric motor will try to fulfill driver demands [11,12]. The
most efficient version of rule-based EMS is the “multimode” strategy. This is probably
more complex in comparison with the others, but presents a better effectiveness with
regards to the fuel consumption reduction. These management algorithms generally
include a fully electric driving and a fully thermal driving mode, and other hybrid
modes. In hybrid modes, the thermal engine may have the task of supporting traction,
and at the same time recharging the battery, or simply a marginal role in the traction
or operating at predefined working points [13–17].

• Optimization-based Energy Management Systems: the main goal of these approaches
is to achieve the global optimum by minimizing a cost function that, in the case of
HEVs, is generally based on the fuel consumption or emissions of air pollutants.
These strategies, in order to work, need several input parameters, such as driving
cycles and other physical constraints of ICEs, electric energy storage (ESS) and EM.
These aspects make these control approaches non-random [8]. The most common
strategies of this group are equivalent consumption minimization strategies (ECMS)
and model predictive control-based strategies (MPC). The ECMS, in order to minimize
the overall fuel consumption, takes into account the fuel used by the thermal engine
and also the ideal fuel consumed by the battery. Instead, the MPC takes advantage of
dynamic programming techniques to manage all energy flows to achieve the final goal
in accordance with the considered driving cycle. Additionally, in this case the cost
functions generally take into account the evolution of the states of charge of battery
in relation to fuel consumption. Some examples in the literature of this approach are
presented in [18–23].

From this short description of state-of-the-art EMSs, it appears evident that the ma-
jority of approaches are focused on the reduction of the fuel consumption of the thermal
engine. However, few studies also evaluate the phenomena of battery aging or degradation.
The batteries, during their life cycle, are affected by several electrical and thermal stresses
that compromise their functionalities. These phenomena usually decrease their ability to
store and deliver energy to the power unit. In modern lithium-ion batteries, which are also
the most diffuse in the automotive sector, the main phenomenon that causes aging is related
to the growth of the solid electrolyte interface (SEI) layer on the negative electrode [24,25].
In the study proposed by Cignini et al. [26], the phenomenon of battery aging was eval-
uated for long-term powertrain use, but no mathematical model was implemented and
simulated for the evaluation. The evaluation of battery aging was carried out by taking into
account the data provided by the battery manufacturer. Moreover, it was not considered an
optimization strategy that involved battery aging. Padovani et al. [27] presented a study in
which the optimization of EMS took into account, thanks to ECMS, the battery aging. This
phenomenon was evaluated as a penalty depending on the temperature of the battery use
state. Additionally, in this case a mathematical model was not implemented and simulated
to study the degradation phenomenon. Tang et al. [28] proposed an optimization strategy
based on battery aging. The proposed model was semi-empirical and involved a set of
constraints expressing the effect of operating currents, SOC and temperatures. However, if
the main goal is to evaluate the effect of each of these parameters on the degradation of cells,
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this type of approach may not be adequate. Generally, the literature presents several studies
and models of aging batteries, but most of them are also useable for stationary applications,
or are very difficult to implement in real-time management algorithms, typically of HEVs,
especially because of their computational complexity [29–31].

For these reasons, this work aims at modelling an EMS for a through-the-road HV,
taking battery aging into account. The simulated car was equipped with a multimode
rule-based EMS, optimized in the functions of two typical paths located in the urban
zone of the city of Messina (Italy). The battery was modeled with a modified Shepherd
model coupled with a mathematical model for the simulation of aging, able to evaluate the
residual capacity of the battery. This latter model takes into account the contribution of
each parameter (charging current, discharge current, SOC, temperature) to evaluate the
degradation and optimize it. The simplicity of computation and optimization allows the
implementation of the proposed model within the control units for the management of
real-time power units.

2. Vehicle Modelling and Validation

A dynamic numerical model of a Peugeot 508 RXH hybrid 4 (2017), presented by
Li et al. [32], was developed with AVL Cruise-M™ software to solve the vehicle’s longitudi-
nal motion equation and evaluate the results in terms of fuel consumption and battery drop.
Figure 1 shows the powertrain model developed in AVL Cruise-M™ software. The vehicle
had a through-the-road (TTR) hybrid architecture, with independent propelled axles; an
internal combustion engine (ICE) moved the front wheels and an electric machine (EM)
moved the rear ones.
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Figure 1. Powertrain layout e-type of link between components.

The front axle was equipped with 2L diesel ICE, with a maximum power of 120 kW.
The power was transferred firstly via the clutch to a six-speed automatic gearbox and
secondly to the differential linked with the front wheels. The numerical modelling of the
ICE follows a map-based approach. The instantaneous fuel consumption and efficiency
map presented in [32], as well as the ICE’s maximum torque profile, were extracted using a
web tool [33]. Figure 2 shows the instantaneous consumption and efficiency maps and the
ICE maximum torque curve.

The passenger car’s gearbox was a six-speed automatic transmission, and the shift
strategy refers to vehicle longitudinal speed. Table 1 shows the gearbox and differential
unit transmission ratios, and the shifting speed according to vehicle velocity.

A permanent magnet synchronous motor (PMSM) was the EM which provides and
receives power from the rear differential unit, which was modelled as a single transmission
ratio. The differential unit was mechanically linked to the rear wheel, so the PMSM could
provide traction force to, or recover energy from, the rear wheels. In addition, the numerical
modelling of the EM followed the map-based approach, and its characteristic map, that
defines the torque boundaries and operating efficiency, is shown in Figure 3.
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Table 1. Transmission parameters and shifting strategy.

