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University of Vermont, A 3-dimensional formulation for a poroelastic and chemical electric (PEACE) model is
Burlington, VT 05405-0084 presented and applied to an intervertebral disc slice in a 1-dimensional validation prob-
lem and a 2-dimensional plane stress problem. The model was used to investigate the
Martin H. Krag influence of fixed charge density magnitude and distribution on this slice of disc material.
Professor, Results indicated that the mechanical, chemical, and electrical behaviors were all
Dept. of Orthopaedics and Rehabilitation, strongly influenced by the amount as well as the distribution of fixed charges in the
and Vermont Back Research Center, matrix. Without any other changes in material properties, alterations in the fixed charge
University of Vermont, density (proteoglycan content) from a healthy to a degenerated distribution will cause an
Burlington, VT 05405-0084 increase in solid matrix stresses and can affect whether the tissue imbibes or exudes fluid
under different loading conditions. Disc tissue with a degenerated fixed charge density
distribution exhibited greater solid matrix stresses and decreased streaming potential, all
of which have implications for disc nutrition, disc biomechanics, and tissue remodeling. It
was also seen that application of an electrical potential across the disc can induce fluid
transport. [DOI: 10.1115/1.1533804
1 Introduction frictional drag between the solid and fluid phases, although intrin-

. . . s'lc solid matrix viscoelasticity has also been descrif2s. The

. D(_agenergtlve changes '.[O the mtervert_ebral disc are COMMOIRY: also behaves like a semipermeable membrane allowing the
|mp.I|cat.ed in low back pain gnd other disorders of the Spine T, ssage of water and ions but prohibiting the motion of the fixed
sulting in tremendous associated health care costs and disab E/gative charges. The effects of swelling and transport were in-
51.'2]' QtﬂedOf the mt(_)st S|gglflca_mt qhatr;]gels to thfe |nttervelrtebr9, duced in continuum descriptions of soft-tissue mechanics in a

ISC wi egeneration and aging IS the 10ss of proteog ycarQ%riety of ways. Poroelastic finite element models were developed
partllculc?r_ly in }he nu;:leus lﬁulposﬂS—LS[]réDgc dleger:jeratlon "’.“SO for the intervertebral disg18,23. In these models the “relative”
resulted In a loss of swelling pressuié—9, altered streaming iy yelocities are used T’he relative view is routinely used in
potential[10] and an alteration of the hydraulic permeabilifyL]. ! y

The eff ol ¢ fixed ch densi he fluid oroelastic theory{26,27] and in “u—w" poroelastic models,
e eftect of a loss of fixed charge density on the fluid ranspofh g recently presented in Simon et 8,29 and Laible et al.
pressurization, streaming potential and streaming current in

. 3 . . . . . ] where swelling effects were included. Importantly, the tripha-
disc has not been examined in a two dimensional configuratior;c theory[15] provides a link between mechanical theories and
The intervertebral disc may be described as a charged, hydralgd1ro_chemical theories. The triphasic theory including electrical
and permeable material. It is comprised largely of collagen apgfects was used in a one dimensional model to examine stream-
elastic fibers embedded in a proteoglycan gel to form a solid M@y potential in soft tissug14,30. In addition to these studies,
trix. The proteoglycans contain many glycosaminoglycan chaigshasic phenomenéermed quadriphasic in these studies to dis-
with fixed sulfate (SQ) and carboxyl(COOH) groups. Under ingyish between anions and catipnsere investigated using a
physiological concentrations and pissumed to be NaCl commercial FE package in a geometrically nonlinear model
=0.15 M, pH=7.4) these groups are negatively charged. Mobil90,24,3]]_
positive and negative ions in the extrafibrillar water form an elec- The PEACE model uses the field variables of solid displace-
trolyte solution. The high fixed charge density is responsible frentu, relative fluid velocityw, electric potentiatb, and Cl con-
generating osmotic pressure, streaming potential and other elggntrationsc~ and Na concentrations™ (obtained from electro
trochemical phenomena and also contributes to the hydration aq&l;trality). The formulation uses poroelastic theory directly using
compressive strength of the tiss2—17. The fixed charge den- 3 y—w formulation which distinguishes it from the multiphasic
sity distribution along the sagittal plane of a 26 year old and %fhodels of[14,20,24,30,3]Lin which pressure is used as a field
year old disc were given by Urban & Holp]. variable. One goal of the model was to explicitly identify the
Multiphasic continuum and computational models have beeg|ation of the phenomenological equations to the basic frictional
applied to the analysis of the mechanical, electrical, and chemig@efficients. A mobility relation details this relation in a form that
behaviors of the intervertebral dif§,10,11,18 -2} In these stud- relates: the fluid flux, the current, the positive ion flux and the
ies, viscoelastic behaviors are generally assumed to be relatechégative ion flux to the fluid potential, the electric potential, the
positive ion chemical potential and the negative ion chemical po-
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L o o a hydrated and charged porous media which draws heavily from
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poroelastic and chemical electri®EACE material that can  where:s, w, p, n refer to the solid, water, positive ion and
readily be solved by standard finite element techniquesjall- negative ion phaseg; are densitiegkg/m’), ¢; are concentra-
date the model using 1-dimensional experimental resultdeB- tions,v; are absolute velocitied; ; are drag coefficientsy,,, u,
onstrate the utility of the PEACE model via a 2-dimensional diand u,, are scalar potentialgys is os/ps (Where oy is the solid
agnostic version applied to a slice of intervertebral dist; 4tres$, n is porosity,c” is the fixed charge densitE=—V® is
investigate the influence of fixed charge density magnitude atitk electrical field strengthp is the electric potential, ang is
distribution on water transport on the disc slice; anéhbestigate Faraday’s constant. A superscript implies a measurement per vol-
the effect of applied electric potential on water transport in theme of water and a subscript implies a measurement per volume

same disc slice. of the mixture. The parameter; is the solid potential which can
) be related to the solid matrix stress.
2 Development of the PEACE Equations The velocity of the fluid and ions relative to the solid matrix

