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Abstract. A variety of graph-based semi-supervised learning (SSL) al-
gorithms and graph construction methods have been proposed in the last
few years. Despite their apparent empirical success, the field of SSL lacks
a detailed study that empirically evaluates the influence of graph cons-
truction on SSL. In this paper we provide such an experimental study.
We combine a variety of graph construction methods as well as a vari-
ety of graph-based SSL algorithms and empirically compare them on a
number of benchmark data sets widely used in the SSL literature. The
empirical evaluation proposed in this paper is subdivided into four parts:
(1) best case analysis; (2) classifiers’ stability evaluation; (3) influence of
graph construction; and (4) influence of regularization parameters. The
purpose of our experiments is to evaluate the trade-off between classifi-
cation performance and stability of the SSL algorithms on a variety of
graph construction methods and parameter values. The obtained results
show that the mutual k-nearest neighbors (mutKNN) graph may be the
best choice for adjacency graph construction while the RBF kernel may
be the best choice for weighted matrix generation. In addition, mutKNN
tends to generate smoother error surfaces than other adjacency graph
construction methods. However, mutKNN is unstable for a relatively
small value of k. Our results indicate that the classification performance
of the graph-based SSL algorithms are heavily influenced by the parame-
ters setting and we found no evident explorable pattern to relay to future
practitioners. We discuss the consequences of such instability in research
and practice.

Keywords: Semi-supervised learning, graph-based methods, experi-
mental study, classification.

1 Introduction

Semi-supervised learning (SSL) has gained increased attention in the last few
years [3,15]. Among all SSL algorithms, graph-based methods are widely used
because the weighted graph may approximate the low dimensional manifold in
which the data should lie. The research community has proposed a variety of
graph-based SSL algorithms [1,8,14,16] as well as a variety of graph construction
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methods [5,8,13]. Despite its increasing popularity, the SSL literature lacks a
comprehensive and unbiased empirical study that shows the influence that graph
construction methods have in both classification performance and stability of the
graph-based SSL algorithms.

1.1 Contributions

In this paper, we provide a detailed empirical comparison of the state-of-the-
art, graph-based SSL algorithms combined with a variety of graph construction
methods. The empirical analysis proposed in this paper is subdivided into four
parts as follows:

Best case analysis. We evaluate the best error rates of each combination of
SSL algorithm and graph construction method for a number of sparsification
parameter values. Although this is the most common approach to evaluate
SSL algorithms in the literature [3], this empirical setting alone may not
provide all the necessary information to choose the best classifiers for real
applications. For instance, stable classifiers may be preferable over classifiers
which are able to provide excellent performance for a very narrow range of
parameter values and mediocre performance for the remaining values;

Classifiers’ stability evaluation. We evaluate the stability of the SSL algo-
rithms combined with the graph construction methods as we vary the value
of the sparsification parameter. As we mentioned before, this analysis is im-
portant because a classifier may achieve the best overall classification perfor-
mance for a very narrow range of the parameter values. Then, this analysis
is an invaluable tool to identify which classifiers provide a good trade-off
between classification performance and stability;

Influence of graph construction. We also evaluate the graph construction
methods combined with the SSL algorithms over a wide range of sparsifica-
tion parameter values. We want to verify: (1) how the graph construction
methods affect the classification performance of each SSL algorithm and (2)
the stability of the graph construction methods as we vary the sparsifica-
tion parameter values. For the classifiers that have at least one regulari-
zation parameter, we fixed the regularization parameter(s) with the value
that achieved the best average error rate and then varied the sparsification
parameter value;

Influence of regularization parameters. We evaluate the error surfaces ge-
nerated by the SSL algorithms that have regularization parameters. We first
chose the sparsification parameter that achieved the best average error rate
and then we varied the regularization parameters of the SSL algorithms.

The obtained results show that the mutual k-nearest neighbors (mutKNN)
graph may be the best choice for adjacency graph construction while the RBF
kernel may be the best choice for weighted matrix generation. In addition,
mutKNN tends to generate smoother error surfaces than other adjacency graph
construction methods. However, mutKNN is unstable for a relatively small value
of k.
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Our results indicate that the classification performance of the graph-based
SSL algorithms are heavily influenced by internal parameters (such as regulariza-
tion parameters) and external parameters (such as the number of neighbors in a
k-nearest neighbor graph). Such variability showed no evident explorable pattern
to relay to future practitioners. In addition, the SSL assumption that only a
very restricted set of labeled examples exists may make parameter estimation
techniques commonly used in classification unfeasible.

We believe that our results have two major consequences:

For practitioners. Given a data set, it is difficult to recommend an SSL algo-
rithm, a graph sparsification parameter value or a regularization parameter
value that is expected to provide good classification performance. As the
number of labeled examples is usually very restricted in SSL applications,
the practitioner has no tools to make an informed choice of these parameter
values. As we will show, an incorrect choice of the parameter values may
seriously affect the classification results;

For researchers. Changes in the parameter values also cause changes in the
relative ranking among the classifiers. It means that for a specific data set
several methods may figure as the best classifier for a certain range of pa-
rameter values. This is a serious issue since the empirical evidence that one
method outperforms the competitors might be confirmed only for a restricted
set of the parameter values. In addition, this performance variability may
hinder the reproduction of the experimental results for papers that do not
clearly report every parameter value used in the empirical evaluation.