Gear Ratio Gear Upshifting (km/h) Gear Downshifting (km/h)

First 3.54:1 12 -
Second 1.92:1 35 5
Third 1.28:1 55 20

Fourth 0.91:1 80 30
Fifth 0.67:1 100 70
Sixth 0.53:1 - 90

Differential 4.53:1 - -
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The EM, whose nominal operating voltage is 700 V, was electrically connected to
the Li-ion battery pack through a bi-directional power inverter. Due to the quasi-static
nature of the model, the inverter was considered as a static component able to raise the
DC line voltage. Therefore, the inverter’s efficiency was combined with the battery’s and
shown in Figure 4. The efficiency was maximum at low power values. It decreased as the
power increased, with a different rate depending on the power sign and the batteries’ state
of charge.
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2.1. Battery Mathematical Model

The modified Shepherd model (MSM) evaluates the voltage variation at the battery
terminals. This MSM also presents the polarization resistance and voltage in comparison
with the classical Shepherd model. These two terms allow the mathematical shaping of the
dynamic phenomena involving the battery during its use. In the MSM, proposed in [34], the
evolution of the battery voltage during the discharge and the charge is described through
Equations (1) and (2) respectively:

Edisch = E0 −
K1Qmax(Qmax − Q)

Q
−

K2Qmaxi∗b
Q

+ Ab exp(−Bb(Qmax − Q))− Rbib (1)

Echarge = E0 −
K1Qmax(Qmax − Q)

Q
−

K2Qmaxi∗b
1.1Qmax − Q

+ Ab exp(−Bb(Qmax − Q))−Rbib (2)

In which the term K1Qmax(Qmax−Q)
Q is the polarization voltage, and the term K2Qmax

Q the
polarization resistance. The other terms are the battery current (ib), the filtered current (i∗b ),
the exponential zone amplitude (Ab) and the exponential zone time constant inverse (Bb).

The filtered current can be assumed to be equal to the battery current, since stationary
conditions are not considered in this study. Equations (1) and (2) do not consider the
aging phenomena that usually affect the battery in its life cycle. In [35], an approach
based on material fatigue was carried out to determine battery degradation. The battery
degradation is caused by the formation of a solid-electrolyte interphase (SEI) in the negative
electrode, which competes with reversible lithium intercalation. The high rate of charging
or discharging current, the high value of the depth of discharge (DOD), and the operating
temperature may accelerate the degradation due to accelerated growth of the SEI. For these
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reasons, a stress factor was considered for each of these variables. Equation (3) evaluates
the stress factor θDOD(n), for each cycle n that involves the depth of discharge:

θDOD(n) =

(
DOD(n)
DODre f

)1/ρ

(3)

where DODref is equal to a full discharge, DOD(n) is the current cycle depth of discharge, and
1/ρ is the stress exponent related to the depth of discharge. Similarly, the impact of the C-rate
of charge and discharge current is also evaluated through Equations (4) and (5), respectively:

θICharge(n)
=

(
IChargeavg(n)

IChargere f

) 1
γ1

(4)

θIDischarge(n)
=

(
IDischargeavg(n)

IDischargere f

) 1
γ2

(5)

where IChargeref and IDischref represent the reference currents for battery stress evaluation
in charge and discharge, while IChargeavg(n) and IDischargeavg(n) represent the average charge
and discharge currents for the cycle n. The terms 1

γ1 and 1
γ2 are the stress exponents of the

charge and discharge currents.
The stress factor related to operating temperature is described by Equation (6), where

Ta(n) and Tref are the operating temperatures during the cycle n and the reference tempera-
ture for battery degradation assessment, and ϕ is the Arrhenius constant.

θT(n) = exp

[
−ϕ

(
1

Ta(n)
− 1

Tre f

)]
(6)

The product of all the stress factors is equal to the stress experienced by the battery for
each cycle [36]. The maximum number of cycles (Nc) until a certain level of degradation is
inversely proportional to the resulting stress factor, as reported in Equation (7) [37]:

Nc(n) =
N_Cre f

θ(n)
(7)

In Equation (7), NCref represents the number of cycles to the end of the battery
life when subjected to charge and discharge cycles, with a value of DOD = DODRef,
ICharge = IChargeRef, IDisch = IDischRef and Ta = TRef. The term θ(n) is the product of all stress
factors, and it is evaluated by Equation (8):

θ(n) = θDOD(n)·θICharge(n)
·θIDischarge(n)

·θT(n) (8)

For realistic load profiles, it is rare that the battery starts and finishes every cycle with
the same SOC value, which makes consecutive cycles not directly comparable in terms of
DOD achieved. It is necessary to consider the equivalent number of cycles performed by
the battery. This quantity can be evaluated by Equation (9). Equation (9) normalizes the
partial discharge and charge of each cycle against a reference charge or discharge, which
corresponds to a full discharge and charge of the battery.

Neq(n) = 0.5
(

2 − DOD(n − 2) + DOD(n)
DOD(n − 1)

)
(9)

The ratio between the number of cycles to end of life (Nc) and the number of equivalent
cycles (Neq) defines the degradation index. Clearly, as the number of cycles increases, the
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index will also evaluate the cumulative degradation up to that point. The degradation
index is given by Equation (10).

ε(n) = ε(n − 1) +
Neq(n)

NC(n − 1)
(10)

The degradation index, as it is defined, measures the relationship between the instan-
taneous capacity and the end-of-life capacity, as well as the instantaneous resistance and
the end-of-life resistance, as expressed by Equations (11) and (12):

Q(n) = QBOL − ε(n)α·(QBOL − QEOL) (11)

R(n) = RBOL − ε(n)β·(RBOL − REOL) (12)

where QBOL and QEOL represent the capacity of the non-degraded battery and end-of-life
battery, respectively. Similarly, RBOL and REOL represent the non-degraded and end-of-life
battery resistance. Typically, the QEOL is equal to 0.8QBOL, but instead REOL is equal to 1.2
RBOL. The exponents α and β are the capacity and resistance degradation exponents of
the cell. The values of α and β, as well as the values of ρ, γ1, γ2, and φ are calculated by
performing specific laboratory tests in which the battery is degraded under controlled load
conditions. The value of the constants for the cell, presented in Table 2, have been defined
by Li et al. in [32] for MSM, and by Motapon et al. in [35] for an aging model.

Table 2. Battery parameters.

Parameter Symbol Value

Battery capacity Qmax (QBOL) 5.65 Ah
Battery nominal voltage E0 230 V

Internal resistance Rb (RBOL) 0.2056 ohm
Polarization constant K1 0.116 V/Ah

Polarization resistance K2 0.116 ohm
Exponential zone amplitude Ab 25.1477 V

Exponential zone time constant inverse Bb 4.2404 (ah)−1

Resistance at end of life REOL 0.24672 ohm
Battery capacity at end of life QEOL 4.52 Ah

DOD stress exponent ρ 0.8
Charge stress exponent γ1 2.34

Discharge stress exponent γ2 0.8
Temperature stress exponent φ 3.7 × 103

Capacity degradation exponent α 0.9708
Resistance degradation exponent β 0.9708

2.2. Calculation of the Driving Forces

Figure 5 shows the scheme of the mathematical model. Starting from a driving cycle,
the numerical model extracts the necessary information to evaluate the resistant forces for
the longitudinal motion of the vehicle. It is possible to calculate the total power to execute
the driving cycle by knowing the force and the desired speed. The control unit distributes
the necessary power both to the front and the rear axles, managing the necessary torques to
the electric machine and to the ICE.