2.1 Combined Equations for the PEACE Model. In the can be expressed as

development of theEACE model we consider the tissue to be
composed of a solid matrix phase, a fluid phase and the positive Wy
and negative ion phases. We first write the equations in a primitive o~ (wmoy) (%)
form and then proceed to derive a set of equations that can be
readily solved by standard finite element procedures. The numeri-
cal formulation uses the Galerkin finite element metlG&FEM) W,
for spatial discretization and an implicit finite differences scheme o~ (p ) (6)
for temporal discretization. In the process of forming the equa-
tions that can be solved by the GFEM, we trace the physical
coefficients to the more familiar phenomenological coefficients. W,
This process was done symbolically using Mapgecientific F:(Un_vs) (7)
Workplace V3.0, MacKichan Software, Inc., Bainbridge Island,
WA).
The momentum equations represent the balance of the forcedhe potential for the positive and negative ions can be ex-
acting on each phase. These equations are written in terms of jiessed as:

forces per unit volume of the tissue. The forces arise from pres- RT
sure gradients, internal frictional forces between the phases, ex- ppV up=nc’M, M VcP=nRTVcP (8)
ternal body forces due to gravitational and electrical fields and in My

the case of accelerated motion the inertial forces. Here we will

only consider very slow motion and hence the latter may be ne- RT

glected. The momentum equations for the four phases in terms of pnV pn=nc"M,;7—Vc"=nRTVc" 9)

a control volume of the tissuéwhich we also refer to as the c'Mp

mixture) are a variant of those equations found from Gu et al.

[14]: The current is the difference in the motion of the positive and
negative ions and can be expressed as:

—ps(V- MS)T+ fS,W(UW_vS)+ fp,s(Up_Us)+ fn,s(vn_vs)

. .
—nc'FE=0 (1) _rep_ ) W
lo=F[cP—-c"] W, (20)
—puwVuytf —vy) +f —vy)+f —0y)=0
Pu¥ it Ts Vs~ 0w) + T p(Vp= ) F Tun(n = vw) @) Using the relative velocity equations 5—7, the chemical poten-
tial equations 8—9 and the current equation 10, the momentum
B B _ _ equations for the fluid and ior{@—4) can be manipulated to yield
PpV tpt fp, (V5= Vp) + fu p(w=Vp) + Fpn(vn=vp) a mobility relation that relates Lthe fluid velocityw,,, 2) the
+ncPEE=0 (3) currentle, 3) the positive ion velocitiesv, and 4 the negative

ion velocitiesw,, to: 1) the fluid potential gradienV u,,, 2) the
electric potential gradier@®, 3) the gradient of the positive ion
concentratiorVcP and 4 the gradient of the negative ion concen-
+fpn(vp—vn)—NC"FE=0 (4) trationVc". In a matrix form the relation is:

—pnVnt fn,s(vs*Un)+ fw,n(Uwfvn)

MOBILITY MATRIX

_ i Fv, - k_p - ﬁ
k, " b o
V;“’ Fv, FXv,c?—v,c" Frv, Fv, nggw
e ! 11
W, - k_p Fv, _ % _f“”"_f“”}’ nRTVc? o
o . D/n D/n nRTVc"
B ﬁ Fo _ fw,nfw,p _ En
- k. n D/n D/n
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The terms in the MOBILITY MATRIX of equation 11 were ob- 1 fosfwp frsfwn

tained symbolically in terms of the original friction terms in equa- szﬁ fow™ r '+f’ - '+f’

tion 1-4 using Maple and are defined in AppendixThe first pswp o Tns wn)

row of equation 11 is a generalization of Darcy’s law in the pres-

ence of electrical and chemical potential gradients. Note that theFurther consideration of the mass conservation of the ions, the
MOBILITY MATRIX is symmetric. It is interesting to note that chemical potential of the fluid phase and the poroelastic equations
the termk,, is the inverse permeability and is given in terms of théor the fluid and solid phases, we can symbolically derive the final

friction coefficientsf; ; and the porosity as: PEACE equations for the four phases.

SOLID PHASE

Lu
T T T —
[L'D,. L Dz’f]{V-w%—L 0,,=0 (12)

FLUID PHASE

Lu
-K, ,W+V[D,, D“]( v _W) -K, sVO—(K, ,+K, )Vc"-K, V' +Va, =0 (13)

ELECTRICAL PHASE

~V Ky W+ =V Ky sV(P)=V-(Ky,+Kg,) V"=V -Ky,VcF=0 (14)

CHEMICAL PHASE

0*u+ne"+V-K, w—V-(K, ,+K, )Vc"-V-K, JP-V-K, VcF=0 (15)

