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The problem of sound propagation near a lined wall taking into account mean shear flow effects and
viscous and thermal dissipation is investigated. The method of composite expansion is used to
separate the inviscid part, in the core of the flow, from the boundary layer part, near the wall. Two
diffusion equations for the shear stress and the heat flux are obtained in the boundary layer. The
matching of the solutions of these equations with the inviscid part leads to a modified specific
acoustic admittance in the core flow. Depending on the ratio of the acoustic and stationary boundary
layer thicknesses, the kinematic wall condition changes gradually from continuity of normal
acoustic displacement to continuity of normal acoustic mass velocity. This wall condition can be
applied in dissipative silencers and in aircraft engine-duct system20@L Acoustical Society of
America. [DOI: 10.1121/1.1331678

PACS numbers: 43.20.Mv, 43.28.PyCS]

I. INTRODUCTION problem reduces to solving the equations of lossless acous-
tics with mean parallel shear flow and mean transverse tem-
In this paper, the problem of acoustic propagation in aperature gradient. The effects of the boundary layer can be
duct with parallel shear flow and transverse temperature graaken into account by a modified admittance of the wall. This
dient is investigated. The aim is to take into account viscomodified admittance is found in Sec. IV by solving two dif-
thermal effects in the boundary layer near a lined wall. Theseysion equationgfor the shear stress and the heat ¥luxthe

effects are accounted for by modifying the boundary condiboundary layer. In Sec. V the analysis is extended to the case

tion at the duct wall. The effects of temperature and velocityof rough lined walls.

gradients as well as thoses caused by dissipation are concen-

trated in a thin layer near the wall. In the core of the flow, the

fluid is considered to be an ideal gas and the velocity and thé. GENERAL EQUATIONS

tgmperature vary pnly SI.OWW' Finally, a new boundary con- The situation for the sound propagation being investi-

dition on the wall |s_8obta|ned for the sound in the core ﬂow'gated is shown in Fig. 1, where the lined wall lies in the
.Sev_era.l authofs®have addressgd thg prgblgm_ of pr()pa'planey* =0 of a coordinate systenxt,y*,z*). The gen-

gation in lined flow ducts for adiabatic, inviscid sound Fal equations governing the linear oscillations of a gas with

propagation. In these cases, they have assumed continuity QM hean flow are

displacement at the wall since it seems to be the more

appropriate. Nayfeh'® has studied how viscothermal effects dp*

affect the impedance for the case where the acoustic boungit*

ary layer is much thinner than the mean flow boundary layer. . 1

In this paper, by taking into account both V|s.cothermal e.f—‘?L* (VE-V)V¥ + (V- V)VE + — Vp* +(v’5~V)v§p—*

fects near the wall and the effects of large stationary velocityt Po Po

and temperature gradients, it is shown that the effective .

boundary condition can be continuity of normal acoustic dis-  _ B_ (1b)

placement, or continuity of normal acoustic velocity, or a P

mixed condition depending on the different length scales. *

(acoustic and mean flow boundary layer thickness€his — Ve VS VL VS =,

wall condition can be applied in lined flow ducts such as? PoTo

dissipative silencers and aircraft engine-duct systems. * —ck2p* +his, (1d)
The equations of lossy fluid mechanics linearized abouP

a mean state are presented in Sec. Il. These equations aw@ere the terms without subscript refer to fluctuating com-

simplified by making classical boundary layer assumptiongonents and the subscript O refers to mean valdes the

for a flow near a plane wall and scaled to obtain dimensionvelocity, p* is the pressurep* is the density,s* is the

less equations. An asymptotic representation of these equantropy.T* is the temperature; is the specific heat of the

+pgV-v¥ V5 - Vp*+v*-Vp§+p*V-v§=0, (13

*

(19

tions is then given in Sec. lIl. In the core of the flow, the gas at constant pressuig, is the adiabatic sound speed
Ipg
dPresent address: “Silencers: Consulting and Engineering,” Dorotheenstr. Co (y )= 9 ) (23)
76, Hamburg D-22301, Germany. Po s
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| Mo whereQ)=1-Kkug andé=—v/i() is the acoustical displace-
lined wall ment in they direction, 5,= (2u,0* /p¥c2)Y? is the dimen-

sionless acoustic boundary layer thicknggs= pap,, is the
density at the wall, ang., is the dynamic viscosity of the
fluid. For simplicity the dynamic viscosity and the thermal