1.2 Outline

The remainder of this paper is organized as follows. Section 2 describes the no-
tation used throughout the paper and revises the graph construction methods.
Section 3 revises the state-of-the-art, graph-based SSL algorithms. Section 4
empirically evaluates the graph construction methods combined with the graph-
based SSL algorithms. Finally, Section 5 concludes the paper and suggests di-
rections for future research.

2 Graph Construction

In this section we revise widely used methods to generate sparse weighted graphs,
which are frequently considered the heart of graph-based SSL [15]. Section 2.1
describes the notation used throughout the paper. Section 2.2 revises approaches
used to generate a sparse undirected1 graph (or adjacency matrix) from the trai-
ning sample. Section 2.3 revises approaches used to generate a weighted matrix
from the sparse graph.

1 This paper focus on undirected graphs, which are commonly used in SSL [15].
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2.1 Notation and Preliminaries

Consider a training sample X := {x i}ni=1 ⊂ R
d in which the first l examples are

labeled, i.e., x i has label yi ∈ Nc where Np := {i ∈ N
∗|1 ≤ i ≤ p} with p ∈ N

∗

and c being the number of classes. Let u := n − l be the amount of unlabeled
examples and Y ∈ B

n×c be a label matrix in which Yij = 1 if and only if x i

has label yi = j. Consider an undirected graph G := (X , E) in which each x i is
a node of G. Let Ni ⊂ X be the set of neighbors of x i and x ik the k-th nearest
neighbor of x i. In order to generate a sparse weighted matrix W ∈ R

n×n from
G one uses a similarity function K : Rd × R

d �→ R to compute the weights Wij .
The graph Laplacians are important tools for machine learning. The combi-

natorial Laplacian is defined by Δ := D−W where D := diag(W1n) such that
1n is an n-dimensional 1-entry vector. The normalized Laplacian is defined by
L := In −D−1/2WD−1/2 where In is the n-by-n identity matrix.

All matrices can be subdivided into labeled and unlabeled submatrices. Let
F ∈ R

n×c be the output of a given graph-based SSL algorithm. The F and Y
matrices are subdivided into two submatrices while all others are subdivided
into four submatrices. For instance:

W :=

[
WLL WLU
WUL WUU

]
Y :=

[
YL
YU

]

where WLL ∈ R
l×l and YL ∈ B

l×c are the submatrices of W and Y, respecti-
vely, on labeled examples, and so on. By definition, YU is an u× c null matrix.
This paper focus on the multi-class problem; hence, YL1c = 1l.

2.2 Adjacency Graph Construction

The adjacency graph construction process generates a graph G (or adjacency
matrix A) from X using a distance function Ψ : Rd × R

d �→ R. Let Ψ ∈ R
n×n

be a distance matrix in which Ψ ij := Ψ(x i, x j) and A ∈ B
n×n be an adjacency

matrix2 in which Aij = 1 if and only if xj ∈ Ni. We now describe the two most
used adjacency graph construction methods for graph-based learning.

ε-neighborhood (εN). There exists an undirected edge between x i and x j in
an εN graph if and only if Ψ(x i, x j) ≤ ε where ε ∈ R

∗
+ is a free parameter. In

general, εN graphs are not widely used in practical situations because they
can generate graphs with many disconnected components for an improper
value of ε. Due to this fact, we did not use the εN graph in our experiments.

k-nearest neighbors (kNN). There exists an edge from x i to x j if and only
if x j is one of the k closest examples of x i. Because the adjacency matrix of
a kNN graph may not be symmetric, three strategies are commonly used to
symmetrize it: mutual kNN (mutKNN), which generates Â = min

(
A,A�);

symmetric kNN (symKNN), which generates Â = max
(
A,A�); and sym-

metry-favored kNN (symFKNN) [8], which generates Â = A +A� (a non-
binary adjacency matrix).

2 Non-binary adjacency matrices may also be applied.
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2.3 Weighted Matrix Generation

Given an adjacency matrix A, we generate a sparse weighted matrix W using a
similarity function K : Rd ×R

d �→ R. We describe three widely used approaches
to generate W. Two of them, RBF kernel and similarity function of Hein &
Maier [5], define the W matrix using the relation Wij = AijK(x i, x j). The
third approach, based on local reconstruction minimization [13], generates a
sparse weighted matrix W, not necessarily symmetric, without an explicit K.

RBF kernel. The RBF (or Gaussian) kernel computes the similarity between
x i and x j by K(x i, x j) := exp

(−Ψ2(x i, x j)/
(
2σ2

))
in which σ ∈ R

∗
+ is the

kernel bandwidth parameter.
Similarity function of Hein & Maier [5] (HM). Given a function ψ(·, ·) in

which ψ(x i, k) := Ψ(x i, x ik) with k ∈ N
∗, the HM similarity function is de-

fined by K(x i, x j) := exp
(
−Ψ2(x i, x j)/ (max {ψ(x i, k), ψ(x j , k)})2

)
. This

is an RBF kernel with an adaptive kernel size.
Local Linear Embedding (LLE). The LLE approach [13] generates the W

matrix by solving the following optimization problem:

min
W∈Rn×n

n∑
i=1

∥∥∥∥∥∥x i −
∑

xj∈Ni

Wijx j

∥∥∥∥∥∥
2

2

s.t. W1n = 1n, W ≥ 0 (1)

The symbol ‖·‖2 represents the l2-norm.