In these equations the four field variables ayev, @, c" (solid quarter height of the specimeh=1 mm, 0.5 mm and 0.25 mm
displacement, fluid displacement, electrical potential and negatikgspectively. For the 1 dimensional PEACE simulation, material
ion fields, respectively The terms in these equations are defineBarameters were taken from Drost et £82)].
in Appendix B. The equation§12—15 are the counterparts of
equations 37, 41, and 42, found in Sun et[@0]. The finite 2.3 2D Diagnostic Analysis: Finite Element Formulation.
element form for the general 3D problem, via the Galerkin FEMVe consider a two dimensional version the equations, to analyze a
method are given in Appendix C. In the following we will con-horizontal slice of the disc. We reduce the three dimensional equa-
sider a 2D form of the equations, representing a horizontal slice #inSs t0 & horizontal plane stress problem, in which we incorporate
an intervertebral disc at the mid plane. a vertical compressive total stress,(;) as an initial stress. This

requires modification of theéhree dimensional isotropic solid-

2.2 1D Validation Study. The PEACE model was used tofluid constitutive equation:
simulate the load displacement response as obtained by Drost, D. 0 mond  mQ
et al.[32]. That study considered the compression of the canine {‘7] _ S %[ {e} +{¢Tw} (16)
annulus under chemical and mechanical loading. Anulus fibrosus ™ 0 0 m'Q Q ¢ Oom
specimens were tested in a confined compression creep experi- D D
ment where the displacement of the top ofi@4 mm diameter, D.=| °° D =D =0
h=1 mm thick disc plug was measured. The circumference of the ® [Due Dy, o Tme T
plug was confined by the impermeable wall of the holder, the _ o .
bottom rested on a porous filter and the top was loaded by an D= dijpu with i and j=1,23

&4

impermeable piston. The plug was subjected to a sequence of load D, .= j(N+2u)+ (1= 8 )\,
stages in which the NaCl bath concentrat@hand loadP were

varied (Fig. 1). Using the PEACE model the we simulated the A= vE w= E
following load stages ) Conditioning, c*=0.6 M, P (1+v)(1-2v)’ 2(1+v)

=0.08 MPa, 2 Swelling,c*=0.2 M, P=0.08 MPa and BCon-
solidation,c* =0.2 M, P=0.20 MPa. Curves, b andc (Fig. 1) N
show the PEACE model response at the top, middle, and bottom €=[exx €yy €77 Exy Eyz €2x

— T
o=[0oyy Oyy Ozz Oxy Oyz 024
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Fig. 1 Experimental results (circles, from Drost et al. 1995 )
and simulation of the PEACE model (curves a,b,c ) for a 1 di-
mensional confined compression study of canine annulus un-

der chemical and mechanical loading. Displacement of anulus
fibrosus specimens (d=4 mm diameter, h =1 mm thick ) was
measured while the NaCl bath concentration ¢ * and load P
were varied in 3 stages: 1 ) Conditioning, ¢ *=0.6M, P
=0.08 MPa, 2) Swelling, c *=0.2 M, P=0.08 MPa and 3) Consoli-
dation, ¢ *=0.2 M, P=0.20 MPa. Curves a, b and c show the
PEACE simulation at h =1 mm, 0.5 mm and 0.25 mm, respec-
tively.

T T_
e _[Sx,x Eyy 8><,y]v a _[O'x,x Oyy O'x,y]v

_( Q
Teo™ AN+2u+q
Ozz
d
2 9 Z
IX d
e=Lu, (=V-w, L™= P ,
o 2 2
dy  ox

u w
—mT T_ — X — X
V-=m'L, m'=[1 1 0] u—[uy], W_[Wy]
In this study we also split the four equations into two sets, the

chemical-electrical equations and the solid-fluid equations. Using
the Galerkin finite element method, the chemical-electrical bal-

ance equations become:
(0} _ Py
c P

Mc=(N'nN)o, Ki;=((VN)'K; ;VN)o, i=¢.c, j=¢,C

(19)

0 0 [gp} Koo Kae
0 M]lc Kee

Keo

Pi=(N"lin)r = ((VN)TK; sVN)oCF + (= DX(VN)TK; W)

k=1,2 for i=¢,c, respectively

For thetwo dimensional plane stress problem it is assumed that
the vertical shear strains and stresses are zero. One can then solyge>er implies integration over the domain and boundary re-

for the vertical straire, , in terms of the applied total stress ,,
the strainse, ., £, and the fluid strairt, i.e.

_ Uz,z_()\+Q)8x,x_ ()\+Q)8y,y_Qg
AN+2u+Q)
With this relation, the constitutive equation for th&o dimen-

€72

spectively.N=[N; N, N3] are the linear triangular basis func-
tions. The terms ,, andl, are the normal current and negative
ion flux on the boundary. The system is nonlinear sincekhe
depend ornc’s. The system has been solved by direct iteration
using an assumed fixed set of nodal values of the fixed charged
density,cF. An initial ¢ is computed from Donnan equilibrium at

sional plane stress problem with an applied total stress normal #ge houndary and defines the initial set of nodal valueEof

the plane, can be written as:

Des D
[U]: > S’5H‘Z]+[”"”] a7
) D¢s Dy Tor
7= putitwot RTH(2c"+c7)—B,m'e+ T, (18)
where:
4duA+p+Q)  2u(N+Q)
N+2u+Q A+2u+Q
Dos=| 2u(A+Q)  4u(\t+u+Q) |,
N+2u+Q AN+2u+Q
0 0 m
2pQ (N +Q)o,,
A+2u+Q N+2u+Q
Dy =D} =| 20Q |, o,0=| A+Q)oy,
AN+2u+Q AN2u+q
0 0
[Qn+2w) _[Q+2pu) -
T INF2u+Q) T\ NF2utq) Tor Tee

— C
Ton= O'LO-‘:- T

Journal of Biomechanical Engineering

Using electroneutralitg?=c"+c" theK's are computed and the
equations are solved for the nodal valuesiofandc”. The pro-
cess is repeated with the lat&StandcP=¢c"+c", until the nodal
values converge. Only 25 iterations are necessary. We first
solve the chemical-electrical equations for a steady condition with

c"=0, w=0.