The total amount of resistance force is equivalent to the sum of the aerodynamic
resistance force, the rolling resistance, the gradient loading, and the acceleration’s inertia.
To evaluate the aerodynamic resistance force, AVL CruiseTM M refers to Equation (13):

Fd = 0.5·ρa·CD·A·v2 (13)
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where ρa is the air density, CD is the drag coefficient, A is the vehicle’s frontal area and v
is the longitudinal velocity. To evaluate the rolling resistance force, for each wheel, AVL
CruiseTM M refers to Equation (14):

Fr = Fw·cw (14)

where Fw is the vertical load acting on the wheel and cw is the rolling resistance factor.
Li et al. [32] considered the total rolling resistance force as a constant force of 70 N, named
Fr*, acting on the vehicle (four wheels). To obtain the same result in CruiseM, considering
that Equation (14) refers to one wheel, cw has to be calculated by Equation (15):

cw =
F∗r

4·Fw
(15)
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To evaluate the gradient loading, AVL CruiseTM M refers to Equation (16):

Fα = mv·g· sin αr (16)

where mv is the vehicle mass, g is the gravity acceleration and αr is the road inclination
angle. The inertia force is evaluated by Equation (17):

Fa = mv·
dv
dt

(17)

Thrust force is the sum of the resistance force (13–17). The total torque for the traction,
which must be provided to the two axles, is the product of thrust force and the wheels’
rolling radius, as expressed by Equation (18):

Ctot = C f + Cr = (Fd + Fr + Fα + Fa)·Rw (18)

where Ctot is the total necessary torque, considered as the sum of front axle torque (Cf) and
rear axle torque (Cr), and Rw is the wheels’ rolling radius. Table 3 shows the values of the
parameters for Equations (15)–(18) with reference to the considered vehicle.

Table 3. Resistance force parameters [32].

Parameter Symbol Value

Air density ρ 1.19 kg/m3

Drag coefficient CD 0.44
Frontal area A 1.77 m2

Rolling radius coefficient cw 0.0040
Vehicle mass mv 1770 kg

Vertical wheels load Fw 17,363.7 N
Wheels rolling radius Rw 0.305 m
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2.3. Front and Rear Axle Torque, Speed, and Power

The EMS, depending on the vehicle’s actual state, manages the Cf and the Cr, and
therefore the torque requested by the ICE and EM. Cf, which depends on CICE, can only be
positive, while Cr, which depends on CEM, can be positive (motor) or negative (generator).
ICE torque, angular velocity and requested power are evaluated by Equations (19)–(21):

CICE =
CF

τFFD·τGB·ηGB·ηFFD
(19)

ωICE =
v·τFD·τGB

Rw
(20)

PICE = ωICE·CICE (21)

where τFFD is the front final drive transmission ratio, τGB is the gear box transmission
ratio, ηGB is the gear box efficiency and ηFFD is the front final drive efficiency. PICE is the
ICE power, the product of its angular velocity (ωICE) and torque (CICE). The instantaneous
torque and angular velocity, in accordance with Figure 2, define the instantaneous fuel
consumption.

Equations (22)–(24) are defined to evaluate the electric machine-requested torque,
speed, and power:

CEM =
CR

τRFD
·η−sign(CR)

RFD (22)

ωEM =
v·τRFD

Rw
(23)

PEM = ωEM·CEM (24)

where CEM is the requested torque to the electric machine from EMS, τRFD is the rear final
drive transmission ratio, and ηRFD is the real axle final drive efficiency. The sign of the
efficiency exponent depends on the operating conditions of the EM. When EM operates
as a motor (positive power), it has to overcome energy losses in the final reducer, so the
efficiency divides the torque. Otherwise, EM operating as a generator can only absorb the
power not dissipated within the final reducer, so the efficiency multiplies the torque. The
product between the requested torque and EM angular velocity (ωEM) returns the electric
machine power (PEM).

PEM is mechanical power that is converted into electrical power from the EM to
the battery pack. Equation (25) estimates the electrical power required (or supplied) to
the battery:

PB = −1·PEM·(ηEM·ηEB·ηPE)
−sign(PEM) (25)

where PB is the electrical power required (or supplied) to the battery, ηEM is the EM
efficiency (Figure 3), ηEB is the battery efficiency (Figure 4) and ηPE is the AC/DC inverter
and DC line efficiency. When the electric machine is running as a motor and requires PEM,
the battery provides PEM with the contribution of the power dissipated in the electronic
components (the efficiencies divide PEM). When the electric machine provides PEM, a part
of this power is dissipated into the electronic components, so the efficiencies multiply
PEM. In Equation (21), the term −1 comes from the sign convention used for batteries
(negative power for discharge, positive power for recharge). Table 4 collects the powertrain
efficiencies not involved in the maps already shown. The values have been presented by
Li et al. in [32].
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Table 4. Powertrain efficiency.

Parameter Symbol Value

Rear final drive ratio τRFD 12.4845
Gear box efficiency ηGB 0.96

Front final drive efficiency ηFFD 0.96
Rear final drive efficiency ηRFD 0.96

Power electronic efficiency ηPE 0.96

3. Validation Procedure

Li et al. [32] presented the results obtained by their numerical model in different
scenarios. A simulation with the same scenario presented in Li et al.’s study was con-
ducted to compare the result between their model (the reference) and the AVL CruiseM
model. SOC and the vehicle’s power evolution were compared after setting the same
driving cycle as input, as well as the same energy management strategy. Figure 6 shows
the comparison between the reference model’s power profile and the simulated model, and
the vehicle speed profile compared with WLTC medium section velocity. The vehicle’s
speed perfectly overlaps the driving cycle, indicating the correctness of the equations dis-
cussed. The comparison of the power time histories confirms that the developed numerical
model power strictly matches the reference model, which means that the evaluation of the
torques necessary to the motion of the simulated car is congruent with those used in the
reference model.
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Figure 7 shows the time evolution of battery SOC for the developed model and the
reference model. SOC is closely related to the efficiency of the electronic components.
Li et al. in [32] illustrated the evolution of the battery state of charge when the charge-
sustaining operation mode is active. In this operation mode, the control system acts to
maintain the battery state of charge around a predefined value (in this case SOC = 60%).
The trend of the simulated SOC is comparable with the reference one, indicating the correct
modelling of the control system and electrical components efficiency map. Figure 7 also
shows the relative percent error between the two curves.

