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Influence of Flame Front on the Flow Field

By H. S. TSIEN,? PASADENA, CALIF.

Flame front is a region in the flow field where rapid
change in the chemical composition of the fluid occurs
with consequent release of chemical energy in the form of
heat. In the majority of cases the phenomenon is a very
complicated one involving the heat transfer by conduction
and radiation, the changes in concentration of the differ-
ent components by diffusion and chemical reaction. Ow-
ing to this and the difficult problem of chemical kinetics,
only recently the complete theory of flame front has been
formulated, particularly by the group under J. O. Hirsch-
felder.? Fortunately, as a result of the rapid rate of
chemical reaction, the thickness of the flame front under
ordinary conditions is generally very small, being less than
1 mm. Therefore, if one is interested in the influence of
flame front on the flow field but not on the detailed struc-
ture of the flame, the flame can be assumed as infinitesi-
mally thin, and only the final changes of the state of fluid
due to combustion need be considered. This procedure is
entirely analogous to that of treating the shock wave as
having zero thickness in studying dynamics of compressi-
ble fluids. This simplification will be adopted for the
present investigation.

combustion and assuming perfect gas, very simple rela-

tions for quantities before the combustion and after the
combustion ean be obtained. This will be determined first.
With these relations, the production of vorticity due to non-
uniform condition before the flame front will be studied. After
these preliminary results, the problem of flame width in a two-
dimensional combustion chamber of constant width with a flame
holder at the center will be solved approximately. This prob-
lem was first solved by A. C. Scurlock.® The present calculation
is, however, very much simpler and is extended to take into ac-
count the compressibility of the gas. The effect of compressi-
bility gives an anomalous spreading of the flame in the channel,
and its significance in the efficiency of combustion and combus-
tion-chamber design will be discussed,

NEGLECTIN G the change in specific heats of the gas by

Frame FroNT

Consider the flame front to be stationary, and the unburned
gas flows into it with a normal velocity S and leaves it with a
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velocity we; S is then the normal flame velocity. Let p, p, and
v be the pressure, density, and the ratio of specific heats, respec-

tively. The subscript 1 will denote quantities before the com-
bustion and the subscript 2 after the combustion. Then the
equation of continuity is
pIS = PaWzoon e [1]
The momentum equation is
PSE 4+ pr= P F Paoo 2]

If X is the ratio of the stagnation temperature after combustion to
the stagnation temperature before the combustion, the energy

equation is
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Consider the quantities p;, 8, and A as given by the detailed
theory of flame or by experiment. Then KEquations [1], [2],
and [3] are three equations for the three unknowns w,, p,, and
ps. The solution corresponding to normal burning can be written
as follows
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In these equations, the quantity M, is the ratio of the flame ve-
locity S to the sound velocity a; in gas before the combustion, or
the Mach number of the flame. Since, under ordinary conditions,
S is of the order of 1 fps while a; is of the order of 1000 fps, M,
is very small and generally only the first terms in Equations
[4], [5], and [6] are necessary.”

PropucTION OF VORTICITY BY FLAME

1t is known that in a nonviscous and non-heat-conducting
fluid, if the pressure is only a function of density, then the vor-
ticity of any fluid element is a constant. These conditions of
flow are satisfied approximately by real fluid without heat addi-
tion or combustion. Most fluid motions of practical interest origi-
nate from a uniform state, where vorticity is zero or the motion
is irrotational. Then the motion will remain irrotational. This
irrotationality of flow simplifies greatly the analysis of the field.
Hence it is of interest to investigate the extent to which this
eondition is destroyed by flame front. In other words, the pro-
duction of vorticity by flame should be calculated.

For simplicity, consider the two-dimensional flow. Let the
gas be of uniform composition and having a constant sum of en-
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thalpy and the kinetic energy, or isoenergetic, before combustion.