With w andc” defined, the solid-fluid equations will yield a value

for a reanalysis.
Again using the Galerkin finite element method, the solid-fluid

equations become:
u ul [Py
wl T w| | Py,

Muw=(N kMg, Kij=(BD;Bjq, i=2,¢, j=2,¢,

KUU
Kwu

l‘<UW

{O 0
Ky, (20)

0 Myy

D,,=D;+By

P,=—(BID, oNo; )0+ (N T ,)r, B,=LN, B,=V-N,
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Py=—(B[D; NG, o+ (N TT )Py,

N=[Nylz, \PIPY Ns'z,ﬂ oms
Pyo=(BINT) o+ (N TKy, B+ Ky, 1BC" CERG

o
+ N Ky, rBCHa E sl
1 Ny 0 . :E of

- = = X v

[22 [0 1} N 0 nyf, n ny) 8
ny Ny - 0.008

T,=MN"o and T,=unx are the total applied stress and total >
fluid pressure traction force components in the horizontal plane, .0

with 91, n=outward normal direction cosines operators. are
nodal values of the osmotic/chemicat- iy 0t RTp(2¢"
+cF)+T,) pressure andr,, are nodal values of the applied
stress normal to the plane.

2.4 Geometry, Material Properties, Boundary and Initial

Location of Output Nodes for Time Histories

- T E = Ty 92 T |

104

A i :
0015 001 -0005 O 0005 001 0.015

X-position (m)

Fig. 2 Mesh for plane stress analysis of intervertebral disc

Conditions. A thin horizontal slice of the disc. 0.005m thicksnce' The numbers of three nodes are given for reference to the

was used for the mod€Fig. 2). The idealized horizontal plane
dimensions and geometry were characteristic of a lumbar spine
intervertebral disc. In the model, we assume that the top and bot-

time histories of the loading and fluid flow.

tom surfaces of the slice meet impermeable, insulated, frictiowas similarly obtained, which yield® = ®* +RT/F In(c"/c*) or
less, and rigid surfaces so that there is no vertical flow. On tleguivalently ® = ®* — RT/2F In(c"+c"/c"), (®* =0 around the
periphery of the disc, fluid is free to flow but the fluid is subjecte@eriphery of the disc slige The second term on the right hand
to an osmotic pressure as contained in the tefnof equation 18. side of either expression is called ttheermal potentiabnd is due
These conditions represent a slice at the mid elevation of a discttnthe difference in the ion concentrations of the surrounding body
all analyses, the rigid body motion of the solid phase was préieid and the concentration at the tissue surface.

vented by providing a determinate support condition, solid dis- These boundary values were used as the initial fields through-
placementss, andu, were set to zero at a centered node and thaut the disc, to start the iterative solution process for the internal
u, displacement was set to zero at a boundary node to preveftand @ fields. Once these fields were established, uhew
rigid body rotation. The concentration and electrical potentiglolution was obtained by first allowing the disc to free swell in a
were prescribed at the boundaries. Tdleconcentration at the saline bath of 0.2M NaCl concentration for 33 hours, at which
boundary was established by equating internal and extermalint a constant compressive z stress of 2000002 was applied
chemical potentials at the boundary, i.e. the Donnan equilibriufor an additional 33 hours.

condition €")2+c"ct— (c*)?=0 (with ¢* =0.2M around the pe-
riphery of the disc slice The electric potentiab at the boundary ses.

liter —Pa

T=31K R=8318.78———

mole—K

N— N—

fw=1.0:10" i f,p=5.0039% 10" o~

N-—s N-s
fps=1.0:10°— fs= 1.0 10—
N N

Q=2* 108? E anuius= 2.25¢ 106W

1
Enucleus™ 1_0 Eanulus

mole
c*=0.2M| —
liter

Yoo YpoYn Yp=1

The following material property values were used for the analy-

coulomb

96500————

F
mole

79
fw,n:5_2fw,p

n=0.70= porosity

N
B,,=0.5* 106W

v=0.48

For these values it was found that tfig contribution was rela-

2.5 Fixed Charge Density Distribution. Three separate

tively small and hencd is set to zero. The constant bath confixed charge density distributions were investigated: healthy, de-
centration was denoted fy . The initial concentration just inside generate, and constant equivalent healthy. The fixed charge den-
the disc was established by Donnan equilibrium. In an analysigy distribution along the sagittal plane of a 26 year old and 74
with no applied potential we can sét* to any constant value on year old diso(Fig. 3a, data taken from Urban & Holni5]) were

the boundary since we are using a constehtand c* on the used to generate a 2-dimensiocélfield over our finite element
boundary. The constant potential boundary condition will not pranesh for healthyFig. 3b) and degeneratg-ig. 3c) discs, respec-
vide any driving mechanism. tively. For the 26 year old disc, there was a value of 0.15M at the
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Fig. 3 Fixed charge density distribution for healthy and de- 14 -
generate intervertebral discs in the sagittal plane. The experi-
mental data was digitized from Urban & Holm, 1986. The 12
healthy and degenerate fixed charge distribution (a) were used 10

to generate a 2-dimensional ¢ F field over our finite element
mesh for healthy (b) and degenerate (c) discs. The constant
equivalent healthy fixed charge distribution czquiv was taken as
the average fixed charge density over the surface of the healthy
disc and can be seen as the horizontal plane in (b).