FIG. 1. Schematic description of the geometry.

and, for an ideal gas conductivity are assumed to be constant and the bulk viscos-
apE pe 032 ity is assumed to be equal to zero; then, the dissipation terms
hS(y*)Z( (75*) = (2b) By, By andQ are given by
0 *
. ° _ d?u 1 dv 4
The sources of forceB* and of heatQ* include all the BX=F+ §'kd_+ §k2u, (6a)
dissipation terms, and expressions for these are given in the y y
following. 4d% 1 du
Thex axis is chosen to be aligned with the mean veloc-  By=3 d_yz+ 31K ay~ k%, (6b)
ity. Gradients ofvg , pg, S5, andpg in thex andz direc-
tions are considered negligible in comparison with their gra- 1 (d?T ) dug(du
dients in they direction normal to the wallassuming a fully Q= F(W_k T|+2(y=1 dy d_y+'kv . (60

developed stationary flowFurthermore, the stationary pres-
sure is assumed constant in thelirection dpg/dy* =0).
This last assumption leads to

Whereazzc; Mal kg is the Prandtl numberk, is the ther-
mal conductivity. By retaining only the two variablésand
p, Egs.(5) lead to

dsg ¢, dpg ¢ dTp

= o T T 3 d cok |2 52 k
U L
and tod(p&/ci?)/dy* =0. , o
For simplicity the sound is assumed to propagate only in @_ (g) _ % B (7b)
the x direction (an extension to propagation in bathand z dy \cq 2 Y

directions is straightforwayd Then, by introducing dimen-

ionl tities. th iabl b it foll ~ The propagation equations, Eq§), must be applied
Sloniess quantiies, the variables may be written as Tollows, iy, boundary conditions at the wall. The most appropriate

X*=xclw*, y*=yc,/o*, t*=tlo*, c§j=c,co(y), choice to express the boundary conditions would be to use
. . the compliance of the wall which links pressure and normal
Ug =Calo(y), U*=cCau(y)E, displacement. But, the liner characteristics are more usually
vE=0, v*=cu(y)E, given in terms of the wall admittance. Thus, the boundary

N 2 N 2 condition at the wall is written
Po =PaCaPo,  P* =paCsP(Y)E, @ *(0) 0)
Cu v
T5=TaTo(y), T*=T.T(Y)E, _Poe 2 8
: : HOBU ©

po=papo(y), p*=pap(Y)E,

. . whereY is the specific acoustic admittance of the wall.
SO:CpSO(y)! ) :CpS(Y)E,

where the subscrip refers to dimensional properties in the

core of the flow(for instance in the midling o* is the | ASYMPTOTIC REPRESENTATION

frequency,c, is the sound speed:iz c;(y—l)Ta), u and

v are the velocity components in tikreandy directions, and For simplicity, it is helpful to separate the problem into

E=exp(io*t* +ik*x*)=exp(—it+ikx) where k=k*c,/  two regions:(1) the core of the flow, where the dissipation

w* is the wave number. effects can be neglecte®) a thin layer near the wall, within
Using expression&l) with the above assumptions, Egs. which the viscous and thermal dissipation effects are con-

(1) are transformed to fined.
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Thus, the problem is amenable to asymptotic analysisWithout any dissipation, the kinematic condition in the case
With the method of composite expansidhshe solution for  of a vanishing stationary boundary thickness is continuity of
any quantityq(y), whereq=u,v,&,p,T,p is expressed as acoustic normal displacemehtUsing the above notation,
g=0qc(y) +ap({) with {=y/5,. The second term with sub- this means tha,(0)=0. Equation(14) shows that this con-
script b (representing boundary layer terms near the wall dition does not hold when there is dissipation, and that an
=0) tends to zero ag— . The gradients of mean velocity added normal displacemeg(0) is introduced by the vis-
and temperature are assumed to be non-negligible in theothermal effects® The expression for the added displace-
boundary layer. Then, it is convenient to express them, rement may be simplified ifA@,=0,—0,, [where 0,

spectively, asi,=Mq(y) +Mp({) andT,=0.(y) +0O4(2), =0,0) and®,=0.(0)+04(0) is the wall temperatutte
where the terms with subscriptaccount for the significant andM,=M_(0) are small compared to 1. To the first order
gradients near the wall. in the parameters!, andA®,, the added displacement may