In view of the generally irrotational flow without combustion,

the flow before the flame front will be assumed to be irrotational

and thus isentropic. The problem specifically is then to calculate

the vorticity w after the flame. Let o be the specific entropy and

Y the stream function. Then it is known* that for steady flows
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where again the subscript 2 denotes quantities after the flame
front. For perfect gas, Equation [7] can be written as
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Before the flame, o) is constant, so pi/p” is constant. Since

dy» = dyn, Equation [8] simplifies to
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The pressure ratio p./p: and the density ratio ps/p; are given by
Equations [4] and [5]. Therefore the production of vorticity
is controlled by the variation of the flame Mach number M; or
S/a; and the parameter A along the flame front.

Perhaps due to very intense transport phenomena generated
by the large temperature rise in the flame, the normal flame
velocity S is observed to be only weakly dependent upon the
local conditions before combustion. According to H. Sachsse,’
the normal flame velocity of methane-oxygen mixture is in-
creased to 3 times the value at room temperature by preheating
the mixture to 1000 C. Later experiments by Sachsse and E.
Bartholomé® indicated an increasce of approximately 30 per cent
in flame velocity by preheating various gas mixtures from 20 to
100 C. From this evidence, it seems that the normal flame ve-
locity increases roughly as the absolute temperature of the “un-
burned” gas mixture. The experiments on the influence of pres-
sure on the flame velocity do not seem to give conclusive results,
but in any event, the influence is not large. Therefore, for the
computation of the production of vorticity by flame front, two
separate cases can be considered. For the first case, the flame
speed S is taken to be a constant. For the second case, the
flame speed S is to be proportional to the absolute temperature
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Then Equation [9] can be written as
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If AH is the heat addition per unit mass of the gas due to chemi-
cal reaction, then from the dafinition of A
AH
A=
z Sz ST b
Y—1m
Therefore A is not a constant, in spite of the fact that the heat re-
leased AH can be considered as a constant with good approxima-
tion.
For the first case, S is a constant, and
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where the subscript 0 refers to the stagnation condition before the

flame. Then
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The corresponding derivative of A is
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The derivative of pressure p, with respect to ¢ can be ex-
pressed in a more convenient form: If ¢ is the magnitude of
velocity immediately ahead of the shock, n the normal distance
from streamline to streamline, then

Ay = pupy dn
Furthermore, the balance of centripetal forces by pressure re-
quires
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where E, is the radius of curvature of the streamline immediately
ahead of the shock, positive when the streamline is concave with
respeet to positive direction of ¢1.  From these two relations
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By substituting Equations [13], [14], and [17] into Equation
[11], and by using Equations {4] and [5], the vorticity w gener-
ated by the flame front for the case of constant flame speed S
can be determined. By substituting Equations [15], [16], and
{17] into Equation [11], the vorticity w for the case of variable
flame speed can be computed.

However, it is important to note that the value of the flame



speed is generally so small as to make M, negligible compared
with unity. Then p:(dM,2/dp,) is negligibly small in comparison
with pi1(d\/dp:) and the latter is approximately the same for both
cases, i.e.
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By making the same approximation for the functions of F and ¢
and their derivatives, the vorticity generated w is simply
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It is seen from Equation [19] that when B, — «, w — 0 as ex-
pected. Furthermore, when no combustion occurs, no heat is
added, and A = 1, then w = 0. But when there is combustion,

the combustion will generate appreciable vorticity of the order
of ql/Rl.