~Zeta (mu)

Lo waseoao

edge of the disc and a peak value of 0.3 M at the center of the

disc. The equivalent healthy fixed charge density was a constant ] 10 20 30 40 50 80 70
distribution about the disc slice with a value defined dfy,,;, Time ()

=1/AfcFdA, wherecF is the 26 year old sagittal fixed charge (B)

density distribution from Fig. 2and A is the cross sectional area

of the disc slice(Fig. 3, horizontal plang Fig. 4 Time history for the change in water content (-zeta) of

. . . . . . the disc slice during the swelling phase and with creep loading
2.6 Applied Ele‘.:mcal Potential. .A numerlc_al simulation for healthy (a) and degenerate (b) discs. The location of nodes
was conducted to illustrate that fluid can be induced to flowog 104, and 92 are given in Fig. 2.

through the disc by an altered electrical potential on the boundary
of the disc. The natural thermal potential has a magnitudé of
=RT/F In(c"/c*)-, wherec" is the Donnan equilibrium concen-
tration at the boundary ancl is the physiological fluid concen-
tration in the fluid surrounding the boundary. For a variable fixedpon application of the constant compressive |¢&ig). 4). The
charge density;" and® will have a natural variation. At poird  parameter zetd=(dw,/dx+dw,/dy) is a measures of the net
(in the postero-lateral anulus fibrogube potential was reduced changes in water content of the tissue. It is important to note that,
by the natural potentiadb to make it zero. At poinB (in the in this 2-D model, material behavior is strongly dependent on the
anterior anulus fibrosiighe potential was increase by the naturahodal location and that is why curves in Fig. 4 appear differently.
potential® to make it twice as large. For the healthy disc the tw@here was a net influx of fluid.e., negative value for zetéor all
potentials atA andB are 0 and—10.75 mV, respectively. For the nodes during the swelling phase of the experiments and a decrease
degenerate disc the two potentialsfaandB are 0 and—6.3 mV, in the absolute values for zeta during the compression stage. Iso-
respectively. lating the transient fluid displacement behavior at node (&4
node located toward the lateral inner portion of the disc see Fig.
2), we note there is a net influx of fluid.e., negative value for
3 Results zetq for the healthy disc and a net efflike., positive value for
The 1-dimensional simulatioff-ig. 1) demonstrated very good zetg for the degenerate disc. At node @&htero-lateral outer lo-
agreement between the experimental results for the displacemeation there is less fluid transport and a small net influx of fluid at
of the specimeritaken from the literaturd,32]) and the PEACE equilibrium (after both swelling and creep loading stagfes both
model. The displacement is also given for nodes at the mid-heidtgalthy and degenerate fixed charge density distributions. Finally,
and bottom quarter where experimental data was not measured.node 120(posterolateral outer locatignthere is a net efflux
This agreement validates our model in 1 dimension and demamut of the disc after equilibration of the compression loading.
strates the ability of the model to simulate realistic physical data. The relative fluid displacement vectors were calculated for disc
The intervertebral disc slice was subjected to a swelling phaskces with healthy, degenerate, and equivalent healthy fixed
where the disc equilibrated with its external saline environmenharge density distributiondig. 5. For the healthy disc slice, it
for 33 hours followed by compression creep loading for an adds clear that the net fluid displacement due to the osmotic pressure
tional 33 hours. In general, fluid flowed into the disc during thevas inward even after the compressive load was applied. In the
free swelling stage of the theoretical experiment and was exudaegenerate disc slice, however, the net fluid displacement was
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Fig. 5 Water displacement vectors for disc slices with (a)

healthy fixed charge density  (cF), (b) degenerate ¢ ¥, and (c)
constant equivalent healthy ¢ . All plots are at the same scale

with the maximum fluid displacement vector of w = ,,=0.005 m. Fig. 6 Change in water content (—9) for disc slices with  (a)

healthy, (b) degenerate, and (c) constant healthy equivalent
fixed charge density distributions. Change in water content is

. . . measured after both swelling and compression stages of the
outward. Using the constant equivalent healthy fixed charge defperiment.

sity distribution, fluid generally flowed outward and was similar in

pattern to the degenerate case, suggesting that it is also the distri-

bution of the fixed charges and not simply the magnitude that

governs the fluid transport pattern in the disc. These fluid dis-

placement vectors are useful for investigating the direction §Pn, however, the gradient in solid stress and fluid pressurization

fluid transport but for net changes in water content, the parametéas much smaller and the axial load was being carried predomi-

zetal is a more direct measureme(fig. 6). Based on the results nantly by the solid matrixFig. 7o, d).

for £ over the 2-D surface, it is apparent that the healthy fixed To determine the electrical potential field, the two sets of equa-

charge density results in a net increase in water content while b&@ns were alternately solved with fluid velocity passed to dhe

the degenerate and constant equivalent healthy fixed charge der” equations. During the transient period, the relative fluid ve-

sity results in a decrease in water content. locity was not constant. When the relative fluid velocity was zero
The equilibrium stress fields were also significantly affected bgv=0), the steady state solution fdr andc" were simply con-

fixed charge density distributiofFig. 7). The solid and fluid stant at the prescribed boundary values. At a time just after the

stresses sum to the total applied compressive s{re290000 compressive load was applied, we have a nonaerdsing thisw