3 Label Diffusion

Given a weighted matrix W, a graph-based SSL algorithm uses W and the label
matrix Y to generate the output matrix F by label diffusion in the weighted
graph. We now revise the state-of-the-art graph-based SSL algorithms used in
our empirical comparison. We should note that these algorithms have an intrinsic
condition to classify all unlabeled examples in X , which frequently is not explicit
in the literature. Assumption 1 describes this condition.

Assumption 1. Each unlabeled example is on a connected subgraph in which
there exists at least one labeled example.

Gaussian Random Fields (GRF). The GRF algorithm [16] solves the opti-
mization problem F = argminF∈Rn×c tr

(
F�ΔF

)
s.t. FL = YL, which gives

the closed-form solution FU = −Δ−1
UUΔULYL.

Local and Global Consistency (LGC). The LGC algorithm [14] solves the
optimization problem F = argminF∈Rn×c tr

(
F�LF+ μ(F−Y)�(F−Y)

)
,

which gives the closed-form solution F = (In + L/μ)
−1

Y.
Laplacian Regularized Least Squares (LapRLS). The LapRLS algorithm

[1] minimizes the following regularization framework:

min
f∈HK

1

l

l∑
i=1

V(x i, yi, f) + γA‖f‖HK + γIf
�Δf (2)
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where V(x i, yi, f) = (yi − f(x i))
2, HK is the Reproducing Kernel Hilbert

Space (RKHS ) for the kernel K, f := [f(x 1), · · · , f(xn)]
� ∈ R

n, ‖·‖HK
is the norm in HK, and γA and γI are the regularization parameters. Let
y := [y1, · · · , yl, 0, · · · , 0] ∈ R

n be the label vector in which yi ∈ {−1,+1}
and K ∈ R

n×n a gram matrix such that Kij := K(x i, x j). Due to the
Representer Theorem in [1], the solution of (2) can be written as an ex-
pansion of kernel functions over both labeled and unlabeled examples, i.e.,
f(x ) =

∑n
i=1 K(x , x i)αi with α ∈ R

n. Solving (2) using this expansion, we

get α = (JK+ γAlIn + γI lΔK)−1 y where J := diag
(
[1, · · · , 1, 0, · · · , 0]�)

whose first l diagonal entries are 1 and the rest 0.
Laplacian Support Vector Machine (LapSVM). The LapSVM algorithm

[1] minimizes the problem in (2) with V(x i, yi, f) = max(0, 1 − yif(x i)).
Solving (2) using the expansion f(x ) =

∑n
i=1 K(x , x i)αi, we get the solution

α = 1
2 (γAIn + γIΔK)−1 J

�
Yβ∗ where J := [ Il Ol×u ] such that Ol×u is

an l × u null matrix, Y := diag
(
[y1, · · · , yl]�

)
, and β∗ ∈ R

l is given by

β∗ = argmin
β∈Rl

1�
l β − 1

2
β�Qβ s.t. y�β = 0, 0 ≤ β ≤ 1

l

such that Q = 1
2Y JK (γAIn + γIΔK)

−1
J
�
Y.

Robust Multi-class Graph Transduction (RMGT). The RMGT
algorithm [8] solves the convex optimization problem F =
argminF∈Rn×c tr

(
F�ΔF

)
s.t. FL = YL, F1c = 1n, F�1n = nω

where ω ∈ R
c is the class prior probabilities. The solution of this

optimization problem is given by:

FU = −Δ−1
UUΔULYL +

Δ−1
UU1u

1�
uΔ

−1
UU1u

(
nω� − 1�

l YL + 1�
uΔ

−1
UUΔULYL

)

4 Experimental Evaluation

In this section we provide a detailed empirical comparison of the graph-based SSL
algorithms described in Section 3 combined with the graph construction methods
described in Section 2 on a number of benchmark data sets. The objective of
these experiments is to evaluate the influence that graph construction methods
have in the classifiers’ performance. We performed experiments in a transductive
setting using different sets of labeled and unlabeled examples in each execution.

For a fair comparison and ease of reproducibility, we used the source code of
the authors of the algorithms when possible. As some authors implemented their
methods in Matlab, we used the matlabcontrol3 library to link the Matlab code
and Java. Due to reasons concerning reproducibility, all source codes and data
sets used in our experiments are freely available4.

3 https://code.google.com/p/matlabcontrol/downloads/list
4 http://www.icmc.usp.br/~gbatista/ECML2013

https://code.google.com/p/matlabcontrol/downloads/list
http://www.icmc.usp.br/~gbatista/ECML2013
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4.1 Data Sets

We used in our experiments the USPS, COIL2, DIGIT-1, G-241C, G-241N, and
TEXT data sets. These data sets are freely available5 and very popular in the SSL
literature [3]. USPS and DIGIT-1 are data sets for digit recognition, TEXT is a
data set for text classification, G-241N and G-241C are data sets for classification
of Gaussian distributions, and COIL2 is a data set for image classification. We
used the data splits of 10 labeled examples suggested in [3].