Frame Wipta 1IN A UNtrorM CHANNEL

The problem of spreading of the flame in a homogeneous pre-
mixed combustible from an idealized point flame holder located
at the axis of a two-dimensional uniform channel, Fig. 1, was
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first solved by A. C. Scurlock.? For interpreting the experimental
data, he needs the relation between the flame width y; and the
fraction of gas burned. He assumes for simplicity of calculation,
that the fluid is a perfect incompressible fluid. The assumption
of incompressible flow is justified on the ground that the velocity
of flow is small compared with the speed of sound. This means

then the flame Mach number M, is negligibly small. From
Equations [4], [5], and [6], it is seen that
Pron, Proer 20}

P2 1

Therefore under the assumption of incompressible flow, the ef-
fect of combustion is to change the density by a factor of N (the
ratio of stagnation temperatures) while the pressure remains con-
stant. Scurlock then observed that since he is interested in
cases where the flow velocities are very much larger than the
normal flame velocity S, the flame fronts will be inclined at small
angles from the channel axis. The result is that all streamlines
are nearly parallel to the channel axis. Then as an approxima-
tion, the magnitude of velocity at any point is taken to be the
magnitude of z-component u (parallel to the channel axis) of
velocity, and neglect the effects of the curvature of the stream-
lines. If curvature of the streamlines is neglected, the pressure
variation in the y-direction (normal to the channel axis) due to
centrifugal forces must be also neglected. Equation {20] fur-
ther shows that there is no pressure change by crossing the flame
front; then it is evident that the pressure p in any cross section of
the channel must be constant, whether in the unburned gas or

the burned gas. This means the pressure is continuous in the
whole field. Therefore the velocity v must also be continuous
by crossing the flame front.

The entire problem is then reduced to a quasi-one-dimensional
calculation: The fluid density is constant in respective regions
of unburned and burned regions. The ratio of densities is A.
The unburned gas flows with constant uniform velocity «® and
density p; until it reaches the section containing the flame holder
0, Fig. 1. The gas immediately after the flame holder has still
the same velocity «® but a density p. = pi/A. At a section z
downstream of the flame holder, the velocity at the channel axis
is increased to w* and the velocity in the unburned gas, uniform
in the unburned region of the section, is increased from u° to
. The pressure p at x is, however, smaller than the pressure
p® of the approaching unburned gas. By using Bernoulli’s
theorem
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Therefore by eliminating p
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This equation shows that «* is always larger than ;.

At the section z, the velocity « in the burned region decreases
from the value u* at the axis to w; at the flame front y = y.
Scurlock,* using a laborious numerical method, has computed the
velocity profile for various values of A\. Fig. 2 is taken from his
paper. The accuracy of the result is, of course, predicated by
the assumptions. That it cannot be exact is seen by using the
result of the previous section. Along the axis, the curvature of
streamline is zero. From Equation [19), the vorticity (Ov/Oz —
du/dy) along the axis is then always zero. Furthermore the y-
component of velocity » is by symmetry zero along the axis.
Therefore Qv/Az is zero along the axis. The Qu/Oy must be also
zero along the axis. This is not so in Scurlock’s result. This
discrepancy must be, nevertheless, localized. In gross features
then, Scurlock’s results are accurate for the purpose of flame-
width determinations.

On the other hand, if gross features are the only results that
can be expected from the simplified quasi-one-dimensional cal-
culation, the calculation could be made very much simpler: Take
the velocity profile from y = 0 to y = 3 to be linear. Then with
Equation [22]
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The condition that the same mass must flow through each sec-
tion then specifies

p2 _ﬁ;h wdy +p(b—y)w = pbub . ... [24]

where b is the half width of the channel. By substituting Equa-
tion [23]into [24]and by observing p1/p, = A
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By solving for (31/b), denoted by 1, one has the simple relation
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Equations [25] and [27] can be considered as the parametric
representation of the relation between the nondimensional flame
width 5 and the fraction burned f. Computations? using these
equations have been carried out for A = 4, 6, and 8. The re-
sults are compared with Scurlock’s results in Fig. 3. The agree-
ment is satisfactory. It seems then there is no need for the com-
plicated numerical procedure of Scurlock.?