N/m?). The healthy fixed charge density distribution generatedfield in the® — c" equations, we calculate a small but measurable

stress field with a very large gradient in solid stress and flujgbtential field(Fig. 8). Current and ion concentration fields can

pressure from the central nucleus pulposus to the outer annuflso be calculated.

fibrosus(Figs. 7, c). The large magnitude of fluid pressure in the The applied electric potential results for the healthy and degen-

nucleus and lower solid stress magnitude in the annulus indicatgate disc slices are shown {Rigs. 9, 10. These figures illus-

that most of the load is being carried by fluid pressurization, evérates that fluid can be induced to flow through the disc by an

at equilibrium. For the degenerate fixed charge density distribakered potential on the boundary. In these tests, the applied po-
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tential difference is extremely small, only about 10 mV and the
maximum fluid velocity is only about 2:610 ° m/s. At this rate,
the fluid would only move about 0.2 cm in a 24 hour period. Fc—

a 300 mV potential difference however, we expect forced conveE
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Fig. 9 Electric potential field with applied potential difference
{b} across the right side of the disc slice with (a) healthy and (b)
degenerate fixed charge density distribution. For the healthy
Fig. 8 Electric potential fields for  (a) healthy and (b) degener-  disc the two potentials at Aand Bare 0and  —10.75 mV, respec-
ate disc slices subjected to swelling and compression loading tively. For the degenerate disc the two potentials at A and B are
immediately after the compressive load was applied. 0 and —6.3 mV, respectively.
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B charges are important factors in determining the direction of fluid
flow (Fig. 6). Since transport of large solutes, such as hormones
: B ¢ and enzymes, is affected by fluid flow within the d[88], it is
SEL g R e anticipated that a loss of fixed charge density will cause increased
g . fluid efflux from the tissue and potentially a loss of important
b metabolites. The model also predicts that significantly more of the
load is carried by hydrostatic pressure in the healthy disc relative
T to the disc with a degenerate fixed charge density distribution.
I . y . \ } This suggests that solid matrix stresses and strains will be larger in
{ RO R , ' J a disc with a degenerate fixed charge density distribution than in a
i TR N disc with a healthy distribution.
R " et ' i 2 : Transport phenomena and other model behaviors will be
¥ e~ B P OB A o A strongly affected by the material property choice and boundary
TNy e T conditions. This study indicates that fluid transport is affected by
(a) fixed charge density and loading conditions. Electrical stimulation
under zero applied load can also influence the fluid transport
B within the intervertebral disc. As showtFig. 10, even small
e e HED applied electrical potential induces fluid transport in both normal
o and degenerated discs and could lead to an increased water con-
tent. These results may suggest potential minimally invasive treat-
/ T . \ ment modalities where applied electrical potential induces forced
¥ ; b e convection that transports nutrients through degenerated discs. In-
/ ' v deed, while both healthy and degenerated discs have similar fluid
{ ) g = 4 3 | velocity fields under the reported applied electrical potentkilg.
10), the electrical potential fields are differeftig. 9), and cellu-
J lar metabolism may be influenced by a host of other physical
Tl stimuli including pressures, electrical potential, solid matrix
: . g “ A strains and stresses.
- e ettt i e In the current model, there is only transport from the periphery
R of the disc which may explain the relatively long time constant for
{b) this 2-dimensional example described in this manuscript relative
to experimental values for intervertebral discs in creep experi-
Fig. 10 Effect of applied electrical potential on water transport ments[34]. Indeed, it has been reported that transport in the disc
(dw/dt) for (a) healthy and (b) degenerated disc slices. occurs more rapidly from the end-plate route than from the pe-
riphery [35]. The method of breaking down the system into
smaller sets is sometimes called operator splitting and is some-

tion to transport fluid particles completely through a typical lumimes used for solving large and complicated sets of equations. In

bar disc in a 24 hour period. It is important to note that while thg1IS study we split the system such that the equations are broken

fluid velocity fields are similar in healthy and degenerated dis&gto 2 smaller system£2 equations in eaghwhich are weakly

X . e ; L coupled. We then solved the equations iteratively until conver-
(Fig. 10, the electrical potential fieldg~ig. 9 are quite different. gence was achieved. The errors in the solution would be those

] ) primarily introduced by the finite element approximations and not
4 Discussion the iterative solution technique. Coupling between these equations