The relative percentage error between the two curves confirms that the numerical
model properly describes the vehicle behavior, being always less than ± 1%. Table 5 collects
the data relative to the measurements of the percentage error.
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Table 5. Error between reference SOC and proposed model SOC.

Parameter Value

Average 0.11%
Standard Deviation 0.54%

Maximum 0.98%
Minimum −0.99%

4. The Energy Management System

This paper proposes the study and the evaluation of the performance of an energy
management system in terms of fuel economy and battery degradation. The energy
management strategy is based on a rule-based approach. This kind of approach allows a
suitable implementation in a vehicle, and its efficiency, after optimization, is equivalent
to EMS based on a neural network or dynamic programming [38,39]. The layout of the
proposed EMS is shown in Figure 8:
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Figure 8. Operating modes of the proposed EMS.

In which the x-axis is the vehicle velocity, and the y-axis is the state of charge of the
battery. For each value of the vehicle’s longitudinal velocity and battery state of charge, it
is possible to define an operational mode that determines the amount of power required by
the ICE and EM. In detail:

- Full Electric mode: all the traction is provided by the electric machine that drains
energy from the battery.

- Load Point Moving (LPM) mode: ICE delivers constant torque (Tc). If the engine
power exceeds the driving cycle request, the electric machine operates as a generator
and converts the excess mechanical power into electric recharging power. Otherwise,
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if the engine power is less than the driving cycle request, the electric machine operates
as a motor and supplies the missing power.

- Full Thermic: all the traction is demanded to the internal combustion engine; no
electrical power is allowed to avoid overspeed of the electric machine.

- Recharging mode: if the battery state of charge reaches its lower limit value, the energy
management system actuates the recharging mode. The ICE torque command is the
minimum among:

1. Ctot plus its twenty percent value (considered at the clutch node)
2. Maximum ICE available traction torque
3. Maximum EM available generator torque

This operating mode is maintained until the battery reaches the SOCrecharging value, to
avoid the battery operating in a critical and unsafe zone.

- Braking: during the braking phases it is assumed that the total braking force is
demanded by the rear axle, which is connected to the electric machine and can operate
regenerative braking. The rear axle braking torque is saturated at the generator torque
boundaries.

Figure 8 shows that EMS is defined by the value of the parameters SPDsw, SPDFT,
SOCL, SOCRECH and TC. The parameters’ values can substantially change the operation of
the vehicle and the ability to achieve the different operating modes. The study investigates
the effect of torque delivered by the engine in the LPM mode in terms of fuel economy and
battery degradation. The value of TC is subject to definition, while the value of the other
calibration constants is defined by the authors’ experience, but subject to optimization in
future work.

Table 6 collects all the EMS parameters and their meaning:

Table 6. EMS parameters.

Parameter Meaning Value

SPDsw
Speed below which the heat engine is always

switched off, except for imposed charging 20 km/h

SPDFT Speed above which the EM is always switched off 65 km/h

SOCL
Critical battery state of charge under which charging

is imposed 20%

SOCRECH
Charging status beyond which, if active, the

imposed charging is terminated 35%

TC Constant torque generated by ICE in LPM To be defined

At the end of a simulated driving cycle, the vehicle has used a certain amount of fuel
and the battery SOC has reached the SOC final value, which is usually different from the
initial SOC. By determining the equivalence between the SOC variation and the fuel, it is
possible to evaluate the “electrical fuel” that, added to the fuel consumed by the thermal
engine, gives the real fuel value, considered as the reference for the driving cycle.

For the evaluation of electrical fuel consumption, it was assumed that all the recharge
energy comes only from the ICE, not considering the regenerative braking. The final state
of charge, which is used to calculate equivalent average consumption, inherently considers
any energy input due to regenerative braking. Not considering regenerative braking will
also place the study under more conservative conditions when calculating fuel economy.

It is assumed that the ICE power flows through the transmission components, reaching
the electric machine, which transforms the mechanical energy into electrical energy for
recharging the battery pack. The scheme of power flow is shown in Figure 9.



Sustainability 2022, 14, 12411 13 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

Parameter Meaning Value 

SPDsw  
Speed below which the heat engine is always switched off, ex-

cept for imposed charging 
20 km/h 

SPDFT  Speed above which the EM is always switched off 65 km/h 

SOCL  
Critical battery state of charge under which charging is im-

posed 
20% 

SOCRECH  
Charging status beyond which, if active, the imposed charg-

ing is terminated 
35% 

TC  Constant torque generated by ICE in LPM 
To be de-

fined 

At the end of a simulated driving cycle, the vehicle has used a certain amount of fuel 

and the battery SOC has reached the SOC final value, which is usually different from the 

initial SOC. By determining the equivalence between the SOC variation and the fuel, it is 

possible to evaluate the “electrical fuel” that, added to the fuel consumed by the thermal 

engine, gives the real fuel value, considered as the reference for the driving cycle. 

For the evaluation of electrical fuel consumption, it was assumed that all the recharge en-

ergy comes only from the ICE, not considering the regenerative braking. The final state of 

charge, which is used to calculate equivalent average consumption, inherently considers 

any energy input due to regenerative braking. Not considering regenerative braking will 

also place the study under more conservative conditions when calculating fuel economy. 

It is assumed that the ICE power flows through the transmission components, reach-

ing the electric machine, which transforms the mechanical energy into electrical energy 

for recharging the battery pack. The scheme of power flow is shown in Figure 9. 

 

Figure 9. Recharging power flow, from ICE to EM. 