Errect oF CoMPRESSIBILITY ON Frame WiprtH

Since the cases of interest are cases where the normal flame
speed is small compared with the gas velocity, it is reasonable to
speak of compressible flow of gas in general while still considering
the flame Mach number M, in Equations 4], [5], and [6] to be
negligibly small. Then the conclusions drawn in the previous
section about changes of density and pressure in crossing the
flame front still hold. In particular, the temperature of the gas
is increased by a factor A in crossing the flame holder. The
A at different points of the flame front is not the same as shown
by Equation [12]. However, X will be taken to be a constant

The author is indebted to Mr. D. Shonerd for carrying out the
numerical computations in this paper.
8 In the Appendix, a complete mathematical formulation of Scur-
lock’s problem is given.
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as an approximation. Only here Bernoulli’s equation must be
modified for the compressibility effects. Therefore, in place of
Equation [21]
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where T Ty, and T* are the temperatures of the approaching
unburned gas, the unburned gas at section z, and the burned gas
at section z and the channel axis; ¢, is the specific heat at con-



stant pressure. Along each streamline, the entropy of gas is a
constant in either the unburned region or the burned region.
Therefore, in either region the corresponding isentropic relations
hold. Equations {29] can then be modified to

-1
1 0 ¥l 1 0
1 t*z+__v_ak<_t> SR D N
2 ¥y—1 p

——

=)

.[30]
2 y—1p
By eliminating the pressure ratio p/p° Equation [22] is again
obtained. Thus the relation between the burned velocity u*
at the axis and the unburned velocity w; is not modified by the
compressibility.

If the linear velocity profile through the burned region is again

assumed, Equation {23] remains true. However, now it is neces-
sary to distinguish the density p; of the unburned gas at section

z from the density p° of the approaching unburned gas. This
ratio is easily obtained as
—1 1
L. [1——1—M°2 (U?——l)]"‘l ....... (31]
p° 2

where M9 is the Mach number of the approaching unburned gas,
w®/a% and U is again u;/u®. By using the approximation that
the density of fluid decreases by the constant factor 1/A after
crossing the flame, the continuity condition is now

P
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By using Equations [23] and [31], Equation [32] gives
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Equations [33] and [34] together with Equation [31] are the
parametric representation of the relation between the nondimen-
sional flame width 7 and the fraction burned, f. The results of
calculation are plotted in Figs. 4, 5, and 6. It is seen that the
compressibility has little effect on the relation between the flame
width 7 and the fraction burned f. The curves at different ap-
proach Mach numbers M? lie very close to the incompressible-
flow curve calculated by using Equations [25] and {28]. There-
fore the procedure adopted by Scurlock in using the incompres-
sible curve for all his computations is indeed justified. Figs.
4, 5, and 6, however, show another very important feature of the
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problem: Both the flame width n and the fraction burned f,
have maximum values at higher M%. For M? = 0.4, the maxi-
mum flame width is only /» of the channel width and the maxi-
mum amount of gas burned is only /5 of the input. At higher
values of M?, these fractions are even smaller. This definitely
shows that for a combustion chamber of constant width, as as-
sumed in the present analysis, it will be difficult if not impossible
to have complete combustion at high flow velocities, even with a
good flame holder to initiate the flame.

What is the physical situation which causes this anomaly?
By crossing the flame front the flow velocity is maintained, but
the temperature of the gas is increased by X\ times. Therefore
the Mach number of the gas is reduced by combustion. In other
words, the Mach number of the unburned gas is always higher
than the Mach number of the burned gas. With equal reduction
in pressure, the stream tube will contract less if the Mach number
is higher. In fact, for supersonic flow, the stream tube will ex-
pand instead of contract when the pressure is reduced. There-
fore the effect of compressibility of the gas is to make the width
of the unburned gas relatively larger than the width for incom-
pressible fluid. The effect is more prominent when the initial
Mach number is higher. Therefore there will be one initial Mach
number M,°, called the critical Mach number, for a given value
of \, at which

L. d
If the initial Mach number M? is greater than M., then ff] -

0atn < 1. Then the flame width will not be able to increase
beyond the value of % corresponding to that at dy/dU = 0.
It seems that for complete combustion MP® should be less than
M.o.