A 3-dimensional formulation for a poroelastic and chemicavould be more significant under large displacements and signifi-
electric (PEACE media was presented and applied to a intervefantly larger fluid velocities, but these limitations are not relevant
tebral disc slice in a plane stress problem. The model was vdl\-this paper. In this small strain, geometrically linear model, we
dated by comparing it with 1 dimensional experimental data. T not account for strain dependent FCD, porosity, or permeabil-
model was then used to investigate the influence of fixed char§¢ The material properties used in this model are simplifications
density magnitude and distribution on a slice of lumbar disc m&f the nonlinear, heterogeneous, and anisotropic behaviors found
terial. Results indicated that the mechanical, chemical, and elég-the disc[6,11,36
trical behaviors were strongly influenced by the amount as well asPegeneration of the disc will result in several material property
the distribution of fixed charges in the matrix. Without any otheghanges to the annulus and nucl¢6s0,11,25,37,3Bas well as
changes in material properties, alterations in the fixed charge dé#erations in fixed charge densif9]. A strength of the finite
sity from a healthy to degenerate distribution will cause an irelement model is the ability to parametrically alter one input fac-
crease in solid matrix stresses and can cause fluid loss from tAeand evaluate the effect on the results. Therefore, we have iso-
tissue rather than imbibition. These differences as well as altéated the effect of fixed charge density amount and distribution
ations in streaming potential have implications for disc nutritiorglone. While this is not an entirely accurate representation of al-
modulation of cellular activities, and tissue remodeling. It wakered behaviors in the disc with highly progressed disc degenera-
also seen that application of an electrical potential across the diis#, it may provide an indication of early changes which could
can induce fluid transport. Application of this PEACE model unpromote soft-tissue remodeling and a degenerative cascade. The
derscores fact that even under simple loading conditions, 2- avalues for fluid pressure, solid displacement and stresses, stream-
3-dimensional mechanical stress, strain, pressure, fluid velocityg potential, and sodium content presented in this study are simi-
electrical potential, and pH fields are present. These effects sholald to values reported in experimental studjés7,10,11,39,4D
be considered when investigating the influence of loading condihis study shows the results of a 2-dimensional analysis, several
tions on cellular metabolism. additional complexities will be required to implement a more re-

Results of this study indicated that both the distribution analistic 3-dimensional code including modification of the code to
quantity of proteoglycans in the disc have a strong influence mise three dimensional elements, as well as the use of anisotropic
fluid transport and load carriage mechanisms. Based on our stadd nonlinear material properties. Some studies have utilized
ies, it is clear that both the magnitude and distribution of the fixedphasic or multiphasic finite element models in one dimensional
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configurations with model validation through experimental owhere:
other computational result&.g., [20,30)). The PEACE model

also demonstrated very good comparison with confined compres-
sion experimental behavior. The lack of model validation in
2-dimensions is a limitation and the magnitude of dependent vari-
ables should be interpreted with caution. The results of this study fun fwp
lay the framework for future experimental studies in two and three kn= Kp=
dimensions from which more complex and realistic disc behaviors
can be studied and model validation also achieved. This study did
effectively test our hypothesis that loss of intervertebral disc fixed
charge density with degeneration leads to significant alterations in
mechanical, chemical, and electrical behaviors of the disc through

a parametric investigation using fixed charge density as the inde- szl cw fp.sfwp Fr.sfwn
pendent variable. ni>" fpstfup fastfun
Nomenclature and Units
* a subscript implies per unit volume of mixture M Fpst Funp) = CPFup(Frst fun) (kp Ky
* a superscript implies per unit volume of water vy = — . — —=—|—cP——c"
* s, w, p, n refer to the solid, water, positive ion and negative D/n Ku Ku
ion phases
« prefix: m=10"3
o prefix: k=103
 time: s(se
. Iength:(m(?neters) ) :C"fw,nfw,p—c ap , :C”an—cpfvafwyn
« volumel (liters) P D/n " D/n
* mass:kg (kilogramg
« temperature:K (kelvin), body temperaturesT=273+37
=310K
« force, Newton:N=kg—m/s?
« densitiesips, py, pp, pn (kg/n?) are all per volume of the ap=(frstfun)fswtfupfnst (fuptfndfun
mixture .

concentrationsc®, c?, ¢ (moles/) per volume of the sol-

vent,cP, c"=Na", CI~ respectively

« fixed charge densityc™: equivalent concentration of the

negative fixed charges per volume saflvent (moles/) an=(fp st fup) fswt fupfpst (Fostfwp) fun

« electric field strength field strengtE=mV
« electric potential®=mN—m/coulomb
e Faraday’s constant = 96500 coulombs/mole
* potentials:iu,,, mp, mn, us(N—m/kg) are scalar potential
densities of the fluid, ion phases and the solid matrix D="fsufpsfnsT fswlpsfwnt fsuwfwpfnst fswlwpfwn
e drag coefficients: f's are 3x3 diagonal matrices (N
— s/n‘ﬁ) + fw,pfp,sfn,s+ fw,pfp,sfw,n+ fw,nfp,sfn,s+ fw,nfw,pfn,s

inverse permeability’k,,=inverse permeability (N s/nf)
current flux:1,=1 coulomb/sec
« gas constantR=8.31878< 10° (m— mN/mole-K)

a b b
_ _ P _ n
Appendix A: Mobility Equation and Coefficients kW_(1+ by,)’ I("_(1+ by)’ |(”_(1+ by)’
The terms in the mobility equation 11 and the relation to the
friction coefficients is detailed below:
1 k Ky ] fowt fuptf
_ = FVW _ _p _ _n a= ( S,wW w,p W,n)
_ Ky Ky Ky n
Wi Fo,, FZ(VpCp_ v,c") Fr, Fr,
le
W Ky, P D/n D/n , . ) ,
" fw,pfn,s+ fw,pfw,n'i_fw,nfp,s—’_fw,nfw,p
R h fuofee = ,
L Ky " D/n D/n |
puVY Hw
nvo ) )
nRTVcP b _fw,p(ap+fw,n) _fw,n(fw,p+an)
nRTVC" P D Coon D

Journal of Biomechanical Engineering FEBRUARY 2003, Vol. 125 / 21

|



Appendix B: PEACE Field Equations.