When the final SOC is less than the initial SOC, this means that a smaller amount of 

energy is available compared to the starting instance, so the ICE must restore the battery 

SOC, consuming fuel. The fuel consumed for recharging the battery (electrical fuel) will 

be added to the fuel consumed during the trip. Otherwise, it will be subtracted. To evalu-

ate the electric fuel consumption, Equation (26) must be referred to: 

𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =  𝑉𝑛 · 𝐶 · (𝑆𝑂𝐶𝑖 − 𝑆𝑂𝐶𝑓) (26) 

where Vn is the nominal battery voltage, C is the battery capacity, SOCi is the battery state 

of charge at the beginning of the trip and SOCf is the final state of charge. EElectric represents 

the electrical energy consumed (when ∆SOC is positive), or absorbed (when ∆SOC is neg-

ative), by the electric machine. Assuming that the power is provided only by the ICE, 

Equation (27) is as follows: 

𝑃𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 =  𝑃𝐼𝐶𝐸 ∙ 𝜂𝐺𝐵 ∙ 𝜂𝐹𝐷𝑖𝑓𝑓 ∙ 𝜂𝑅𝐷𝑖𝑓𝑓 ∙ 𝜂𝑃𝐸 ∙ 𝜂𝐵𝑎𝑡𝑡 (27) 

where PICE is the power provided by the ICE for recharging the battery pack, ηGB is the 

gearbox efficiency, ηFDiff is the front differential unit efficiency, ηRDiff is the rear differential 

Figure 9. Recharging power flow, from ICE to EM.

When the final SOC is less than the initial SOC, this means that a smaller amount of
energy is available compared to the starting instance, so the ICE must restore the battery
SOC, consuming fuel. The fuel consumed for recharging the battery (electrical fuel) will be
added to the fuel consumed during the trip. Otherwise, it will be subtracted. To evaluate
the electric fuel consumption, Equation (26) must be referred to:

EElectric = Vn·C·
(

SOCi − SOC f

)
(26)

where Vn is the nominal battery voltage, C is the battery capacity, SOCi is the battery
state of charge at the beginning of the trip and SOCf is the final state of charge. EElectric
represents the electrical energy consumed (when ∆SOC is positive), or absorbed (when
∆SOC is negative), by the electric machine. Assuming that the power is provided only by
the ICE, Equation (27) is as follows:

PRecharge = PICE·ηGB·ηFDi f f ·ηRDi f f ·ηPE·ηBatt (27)

where PICE is the power provided by the ICE for recharging the battery pack, ηGB is the
gearbox efficiency, ηFDiff is the front differential unit efficiency, ηRDiff is the rear differential
unit efficiency, ηPE is the DC line efficiency and ηBatt is the battery and inverter efficiency
(Figure 4).

The instantaneous fuel consumption for an internal combustion engine is expressed
by Equation (28):

.
m =

PIce
ηICE·LHV

(28)

in which LHV is the low heating value of diesel fuel (44.4 MJ/kg) and ηICE is the internal
combustion engine efficiency. By replacing Equation (28) with Equation (27), Equation (29)
can be obtained:

.
m =

PRecharge

ηtot·LHV
(29)

in which ηtot collects all the efficiencies already presented, as in Equation (30):

ηtot = ηICE· ηGB·ηFFD·ηRFD·ηPE·ηBatt (30)

Integrating Equation (29) and knowing the total electrical energy from Equation (26),
it is possible to evaluate the electrical fuel consumption, mELfuel, by obtaining Equation (31):

mEL f uel =
ERecharge

ηtot·LHV
(31)

The fuel consumption used to determine the efficiency of the EMS is the sum of the
ICE fuel consumption and the electrical fuel consumption (31), obtaining the real fuel
consumed described in the Equation (32):

mReal f uel = mICE f uel + mEL f uel (32)
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mRealfuel value is closely related to the optimization of the working points of the ICE
and EM. This paper intends to identify the TC value which minimizes mRealfuel value for
urban routes driven in the city of Messina and correlate it with the battery degradation.
The values of the other parameters presented in Table 6 (SPDsw, SPDFT, SOCL, SOCRECH)
are assumed to be optimal in terms of fuel economy in this work, but they will be subject to
optimization processes in future work.

5. Experimental Driving Cycles

Two specific paths, located in Messina (Sicily, Italy), were chosen to test the numerical
model. Figure 10 shows the most important roads crossing Messina’s city centre according
to the classification of OpenStreetMap [40] and the proposed paths.
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The two proposed paths presented different territorial parameters, as reported in
Table 7. The roads’ parameters were extracted from the OpenStreetMap database and
intersected with the specific paths in a GIS environment (Arcgis 10.x). Path 1 is the longest
at 17.19 km, almost three times the length of path 2 at 5.84 km. It may be considered an extra-
urban path as it is composed of 84% primary roads and only 16% other roads (secondary,
tertiary, and residential roads). Path 2 is made up of residential and secondary roads
(almost 98%) and may be considered an urban path. To create experimental driving cycles
(DCs), a GPS unit equipped with the “TrackAddict” application was used for all paths,
and data such as instantaneous speed, acceleration, latitude, longitude and altitude were
collected at a frequency of 1 Hz. Kinematic parameters are shown in Table 7. The product
of speed and acceleration, calculated when acceleration was positive, is proportional to
vehicle power. The driving cycle of path 1, probably because of its uncongested roads,
presents more stable values in terms of speeds, accelerations, and product v*a than path 2.

Table 7. The main kinetic and territorial parameters of experimental driving cycles.

Kinetic Parameters

Route Ave. Speed [m/s] Ave. Acc. [m/ss] v*a when a > 0 [m2/s3]
Idle Time

[%]
Acc. Time

[%]

path 1 4.72 0.30 1.63 13.77 43.36
path 2 6.57 0.39 2.42 14.77 42.17

Roads Parameters

Route Distance
[km] Primary rds [%] Secondary rds [%] Tertiary rds [%]

path 1 17.19 84.80 4.83 3.12
path 2 5.84 0.00 53.85 1.19

In order to obtain reliable road gradients, the altitudes collected with a GPS unit were
compared with those extracted from topographic maps obtained by aerial photogrammetric
measurements with an average offset of 10%. This provided realistic slope values useful for
the model inputs. An overview of speed profiles and altitude profiles is reported in Figure 11.
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6. Results

The control system efficiency was tested by evaluating the fuel consumption at two
varying parameters (TC and SOCi) for the two proposed driving cycles. For each driving
cycle, different scenarios were evaluated in terms of fuel consumption, considering the
following parameters:

- the TC torque from 50 Nm to 120 Nm with steps of 10 Nm;
- the initial state of charge assuming the values of 100%, 65%, and 30%.