We run principal component analysis (PCA) to reduce the dimensionality of
the data sets. In high-dimensional data, the distance to the nearest neighbor
approaches the distance of the farthest neighbor [2]. It degenerates the quality
of the graph and possibly decreases the classification performance of the SSL
algorithms. After some preliminary experimental evaluation, we decided to re-
duce the dimensionality of the data to 50 features using the Matlab Toolbox for
Dimensionality Reduction6 library. We did not run PCA only on the TEXT data
set to maintain the sparseness property of these data.

4.2 Empirical Setup

In this section, we describe the experimental design decisions that we have taken
in our experiments in order to facilitate the reproduction of our results.

Distance functions. Due to its high popularity in the text classification lite-
rature, we used the cosine distance in the experiments using the TEXT data
set. The cosine distance is defined as Ψ(x i, x j) = 1−〈x i, x j〉d/(‖x i‖2‖x j‖2)
where 〈·, ·〉d is the inner product of vectors in R

d. For all other data sets we
used the l2 norm as a distance function.

Graph Laplacians. Since the normalized Laplacian L may lead to better em-
pirical results in comparison with the combinatorial LaplacianΔ [7], we used
L instead of Δ in the formulation of the graph-based SSL algorithms. We
obtained poor results using L in the RMGT algorithm during preliminary
experiments; therefore, we report the results of RMGT using Δ. In prelimi-
nary experiments, we observed some errors using RMGT in the COIL2 data
set. These errors occurred because at least one of the eigenvalues of the graph
Laplacian was equal to (or approximately) zero. In an attempt to avoid nu-
merical instabilities while solving linear systems using the graph Laplacians,
we generated the combinatorial Laplacian as Δ = γD−W and the norma-
lized Laplacian as L = γIn −D−1/2WD−1/2 where a small γ > 1 is used to
increase the eigenvalues of the graph Laplacians. In our experiments, we set
γ = 1.01.

Mutual kNN. The procedure Â = min
(
A,A�) may generate a graph with

isolated vertices. It may degenerate the output of the SSL algorithms because
the label diffusion process could not be effective. In an attempt to avoid this

5 http://olivier.chapelle.cc/ssl-book/benchmarks.html .
6 http://homepage.tudelft.nl/19j49/

Matlab Toolbox for Dimensionality Reduction.html.

http://olivier.chapelle.cc/ssl-book/benchmarks.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
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problem, we created an undirected edge between each isolated vertex and its
nearest neighbor. Other strategies may also be applied as well [12].

LLE. We used the Local Anchor Embedding (LAE) method [9]7 to solve the
optimization problem in (1). LLE is an example of LAE if we generate a
bipartite graph whose “anchor” points are exactly the training examples.
Since LLE may not generate a symmetric weighted matrix, we symmetrize
the output matrix of LLE, WLLE, as W = 1

2

(
WLLE +W�

LLE

)
.

SymFKNN + LLE. Because the adjacency matrix of the symFKNN graph is

non-binary, we compute Ŵ = WLLE�A where � is the Hadamard product.

Then, we generate W = 1
2

(
Ŵ + Ŵ�

)
.

LapSVM. We run LapSVM using the source code in [11]8. We trained LapSVM
using Newton’s method, which gave better results than the preconditioned
conjugate gradient method during preliminary experiments.

LapRLS. We used the multi-class version of LapRLS; hence, we compute α as
α = (JK+ γAlIn + γI lΔK)−1 Y and get the output matrix F = Kα.

Classification. In order to classify the unlabeled examples, we used the class
mass normalization (CMN) procedure [16]. This is an useful procedure when
we are dealing with data sets with imbalanced labels. We obtained poor re-
sults using CMN in RMGT; therefore, we report the results for RMGT using
the argmax operator. We report the results for GRF, LGC, and LapRLS u-
sing CMN while the results for LapSVM are reported using the sign function.
For GRF, we computed CMN using FU instead of F, as suggested in [16].

4.3 Parameter Setting

We now describe the parameter setting used in our experimental evaluation.

SymKNN, mutKNN, and symFKNN. The sparsification parameter k was
chosen at the range {4, 6, 8, · · · , 40}.

RBF kernel. Because it is not straightforward to find an adequate value for
the kernel bandwidth σ when labeled examples are scarce, we estimate its
value by σ =

∑n
i=1 Ψ(x i, x ik)/(3n), as suggested in [6].

Gram matrix. We generated the gram matrix K using the RBF kernel. We
used the same distance function Ψ(·, ·), the sparsification parameter k, and
the kernel bandwidth σ used during graph construction to compute K.

LGC. The regularization parameter μ in the LGC framework was chosen at
range {0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 50, 100}.

LapRLS and LapSVM. The regularization parameters γA and γI were cho-
sen at range

{
10−6, 10−4, 10−2, 10−1, 1, 10, 100

}
, as suggested in [11]. All

other parameters were set to their default values.
RMGT. For the RMGT algorithm, we assumed a uniform class distribution,

i.e., we set ω = 1c/c instead of using the class prior probabilities, as sug-
gested in [8]. We achieved better results in preliminary experiments using

7 http://www.ee.columbia.edu/ln/dvmm/downloads/WeiGraphConstructCode/

dlform.htm.
8 http://www.dii.unisi.it/~melacci/lapsvmp/index.html.

http://www.ee.columbia.edu/ln/dvmm/downloads/WeiGraphConstructCode/dlform.htm
http://www.ee.columbia.edu/ln/dvmm/downloads/WeiGraphConstructCode/dlform.htm
http://www.dii.unisi.it/~melacci/lapsvmp/index.html
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the uniform class distribution in most data sets; therefore, we report the
results for RMGT using this setting for all data sets, excluding USPS. For
the USPS data set, we used the class prior probabilities, which achieved the
best results.