Equations [33] and [35] give the following conditions for the
critical state

(1_1>_1_w_vc_h
2N/ 21 NUE— )

2 y—1 2 “—1_1
=1—MSSU, 1—~—~2—Mc° w2—1) YT [36)
1 1 -
1= U=y VI+AU2— D)
v —1 1
=Uc—{1—-—Mc°2(Ug—1)} vl [37]
From Equations [36] and [37]
y—1 e _
2 M." =
AU+ VI MU — 1)
y+1 — A—1
<—,Y__1U¢2—1>{)\Uc+'\/1+>\(U52—1)}_2;:U¢
....[38]

This equation and Equation [36] can be used to determine the
relation between M,% A, and U, by numerical method. The
Mach number M, corresponding to U, at the critical state is
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The results of calculation are given in Fig. 7 where M,%, M, U,
are plotted against A. From the previous discussion it is seen
that in order to have complete combustion, the approach Mach
number M° must be kept below the critical value M.°. For a
heating ratio A = 8, M. is only 0.15. Then the velocity for
complete combustion is below 200 fps. It is interesting to ob-
serve that the local Mach number M,, for the unburned gas at
the critical state, is very close to unity but slightly supersonic.

It is unfortunate that the results of the present theoretical
analysis cannot be checked with Scurlock’s experiments. The
few critical cases recorded by Scurlock with high inlet velocity
to the combustion chamber and small flame holder are made in a
combustion chamber too short to ascertain whether the flame
reached the chamber wall. This is, of course, natural as Scur-
lock concentrated his attention on the flame-holder performance,
but not in the flame-spreading and combustion efficiency. From
the present investigation it would seem that the problem of flame-
spreading and combustion efficiency is a problem by itself, apart
from the problem of flame holding, or flame initiation. In fact,
one should not limit oneself only to combustion chambers of con-
stant width, as it is evident that the way to achieve complete
combustion at high approach Mach number is to use an expand-
ing combustion chamber for reducing the flow Mach number as
the combustion progresses. The present analysis is only a be-
ginning in this problem. It serves to point out the general im-
portance of mutual influence of flame front and the flow, and to
show specifically the limitations of constant-width combustion
chambers,

Appendix

FORMULATION oF SCURLOCK’S PROBLEM s AN INTEGRAL EqQua-
TION

Let the flame width increase from £ to £ + df when distance
downstream of the flame holder increases from ¢ to dt, Fig. 8.
The mass of unburned gas at ¢ is p;(b — &)v where » is the velocity
of the unburned gas at ¢ (i.e., at £ = £, u; = v). The decrease in
the mass flow of unburned gas, or the mass of gas burned dm be-
tween tand ¢ -+ dt is thus

dm = —pr d[(b— Ewl...... ... ...

At section z, this fraction of burned mass occupies the width
dy with a velocity v and density (p1/A). From Bernoulli’s equa-
tion applied between section ¢ to z, one has, similar to Equation
[22]
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By using the relation

A
and Equation [40]

dy = — VA

udy = dm

d [(b — &)

u12~(1—~

7

The streamline passing through y = 0 corresponds t0 v = 9 5n4
the streamline passing through y = 3 corresponds to » = .
Therefore, by integrating Equation [42]

V= Ul b_____
— VA f St 1) BN [43]
- ‘/_ ).

Result of a partial integration of Equation [43] can be written in
nondimensional variables as

nWU) = Z}\—_)ll—)gz { sin 1 )\—)\—* —sm“ﬁ J)\\l}

Ve

1 U
+ —= 0V dVo o e
vt = (=) h

where V = v/uand (V) = £/b.

Equation [44]is an integral equation of the second kind for ¢pe
unknown function 7(U). When A is large, a very accurate valye
of 1 can be obtained by replacing the # (V) in the integra} of
Equation [44] by the approximate value given by Equation [25].