The results show that the best result in terms of consumption economy was when TC
was approximately equal to 90 Nm. The engine speed was, on average, 200 rad/s due to the
imposed shift strategy and the urban nature of the driving cycles. The ICE efficiency map
(Figure 2) shows an increase in efficiency as torque increased at 200 rad/s, while Figure 4
shows a reduction of the battery and inverter efficiency as recharging power increased.
Instantaneous fuel consumption (Figure 2) always increases as engine power increases. The
concatenation of these three factors results in the best fuel economy at 90 Nm; on average,
all other parameters being equal as reported in Figure 12.

Figure 13 shows the number of cycles at the end-of-life of the battery when subjected
to a load cycle typical of the execution of path 1. The x-axis shows the value of TC torque,
while the y-axis shows the duration ratio. Duration ratio means the ratio of the distance
traveled until the end-of-life capacity of the batteries is reached in different cases to the
maximum distance traveled in the best case, i.e., XXX km.

Figure 13 demonstrates a progressive deterioration of the battery as the constant torque
TC increases. When the charging torques and current are low, the battery is less subject to
deterioration; as the charging torques increase, the battery presents a greater deterioration
as the charging factor grows.
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The figure also shows that SOCi affects the end-of-life battery cycles; for low TC
values, when SOCi is 30%, the battery aging is less onerous than when the SOCi is 65%
and even less for SOCi 100%. This phenomenon suggests that the full-electric mode is
more stressful for the battery than the hybrid one, especially for low-charging torques. A
fully charged battery covers a longer distance in full-electric mode (or charge-depleting
mode) than a lower battery SOC. Given the average cycle speeds (about 17 km/h), the v*a
value (1.63 m2/s3) and considering that the cycle took place mainly on primary roads, it
can be concluded that the exclusive use of the battery (full electric mode) affects its end
of life more than hybrid mode. Low SOCi and low TC values mean that, in hybrid mode,
the torque delivered by the ICE is used almost entirely for traction, which means that the
electric motor demands or delivers small amounts of current to the battery. As TC charging
torque increases, the battery is more stressed, and this thesis is supported by the fact that at
TC = 70 Nm the trend between the hybrid and the electric mode is reversed. Before 70 Nm,
the SOCi is the parameter with more influence on the battery aging (and so the distance
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travelled in full electric mode), but from a TC equal to 70 Nm torque itself becomes the
most damaging parameter for the battery.

Figure 14 shows the results of path 2, and the trends confirm the previous assumptions.
For path 2, the maximum distance traveled in the best case is XXX km.

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 21 
 

 

charged battery covers a longer distance in full-electric mode (or charge-depleting mode) 

than a lower battery SOC. Given the average cycle speeds (about 17 km/h), the v*a value 

(1.63 m2/s3) and considering that the cycle took place mainly on primary roads, it can be 

concluded that the exclusive use of the battery (full electric mode) affects its end of life 

more than hybrid mode. Low SOCi and low TC values mean that, in hybrid mode, the 

torque delivered by the ICE is used almost entirely for traction, which means that the 

electric motor demands or delivers small amounts of current to the battery. As TC charg-

ing torque increases, the battery is more stressed, and this thesis is supported by the fact 

that at TC = 70 Nm the trend between the hybrid and the electric mode is reversed. Before 

70 Nm, the SOCi is the parameter with more influence on the battery aging (and so the 

distance travelled in full electric mode), but from a TC equal to 70 Nm torque itself be-

comes the most damaging parameter for the battery. 

Figure 14 shows the results of path 2, and the trends confirm the previous assump-

tions. For path 2, the maximum distance traveled in the best case is XXX km. 

 

Figure 14. Battery equivalent number of cycles to end of life during the execution of path 2. 

The average cycle speeds are higher (23 km/h), as is the value of v*a (2.42 m2/s2). This 

results in two conclusions: 

(1) The average speed of cycle 2 causes the control system to command the hybrid mode 

more often than in driving cycle 1. 

(2) The value of v*a suggests that, on average, more traction power is required from the 

car in cycle 2 than in cycle 1. 

Again, two critical aspects concur in battery aging, such as the traveled distance in 

full electric mode and the TC value. For low TC values, lower SOCi values are less stress-

ful for the battery than higher ones. As torque increases, the trend changes. Given the 

higher average torque demands than before, the trend is also more constant. The balance 

between the stress caused by full-electric mode and the stress due to TC torque is reached 

between 90 and 100 Nm. 

7. Conclusions 

The proposed paper aimed at investigating and implementing a rule-based energy 

management system for hybrid vehicles by considering instantaneous fuel consumption 

and battery aging. The proposed methodology was implemented in AVL CRUISETM M 

and simulations were implemented on real driving cycles based on two different paths 

located in Messina (Italy). The control system efficiency was tested by varying two main 

parameters, such as TC and SOCi. The main results are as follows: 

• The ICE efficiency is generally proportional to the TC, but the degradation of the 

battery is affected mostly by the recharging power; 

Figure 14. Battery equivalent number of cycles to end of life during the execution of path 2.

The average cycle speeds are higher (23 km/h), as is the value of v*a (2.42 m2/s2).
This results in two conclusions:

(1) The average speed of cycle 2 causes the control system to command the hybrid mode
more often than in driving cycle 1.

(2) The value of v*a suggests that, on average, more traction power is required from the
car in cycle 2 than in cycle 1.

Again, two critical aspects concur in battery aging, such as the traveled distance in
full electric mode and the TC value. For low TC values, lower SOCi values are less stressful
for the battery than higher ones. As torque increases, the trend changes. Given the higher
average torque demands than before, the trend is also more constant. The balance between
the stress caused by full-electric mode and the stress due to TC torque is reached between
90 and 100 Nm.

7. Conclusions

The proposed paper aimed at investigating and implementing a rule-based energy
management system for hybrid vehicles by considering instantaneous fuel consumption
and battery aging. The proposed methodology was implemented in AVL CRUISETM M
and simulations were implemented on real driving cycles based on two different paths
located in Messina (Italy). The control system efficiency was tested by varying two main
parameters, such as TC and SOCi. The main results are as follows:

• The ICE efficiency is generally proportional to the TC, but the degradation of the
battery is affected mostly by the recharging power;

• If analyzing the trend of the instantaneous fuel consumption, the variation of TC
provides the main contribution and its trend does not considerably change from one
cycle to the other;

• If analyzing the trend of battery degradation, the variation of TC gives different results
and the specific paths with its typical kinematic parameters affect the battery aging
itself much more.

For future works, the proposed methodology can be better developed by considering
different paths, chosen with rigorous methods that could highlight the contributions of
territorial and kinematic constraints to battery aging. Future studies could also involve the
influence of other calibration parameters, as well as any variations in behavior on suburban
roads and highways.