4.4 Analysis of the Results

In this section we analyze the obtained results. Our empirical analysis is sub-
divided into four parts: (1) best cases analysis; (2) graph-based SSL algorithm
comparison; (3) influence of graph construction on SSL; and (4) influence of
regularization parameters on the classifiers’ performance.

Best case analysis. Table 1 shows the obtained results for the best case a-
nalysis. Each numerical result in this table is the lowest average error rate
obtained by a combination of an SSL algorithm, a graph construction method
and a data set for all parameter values (sparsification and regularization, if
applicable), as described in Section 4.3. The four worst results obtained by
an SSL algorithm in each data set have a grey background while the best
one is in bold. The best overall result for each data set is boxed.
We can see in Table 1 that the symKNN-LLE and symFKNN-LLE graphs
may not be adequate for GRF, LGC, and LapRLS because they achieved
unsatisfactory results in all data sets. We also see that mutKNN outper-
formed the symKNN and symFKNN graphs in most situations, independent
of the weighted matrix generation method or the SSL algorithm used. There-
fore, for the data sets considered in this study, mutKNN presented the best
performance among all adjacency graph construction methods.
We ran the Friedman’s test9 with Nemenyi’s post test using a confidence level
of 0.05 to statistically compare the performance of the graph construction
methods. Table 2 shows the average rankings. The best rankings are marked
in bold face and the results that were outperformed by the best ranked
method are marked with grey background. We can see that symFKNN-RBF
and mutKNN-RBF obtained the best rankings for most SSL algorithms.
However, the statistical test found significant differences for only 7 cases.
After analyzing the classifiers, we see that RMGT achieved the best overall
classification performance in 4 out of 6 data sets. Although RMGT achieved
satisfactory results on most data sets, it did not perform well on the USPS
data set.

Classifiers’ stability evaluation. As we mentioned earlier, the best case a-
nalysis does not allow us to investigate the stability of the classifiers. In this
analysis, we investigate the stability of the SSL algorithms as we vary the
graph sparsification parameter value. Due to space restrictions and because
the mutKNN-RBF graph achieved the best overall classification performance
in the best case analysis, we show here only the results obtained with the
mutKNN-RBF graph. The interested reader will find the results for other
graph construction methods on the paper’s website.

9 See [4] and references therein for a review on statistical tests for machine learning.
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Table 1. Average error rates and standard deviations of the SSL algorithms for each
graph construction method and data set

Data sets USPS COIL2 DIGIT-1 G-241N G-241C TEXT

GRF-symKNN-RBF 11.07 (3.33) 35.13 (6.92) 10.19 (4.27) 46.12 (7.61) 46.28 (6.98) 39.15 (5.69)

GRF-mutKNN-RBF 9.75 (4.50) 35.07 (3.82) 9.35 (4.51) 46.94 (4.81) 46.72 (4.85) 37.51 (6.85)

GRF-symFKNN-RBF 10.75 (3.77) 35.22 (6.92) 10.01 (3.93) 46.12 (7.65) 46.34 (6.83) 38.50 (5.87)
GRF-symKNN-HM 15.53 (2.76) 38.55 (6.06) 10.73 (4.27) 46.86 (5.28) 46.19 (7.25) 42.32 (8.54)
GRF-mutKNN-HM 11.01 (3.59) 35.30 (3.87) 10.02 (6.36) 46.66 (6.18) 46.58 (5.06) 41.18 (9.87)
GRF-symFKNN-HM 15.17 (3.09) 37.77 (6.25) 10.24 (4.36) 46.77 (5.38) 46.27 (7.05) 42.20 (8.62)
GRF-symKNN-LLE 16.03 (2.47) 36.04 (5.60) 10.94 (4.69) 47.54 (3.77) 47.33 (4.77) 43.56 (6.96)
GRF-mutKNN-LLE 11.64 (3.39) 35.20 (3.79) 10.30 (5.89) 47.14 (2.87) 46.98 (3.64) 42.34 (6.48)
GRF-symFKNN-LLE 15.55 (2.74) 36.10 (5.88) 10.31 (4.68) 47.25 (4.14) 47.46 (4.36) 43.54 (6.95)

LGC-symKNN-RBF 11.22 (3.07) 34.96 (6.69) 10.68 (4.91) 38.06 (6.91) 40.24 (5.13) 35.42 (5.58)
LGC-mutKNN-RBF 9.93 (4.34) 35.07 (3.82) 10.54 (5.21) 39.82 (5.36) 41.85 (4.32) 34.78 (6.55)

LGC-symFKNN-RBF 10.97 (3.00) 34.81 (6.22) 10.47 (4.66) 37.95 (6.66) 40.10 (5.46) 35.51 (5.64)