;
LD, [V

. 0

The four field equation§12—-15 in a matrix form are:

0

. T
0 0 0 0 i LD, L " 0
0 —Kuww 0 O w N VD,.L VD,V —Ku,oV —(KyptKynV w N —Kw,pV oF
0 -VKgy O O ® 0 0 “VKypsV —Ve(KgptKynV di —V-KgpV
n V.
0* +V-Kyw 0 n]'C 0 0 VKV Ve (Kppt KV ] ' C V-KnpV
LToy, 0
Voo, 0
0 =1 o (22)
0 0
where:
_T 7kW — N —
Kw,w_kw_F Kn.ch Kn Kq&,w* vukwF
KW’¢:F(kpCp_knCn) Knyd):ann’(ﬁnF K¢’¢:nk¢’¢':2
Kw,p=K,RT Kn,p:c”kn'anT Kpp=nKy oFRT
Kwn=K.RT Kon=C"knaNRT K, ,=nk, FRT
k(b'p: VWkp_ Vp kd’,n: VWkn_ Vn k¢y¢: k(f)ypcp_ k¢'nC"
) 7_knkpcp—kﬁc”+vnkw _apnk,—kiD _Fwnfup Kok
¢ Ky e KD P D/n ky, ™
Con=12, Oop={0}ex1 0* =c"V. e=Vv-u
puwVuy=—nVa, W,=n(v,—vs), szn(vp_vs)a W,p=n(v,—0s)
le=F(cPw,—Wwnc"), E==V®, p,Vu,=nRTVcP, p,Vu,=nRTVc",
— f c f_ c_ _ n F
T=m +7° 7 p, T puwtiwot RTP(2¢"+c")+ B+ T,
m'=aQmTe+Q¢, T.=aoc exd — x(y. /y%)\c"(c"+cM)]-P..
[N +2u+0Q A+Q A+Q 0 0 0 Q]
(O' \ (8 \ ( O‘
U” A Q AN+2u+Q A+Q 0 0 0 Q 8” 0
vy .y
o, A+Q AHQ  A+2u4Q 0 0 0 Q| 0
Oyy ) = 0 0 0 p 0 0 Ofqexy)+¢ O
Ty.z 0 0 0 0 u 0 O0f]fé®ye 0
Tzx 0 0 0 0 0 u 0% 0
C
\ 7 ) o 0 0 0 0 0 Q \ &) (™)
(A +2u+Q A+Q A+Q 0 0 O]
A+Q A2u+Q A+Q 0 0 0 D,.=Qm
A+Q A+Q  A+2u+4Q 0 0 Ofp,,=D!
D“= ) €
0 0 0 uw 0 0| D=0
0 0 0 0 u 0 V=grad=(V-)T
|0 0 0 0 0 uj
- 9 9
— 0 0O — 0 —
ax ay 9z o la o 9
V.=div=|— — —
d X dy oz
L'=| 0 — 0 — — of, .
ay X 9z 0°=[0xx Oyy Oz; Oyxy Oyy O3y
0 0 i o 2 <% e=[exx Eyy €77 Exy €yz SZX]T
| 9z ay  ox
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N s S T

m=[1 1 1 0 0 QT

T

{=V-w, e=Lu, u=[uuu,]", w=[ww,w,]", e=m'e

Appendix C: PEACE Field Equations, Finite Element Form

Application of the Galerkin FEM procedure to the field equations 21, with integration by parts to second order terms yield the
following nonlinear matrix equation:

0 0 0 o U
J' 0 NTKywN 0 0 dol W
0 (VN)'KywNdQ 0 0 @
n
(NT¢"VN)*  N"(V-K,,)N 0 N™nN ¢
(LN)'D, .(LN) (LN)'D, VN 0 0 u
+J (VN)'D, .(LN) (VYN)'D,,VN  N'K, 4VN NT(Ky,n+ Ky p) VN 40
0 0 (VN)TK 4 4VN  (VN)T(K g n+Kyp) VN @
n
0 0 (VN)"Kp 4N (VN)T(K n+ Ky p) VN ¢
f 0 +f NTT,dl
— | (LN)To,dQ T F
j NTK,, ,VNdQc +J NTT.dI
= = | (VN)To,,dQ | +| T A+ (22)
. (VN)'K 4 ,VNdQc _f NTIdT
0 V,N)TK, ,VNdQcF
f( ) Kap +f NTqngirdl

Oon=T=—puritwot RTd(2c"+cF)+ Byl + T,
Te=a0c" exd — x(y= /v£)\e(c"+c")] - P..
0o,=0
T,=applied compressive load, eg200000N/m
T ,=applied mechanical fluid/chemical pressuii@acludes bath osmotic pressire
l.=imposed current, eg. @d is imposed by Potential Equilibrium

Onaifs=applied flux of c,, eg. 0 (c, is imposed by Donnan Equilibrium

A subtle point is necessary. In the first matrix of equation 22, thel7] Nachemson, A., 1960, “Lumbar Intradiscal Pressure,” Acta Orthop. Scand.

T.n * L. . Suppl.,43, pp. 1-104.
term (N'c"VN)* in position 4, 1 should be 0 when the term in [8] Panjabi, M., Brown, M., Lindahl, S., Irstam, L., and Hermens, M., 1988,

position 4, 2 iSNT(V'Kn,W)N as shown. When the term in posi- “Intrinsic Disc Pressure as a Measure of Integrity of the Lumbar Spine,”

tion 4, 1 isNTc"VN, then the term in position 4, 2 should read __ Spine,13, pp. 913-917. i
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