Sustainability 2022, 14, 12411 19 of 20

Author Contributions: Conceptualization, A.G., S.B. and F.F.; methodology, A.G., S.B., F.F. and U.P.;
software, U.P.; writing—original draft preparation, A.G., S.B., F.F. and U.P.; writing—review and
editing, A.G., S.B., F.F. and U.P.; supervision, A.G. and S.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: The authors are grateful to AVL Italia for providing the simulation suites,
including AVL Cruise-M. They are pleased to collaborate with the company and to be able to
exchange information and expertise.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Minh, V.T.; Moezzi, R.; Cyrus, J.; Hlava, J. Optimal Fuel Consumption Modelling, Simulation, and Analysis for Hybrid Electric

Vehicles. Appl. Syst. Innov. 2022, 5, 36. [CrossRef]
2. Dingel, O.; Ross, J.; Trivic, I.; Cavina, N.; Rioli, M. Model-Based Assessment of Hybrid Powertrain Solutions. In Proceedings of the

SAE Technical Papers; SAE International: Warrendale, PA, USA, 2011.
3. Previti, U.; Brusca, S.; Galvagno, A. Passenger Car Energy Demand Assessment: A New Approach Based on Road Traffic Data. In

E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 197.
4. Cucinotta, F.; Raffaele, M.; Salmeri, F. A Well-to-Wheel Comparative Life Cycle Assessment between Full Electric and Traditional Petrol

Engines in the European Context; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 9783030705657.
5. Chan, C.C. The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles. Proc. IEEE 2007, 95, 704–718. [CrossRef]
6. Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A Comprehensive Study of Key Electric Vehicle (EV)

Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies 2017, 10, 1217. [CrossRef]
7. Lee, Y.; Kim, C.; Shin, J. A Hybrid Electric Vehicle Market Penetration Model to Identify the Best Policy Mix: A Consumer

Ownership Cycle Approach. Appl. Energy 2016, 184, 438–449. [CrossRef]
8. Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the Art and Trends in Electric and Hybrid Elec-tric Vehicles. Proc.

IEEE 2021, 109, 967–984. [CrossRef]
9. Zhang, P.; Yan, F.; Du, C. A Comprehensive Analysis of Energy Management Strategies for Hybrid Electric Vehicles Based on

Bibliometrics. Renew. Sustain. Energy Rev. 2015, 48, 88–104. [CrossRef]
10. Kim, M.; Jung, D.; Min, K. Hybrid Thermostat Strategy for Enhancing Fuel Economy of Series Hybrid Intrac-ity Bus. IEEE Trans.

Veh. Technol. 2014, 63, 3569–3579. [CrossRef]
11. Wang, E.; Ouyang, M.; Zhang, F.; Zhao, C. Performance Evaluation and Control Strategy Comparison of Su-percapacitors for a

Hybrid Electric Vehicle. In Science, Technology and Advanced Application of Supercapacitors; IntechOpen: London, UK, 2019.
12. Zhao, Z.; Yu, Z.; Yin, M.; Zhu, Y. Torque Distribution Strategy for Single Driveshaft Parallel Hybrid Electric Vehicle. In Proceedings

of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; pp. 1350–1353.
13. Yang, C.; Zha, M.; Wang, W.; Liu, K.; Xiang, C. Efficient Energy Management Strategy for Hybrid Electric Vehicles/Plug-in

Hybrid Electric Vehicles: Review and Recent Advances under Intelligent Transportation System. IET Intell. Transp. Syst. 2020, 14,
702–711. [CrossRef]

14. Song, K.; Li, F.; Hu, X.; He, L.; Niu, W.; Lu, S.; Zhang, T. Multi-Mode Energy Management Strategy for Fuel Cell Electric Vehicles
Based on Driving Pattern Identification Using Learning Vector Quantization Neural Network Algorithm. J. Power Sources 2018,
389, 230–239. [CrossRef]

15. Rajput, D.; Herreros, J.M.; Innocente, M.S.; Schaub, J.; Dizqah, A.M. Electrified Powertrain with Multiple Planetary Gears and
Corresponding Energy Management Strategy. Vehicles 2021, 3, 341–356. [CrossRef]

16. Liu, H.; Wang, C.; Zhao, X.; Guo, C. An Adaptive-Equivalent Consumption Minimum Strategy for an Extended-Range Electric
Bus Based on Target Driving Cycle Generation. Energies 2018, 11, 1805. [CrossRef]

17. Galvagno, A.; Previti, U.; Famoso, F.; Brusca, S. An Innovative Methodology to Take into Account Traffic Information on WLTP
Cycle for Hybrid Vehicles. Energies 2021, 14, 1548. [CrossRef]

18. Vu, T.M.; Moezzi, R.; Cyrus, J.; Hlava, J.; Petru, M. Parallel Hybrid Electric Vehicle Modelling and Model Pre-dictive Control.
Appl. Sci. 2021, 11, 10668. [CrossRef]

19. Qiang, P.; Wu, P.; Pan, T.; Zang, H. Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the
Single-Shaft Parallel Hybrid Powertrain. Energies 2021, 14, 7919. [CrossRef]

20. Pérez, W.; Tulpule, P.; Midlam-Mohler, S.; Rizzoni, G. Data-Driven Adaptive Equivalent Consumption Minimization Strategy for
Hybrid Electric and Connected Vehicles. Appl. Sci. 2022, 12, 2705. [CrossRef]

http://doi.org/10.3390/asi5020036
http://doi.org/10.1109/JPROC.2007.892489
http://doi.org/10.3390/en10081217
http://doi.org/10.1016/j.apenergy.2016.10.038
http://doi.org/10.1109/JPROC.2021.3072788
http://doi.org/10.1016/j.rser.2015.03.093
http://doi.org/10.1109/TVT.2013.2290700
http://doi.org/10.1049/iet-its.2019.0606
http://doi.org/10.1016/j.jpowsour.2018.04.024
http://doi.org/10.3390/vehicles3030021
http://doi.org/10.3390/en11071805
http://doi.org/10.3390/en14061548
http://doi.org/10.3390/app112210668
http://doi.org/10.3390/en14237919
http://doi.org/10.3390/app12052705


Sustainability 2022, 14, 12411 20 of 20

21. Pei, D.; Leamy, M.J. Dynamic Programming-Informed Equivalent Cost Minimization Control Strategies for Hybrid-Electric
Vehicles. J. Dyn. Syst. Meas. Control. Trans. ASME 2013, 135, 051013. [CrossRef]

22. Vidal-Naquet, F.; Zito, G. Adapted Optimal Energy Management Strategy for Drivability. In Proceedings of the 2012 IEEE Vehicle
Power and Propulsion Conference, VPPC 2012, Seoul, Korea, 9–12 October 2012; pp. 358–363.