LGC-symKNN-HM 14.49 (5.25) 37.20 (7.32) 11.53 (5.00) 38.36 (6.83) 40.27 (4.48) 37.51 (4.48)
LGC-mutKNN-HM 10.79 (3.75) 35.19 (4.90) 10.96 (5.34) 39.51 (5.80) 41.94 (4.20) 36.01 (5.63)
LGC-symFKNN-HM 14.63 (3.33) 36.36 (8.25) 11.07 (4.76) 38.13 (7.11) 40.17 (4.75) 37.49 (4.35)
LGC-symKNN-LLE 15.05 (4.33) 35.95 (6.09) 11.49 (5.41) 41.22 (4.12) 43.33 (3.03) 39.18 (4.02)
LGC-mutKNN-LLE 11.04 (3.82) 35.18 (3.77) 10.96 (6.34) 42.12 (3.90) 42.94 (3.09) 35.89 (9.20)
LGC-symFKNN-LLE 14.51 (2.81) 35.98 (6.07) 10.97 (5.01) 41.24 (4.37) 43.06 (3.34) 39.03 (3.82)

LapRLS-symKNN-RBF 10.99 (3.05) 34.92 (5.98) 10.22 (4.25) 38.09 (6.76) 40.35 (6.23) 35.12 (5.68)

LapRLS-mutKNN-RBF 9.75 (4.53) 33.56 (7.32) 9.33 (4.48) 38.36 (5.96) 40.66 (5.45) 34.58 (6.14)

LapRLS-symFKNN-RBF 10.57 (2.90) 35.50 (5.84) 10.02 (3.92) 38.08 (6.64) 40.36 (6.02) 35.34 (5.73)
LapRLS-symKNN-HM 14.56 (3.89) 37.58 (5.91) 10.76 (4.24) 38.18 (6.70) 40.24 (6.07) 37.12 (4.52)
LapRLS-mutKNN-HM 10.57 (4.66) 32.80 (7.67) 9.92 (5.50) 38.29 (6.00) 40.67 (5.50) 35.90 (5.61)
LapRLS-symFKNN-HM 14.38 (4.14) 36.93 (4.95) 10.28 (4.32) 38.06 (6.52) 40.11 (6.06) 37.32 (4.38)
LapRLS-symKNN-LLE 14.73 (3.24) 36.85 (5.25) 10.93 (4.66) 38.68 (5.60) 40.61 (5.51) 38.49 (4.00)
LapRLS-mutKNN-LLE 11.28 (4.09) 31.78 (7.81) 10.19 (5.92) 38.66 (5.72) 40.59 (5.61) 37.28 (5.26)
LapRLS-symFKNN-LLE 14.55 (3.37) 36.17 (4.81) 10.31 (4.63) 38.69 (5.56) 40.61 (5.52) 38.62 (4.13)

LapSVM-symKNN-RBF 11.42 (4.03) 34.96 (6.81) 9.42 (3.97) 39.16 (6.07) 40.91 (6.08) 39.88 (6.02)
LapSVM-mutKNN-RBF 9.91 (2.51) 34.37 (6.47) 8.67 (3.89) 38.90 (6.50) 40.90 (6.08) 37.49 (7.07)
LapSVM-symFKNN-RBF 11.04 (3.43) 34.04 (6.92) 9.47 (4.19) 39.16 (6.07) 40.91 (6.08) 39.45 (6.30)
LapSVM-symKNN-HM 14.63 (5.47) 36.40 (4.07) 10.13 (3.65) 39.15 (6.04) 40.91 (6.08) 43.06 (4.99)
LapSVM-mutKNN-HM 10.04 (2.83) 33.08 (6.35) 9.58 (4.73) 39.00 (6.43) 40.90 (6.08) 42.10 (6.03)
LapSVM-symFKNN-HM 14.35 (4.29) 36.57 (3.57) 9.93 (3.95) 39.14 (6.05) 40.91 (6.08) 42.71 (5.15)
LapSVM-symKNN-LLE 14.82 (3.38) 35.39 (4.80) 10.31 (4.11) 39.12 (6.43) 40.90 (6.07) 42.77 (6.20)
LapSVM-mutKNN-LLE 10.61 (2.49) 31.54 (6.24) 10.22 (5.52) 38.95 (6.46) 40.82 (6.66) 41.80 (7.65)
LapSVM-symFKNN-LLE 14.41 (3.23) 35.21 (4.58) 9.83 (3.99) 39.00 (6.40) 40.84 (6.40) 42.62 (4.92)

RMGT-symKNN-RBF 16.62 (2.90) 31.05 (4.81) 8.63 (3.35) 44.99 (6.97) 38.44 (6.22) 30.43 (6.26)

RMGT-mutKNN-RBF 13.08 (3.41) 28.95 (3.88) 8.13 (3.14) 46.11 (4.50) 42.76 (6.11) 27.77 (5.95)

RMGT-symFKNN-RBF 16.02 (2.85) 32.94 (4.20) 8.55 (3.36) 45.25 (6.07) 38.31 (6.02) 29.65 (6.46)

RMGT-symKNN-HM 19.08 (1.22) 31.20 (6.14) 8.07 (2.69) 44.31 (9.03) 38.48 (6.91) 34.86 (6.04)

RMGT-mutKNN-HM 16.99 (2.45) 28.00 (4.67) 7.50 (2.43) 44.73 (5.48) 40.53 (4.37) 31.12 (6.35)

RMGT-symFKNN-HM 18.88 (2.26) 30.56 (5.52) 7.92 (2.58) 44.68 (7.89) 38.48 (6.67) 34.61 (6.25)
RMGT-symKNN-LLE 19.04 (1.19) 30.63 (3.94) 7.91 (2.49) 42.83 (6.00) 42.25 (3.32) 36.61 (4.79)
RMGT-mutKNN-LLE 17.85 (1.95) 29.49 (4.16) 7.53 (2.11) 43.75 (6.40) 42.12 (4.08) 33.89 (5.32)
RMGT-symFKNN-LLE 18.97 (1.18) 30.41 (3.71) 7.73 (2.43) 42.75 (7.33) 41.77 (3.33) 36.25 (4.78)

Table 2. Average rankings of the graph construction methods for each SSL algorithm

GRF LGC LapRLS LapSVM RMGT mean
symKNN-RBF 2.9167 2.8333 3.5 5.1667 5.1667 3.9167
mutKNN-RBF 2.6667 3 3.1667 2 4.8333 3.1333
symFKNN-RBF 2.5833 1.6667 3.25 4.6667 5 3.4333
symKNN-HM 6 6.5 6 7.75 6.25 6.5
mutKNN-HM 3.8333 4.5833 4.25 3.4167 3.5 3.9167
symFKNN-HM 5 5.6667 4.8333 6.9167 5.0833 5.5
symKNN-LLE 8.3333 8 7.9167 7 6.1667 7.4833
mutKNN-LLE 5.8333 5.4167 4.6667 3.1667 4.1667 4.65
symFKNN-LLE 7.8333 7.3333 7.4167 4.9167 4.8333 6.4667
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(f) TEXT

Fig. 1. Average error rates of the SSL algorithms using the mutKNN-RBF graph

Fig. 1 shows the results for this empirical analysis using the mutKNN-
RBF graph as we vary the sparsification parameter value. Notice that the
legend for all graphics in Fig. 1 can be found in Fig. 1(b). The RMGT algo-
rithm achieved good classification performance and stability on the COIL2,
TEXT, and DIGIT-1 data sets when k ≥ 14. However, RMGT was gener-
ally the worst classifier for the USPS data set and the second worst for the
G-241N and G-241C data sets. Moreover, RMGT appears to be unstable for
relatively small values of k. For instance, the instability of RMGT is evi-
denced in the COIL2 data set for k ≤ 6 while all other classifiers achieved
satisfactory results with this setting.

LapRLS and LapSVM achieved exceptional stability on the G-241C and
G-241N data sets. Due to this high stability, we suppose that LapRLS and
LapSVM may be the best SSL algorithms for classification of Gaussian dis-
tributions. We also note in Fig. 1 that the assumption that sparse graphs
give better results than dense graphs may not necessarily be true. For ins-
tance, the results for the GRF, LGC, and RMGT algorithms on the G-241C
and G-241N data sets using dense graphs are better than those for sparse
graphs. In addition, the results for all SSL algorithms on the TEXT data set
for relatively small values of k are not satisfactory while the results for the
LGC, LapRLS, and RMGT algorithms with dense graphs are.

Influence of graph construction. We now evaluate how different graphs can
influence the classification performance of the SSL algorithms. Once again,
we perform this analysis as we vary the sparsification parameter value in
order to analyze the stability of the graph construction methods combined
with the SSL algorithms. Due to lack of space, we only present the plots
for the USPS data set in Fig. 2. Once again, we invite the interested reader
to check the paper’s website. It is clear from Fig. 2 that the results show
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a lot of variability. For a given classifier, we can observe that several graph
construction methods figure among the best and the worst method as we
vary the value of k. The variability problem is more intense for small values
of k, specially k ≤ 14. This seems to be a permissive problem since small
values of k performed better for this specific data set, but too small values
might greatly degrade the classifiers’ performance.
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(d) LapSVM
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(e) RMGT

Fig. 2. Average error rates of the graph construction methods on the USPS data set

The USPS data set is an excellent example of the high influence of the
graph construction methods and the sparsification parameter values over the
SSL algorithms. As we vary the k parameter, the classifiers’ performance
vary significantly; some of them in a range of almost 10%. Such performance
variation is certainly a concern for the practitioner, who would have diffi-
culties in finding a parameter setting that guarantees a good classification
performance. Moreover, such high variability causes several changes in the
relative rankings of the classifiers. In some cases, the same classifier might
figure among the best and the worst methods as we vary the k parameter in
the narrow range of [4, 14]. These changes of relative order may cause some
serious concerns for the research community. Without an extensive analysis
of the influence of parameter values, some studies may experimentally show
that a proposed algorithm outperforms the state-of-the-art algorithms, be-
ing that this conclusion only holds for certain parameter values. We are not
claiming here that such an incident has ever happened, and we have not ob-
served any such evidence, however; it is certainly undesirable for the research
community to be affected of such a situation.