23. Inuzuka, S.; Zhang, B.; Shen, T. Real-Time Hev Energy Management Strategy Considering Road Congestion Based on Deep
Reinforcement Learning. Energies 2021, 14, 5270. [CrossRef]

24. Meng, J.; Luo, G.; Ricco, M.; Swierczynski, M.; Stroe, D.I.; Teodorescu, R. Overview of Lithium-Ion Battery Modeling Methods for
State-of-Charge Estimation in Electrical Vehicles. Appl. Sci. 2018, 8, 659. [CrossRef]

25. Campagna, N.; Castiglia, V.; Miceli, R.; Mastromauro, R.A.; Spataro, C.; Trapanese, M.; Viola, F. Battery Models for Battery
Powered Applications: A Comparative Study. Energies 2020, 13, 4085. [CrossRef]

26. Cignini, F.; Genovese, A.; Ortenzi, F.; Alessandrini, A.; Berzi, L.; Pugi, L.; Barbieri, R. Experimental Data Comparison of an Electric
Minibus Equipped with Different Energy Storage Systems. Batteries 2020, 6, 26. [CrossRef]

27. Padovani, T.M.; Debert, M.; Colin, G.; Chamaillard, Y. Optimal Energy Management Strategy Including Battery Health through
Thermal Management for Hybrid Vehicles. In IFAC Proceedings Volumes (IFAC-PapersOnline); IFAC Secretariat: Laxenburg, Austria,
2013; Volume 7, pp. 384–389.

28. Tang, L.; Rizzoni, G. Energy Management Strategy Including Battery Life Optimization for a HEV with a CVT. In Proceedings of
the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific, ITEC Asia-Pacific 2016, Busan, Korea, 1–4 June
2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 549–554.

29. Atalay, S.; Sheikh, M.; Mariani, A.; Merla, Y.; Bower, E.; Widanage, W.D. Theory of Battery Ageing in a Lith-ium-Ion Battery:
Capacity Fade, Nonlinear Ageing and Lifetime Prediction. J. Power Sources 2020, 478, 229026. [CrossRef]

30. Dos Reis, G.; Strange, C.; Yadav, M.; Li, S. Lithium-Ion Battery Data and Where to Find It. Energy AI 2021, 5, 100081. [CrossRef]
31. Tang, X.; Liu, K.; Li, K.; Widanage, W.D.; Kendrick, E.; Gao, F. Recovering Large-Scale Battery Aging Dataset with Machine

Learning. Patterns 2021, 2, 100302. [CrossRef]
32. Li, X.; Evangelou, S.A. Torque-Leveling Threshold-Changing Rule-Based Control for Parallel Hybrid Electric Vehicles. IEEE Trans.

Veh. Technol. 2019, 68, 6509–6523. [CrossRef]
33. WebPlotDigitizer. Available online: https://automeris.io/WebPlotDigitizer/ (accessed on 10 January 2022).
34. Motapon, S.N.; Lupien-Bedard, A.; Dessaint, L.A.; Fortin-Blanchette, H.; Al-Haddad, K. A Generic Electro-thermal Li-Ion Battery

Model for Rapid Evaluation of Cell Temperature Temporal Evolution. IEEE Trans. Ind. Electron. 2017, 64, 998–1008. [CrossRef]
35. Motapon, S.N.; Lachance, E.; Dessaint, L.A.; Al-Haddad, K. A Generic Cycle Life Model for Lithium-Ion Bat-teries Based on

Fatigue Theory and Equivalent Cycle Counting. IEEE Open J. Ind. Electron. Soc. 2020, 1, 207–217. [CrossRef]
36. Smith, K.; Earleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A. Comparison of Plug-in Hybrid Electric Vehicle Battery Life across

Geographies and Drive Cycles. In Proceedings of the SAE Technical Papers; SAE International: Warrendale, PA, USA, 2012.
37. Laresgoiti, I.; Käbitz, S.; Ecker, M.; Sauer, D.U. Modeling Mechanical Degradation in Lithium Ion Batteries during Cycling: Solid

Electrolyte Interphase Fracture. J. Power Sources 2015, 300, 112–122. [CrossRef]
38. Jeoung, H.; Lee, K.; Kim, N. Methodology for Finding Maximum Performance and Improvement Possibility of Rule-Based

Control for Parallel Type-2 Hybrid Electric Vehicles. Energies 2019, 12, 1924. [CrossRef]
39. Zhou, H.; Xu, Z.; Liu, L.; Liu, D.; Zhang, L. A Rule-Based Energy Management Strategy Based on Dynamic Programming for

Hydraulic Hybrid Vehicles. Math. Probl. Eng. 2018, 2018, 9492026. [CrossRef]
40. Openstreetmap. Available online: https://www.openstreetmap.org/ (accessed on 10 March 2022).

http://doi.org/10.1115/1.4024788
http://doi.org/10.3390/en14175270
http://doi.org/10.3390/app8050659
http://doi.org/10.3390/en13164085
http://doi.org/10.3390/batteries6020026
http://doi.org/10.1016/j.jpowsour.2020.229026
http://doi.org/10.1016/j.egyai.2021.100081
http://doi.org/10.1016/j.patter.2021.100302
http://doi.org/10.1109/TVT.2019.2916720
https://automeris.io/WebPlotDigitizer/
http://doi.org/10.1109/TIE.2016.2618363
http://doi.org/10.1109/OJIES.2020.3015396
http://doi.org/10.1016/j.jpowsour.2015.09.033
http://doi.org/10.3390/en12101924
http://doi.org/10.1155/2018/9492026
https://www.openstreetmap.org/

	Introduction 
	Vehicle Modelling and Validation 
	Battery Mathematical Model 
	Calculation of the Driving Forces 
	Front and Rear Axle Torque, Speed, and Power 

	Validation Procedure 
	The Energy Management System 
	Experimental Driving Cycles 
	Results 
	Conclusions 
	References