We suggest that every research paper that proposes a new SSL algorithm
or graph construction method to fully analyze the influence of its parame-
ters. The experimental setup used in this paper is a proposal of how newly
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proposed methods should be evaluated. It is important to evaluate the algo-
rithms’ performance for a wide range of external parameters, such as k, and
graph construction methods. Some algorithms also have internal parame-
ters, such as regularization parameters, that also need to be evaluated, as
we show next.
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(c) symFKNN-RBF
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(d) symKNN-HM
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10
−6

10
−4

10
−2

10
0

10
2

10
−6

10
−4

10
−2

10
0

10
2

0.15

0.16

0.17

0.18

0.19

0.2

gamma
A

gamma
I

er
ro

r r
at

e

(f) symFKNN-HM

10
−6

10
−4

10
−2

10
0

10
2

10
−6

10
−4

10
−2

10
0

10
2

0.15

0.16

0.17

0.18

0.19

0.2

gamma
A

gamma
I

er
ro

r r
at

e

(g) symKNN-LLE
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(h) mutKNN-LLE
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(i) symFKNN-LLE

Fig. 3. Error surfaces for the LapRLS algorithm on the USPS data set

Influence of regularization parameters. We evaluate the influence of regu-
larization parameters on the classification performance of the graph-based
SSL algorithms. We evaluate the error surfaces generated by the SSL al-
gorithms for each graph construction method and data set. Due to lack of
space, we only show the most relevant results for LapRLS and LapSVM. We
fixed the value of k that achieved the best error rate for each combination of
SSL algorithm and graph construction method. In the sequence, we varied
the values of γA and γI , as described in Section 4.3.

Fig. 3 shows the results for LapRLS on the USPS data set for different
graph construction methods. We see that mutKNN generated smoother error
surfaces than symKNN and symFKNN graphs, independent of the weighted
matrix generation method used.
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Many of the obtained results for this analysis are qualitatively equivalent
fixing an SSL algorithm and a data set. However, we found some specific
results that have an explicit pattern for parameters choice and others which
may not have any evident pattern. We discuss them in the following.
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(b) mutKNN-RBF
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(c) symFKNN-RBF

Fig. 4. Error surfaces for LapRLS on the TEXT data set using the RBF kernel

Fig. 4 shows the obtained results for LapRLS on the TEXT data set using
the RBF kernel combined with the adjacency graph construction methods.
We see that the “optimal region” occurs only when γA = γI .
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Fig. 5. Error surfaces for LapSVM on the TEXT data set using the mutKNN graph

Fig. 5 shows the obtained results for LapSVM on the TEXT data set
using the mutKNN graph combined with the weighted matrix generation
methods. We can not see any evident pattern that could help parameter
choice. This may be an obstacle to apply LapSVM on real applications on
text classification. For instance, the “optimal region” for the mutKNN-LLE
graph occurs when γA = γI , which is not a good setting for the other graphs.

5 Conclusions and Further Research

In this paper, we provided a detailed empirical comparison of five state-of-
the-art, graph-based SSL algorithms combined with three adjacency graph
construction methods and three weighted matrix generation methods. Our ex-
perimental evaluation indicated that the SSL algorithms are strongly affected by
the graph sparsification parameter value and the choice of the adjacency graph
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construction and weighted matrix generation methods. The algorithms that have
regularization parameters were also very dependent on a good setting of these
parameters.

Consequently, we proposed an experimental setup that should be used in
empirical comparisons in future work in SSL. Our idea is that a newly proposed
algorithm should not be compared to other state-of-the-art algorithms using only
the best case analysis. We believe that a detailed evaluation of all parameters is
necessary. Due to the nature of SSL, in which there exists only a limited number
of labeled examples, tuning all parameters might be unfeasible. Therefore, there
is a need for algorithms that are slightly dependable on parameter tuning, i.e.,
that have a stable performance over the parameter space.

Our experimental results showed a superiority of mutKNN over the symKNN
and symFKNN graphs. However, our results also showed that mutKNN is unsta-
ble for a relatively small value of k. In addition, we showed that mutKNN tends
to generate smoother error surfaces than symKNN and symFKNN graphs. Our
experiments also indicated a superiority of the RBF kernel in comparison to the
HM and LLE methods.

As we analyzed our experimental results, we noticed other interesting patterns
that we could not verify given the lack of experimental evidence. We propose
an investigation concerning the validity of these observations as future research.
Our empirical observations are as follows:

– Although RMGT achieved satisfactory results on most data sets, it did not
perform well on the USPS data set. As USPS is an imbalanced dataset, a
possible explanation is that RMGT is not effective on data sets with imba-
lanced labels;

– Maier et al. [10] have pointed out that the mutKNN graph should be chosen
if one is only interested in identifying the “most significant” cluster. Based
on this statement, we suppose that mutKNN is the best graph when we are
dealing with data sets with imbalanced labels because it may identify the
“most significant” class (the minority class in this case). This hypothesis is
supported by the fact that, in Table 1, mutKNN achieved better classifica-
tion performance than symKNN and symFKNN for all combinations of SSL
algorithm and weighted matrix generation method on the USPS data set;

– Table 1 shows that RMGT achieved the best overall classification perfor-
mance in 4 out of 6 data sets. This surprising classification performance
may be due to the addition of the normalization constraints F1c = 1n and
F�1n = nω in the optimization framework. It would be interesting to inves-
tigate if other SSL algorithms’ classification performances could be improved
if these constraints were included in their optimization framework;

– In Fig. 4, we observed that the “optimal region” occurs only when γA = γI .
Since this behavior occurred for all graphs (the other results are not shown
here due to lack of space), we ask if this setting should be chosen for text
classification tasks when using LapRLS.
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