The first terms(inviscid terms in the core of the flow be written
can be obtained from Eq$5) without dissipation and with- |
out large gradients near the wall. In the core of the flow, Egs. ¢, (0)=
(7) lead to the convected wave equation for the outer pres-
surepe The added displacemeag(O), which needs to be included

d [{coc)2dp, Cock| 2 in the boundary conditions, is defined only in terms of the

v (Q—) d_}+ 1—(9—) } =0 (9) heat fluxq=dT,/d{ and the shear stress=du,/d{ at the

y ¢ y ¢ wall. How these are determined is shown in the next section.
whereQ,=1—-kM,. and C§C=®C. This equation may also

be writtert®

S ldTb

(0) k (0) (15

IV. DETERMINATION OF THE ADDED

d’p, (1 dO, 2k dM, dpc 02 o 20 10
o2 le, dy "o, dy d—y 0, Pc=0, (100  DISPLACEMENT
which is the classical Pridmore-Browhequation with tem- ~ The diffusion of momentum and heat has to be deter-
perature gradient. An effective admittance could be definednined in the boundary layer to find the kinematic condition
for the outer region by which can be applied. The momentum equation inxto-
0) rection Eq.(5b) becomes, to the first order M, andA®,
Uc
= , 11 d?u 2i dM
" PO) sznLZiub ~2u0)- 5 g —P ¢ (0)+2i kp°( )

while the relationship between the normal velocity and the (16)
normal pressure gradient given by Efc) can be simplified . ] .
asiQw.=dp./dy. This equation may be transformed into an expression for the

In the boundary layer, taking the lim&,—0, Egs.(7)  Shear stress=du,/d{ which is involved in the added dis-
reduce to placement

2

dé, Q, k d T+2_ B df

b b, - ——+2it=—, (17

dz - 2ipe| T, T 0B (123 d¢ d¢

dp, where

o (12 2i dM 0

dé f(§)=———b§C(0)+2ikp°( ). (18)
where ba d¢ w

d2u The boundary conditions associated with ELy) are 7—0
Bbzvzb, (13a8  when {—« and u(0)=uu(0)+uc(0)=0, which can be
transformed using Eq16) into d7/d{(0)=f(0).
and The shear waves described by E#j7) is excited in two
42T dM. du ways. In the first way, a shear wave is excited by the acous-
b b Uy

— +2(y—1) ) (13p  tics in the core of flowi.e., the second term in the definition
" o? dg d¢ d¢ of f(¢)]. This wave is the classical one found in dynamic
The solution of Eq.(12b) (which tends to zero ag ~ boundary layers near a rigid wall. The second Wesich

—) is p,=0. Thus, the pressure is constant across th&orresponds to the first term in the definitionf¢t)] is very

boundary |ayer to the first order lﬁh weak when the wall is r|g|C[§(0)=O] It Corresponds to
Integration of Eq.(123 leads to waves induced by changes to the stationary velocity and by
the normal displacement near the wall.
&p(0)=— afw—. Pw Equation(17), subject to the boundary conditions, leads
0 2ipon(9) () to
Qp kB _ J'
[c<0>+®b<§> tagora,0/% @ 17T 1057 8¢ (19
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wherer;=exd (—1+i){] is the solution of the homogeneous 1 y y i
part of Eq.(17) vanishing at infinity. Then, the shear stress at /,««;‘,'5/'
the wall is 0.8t 7
p(0) 2i real part /7
7(0)=(1-)k ==+ = Met(0), (204 0.6¢ N
pW a /'
B, i
where 0.4F i/
= dM b X // =

M= fo g7 exl(~ 1+ (200 02k y =
is the effective mean velocity involved in the added displace- 0 il .
ment. This effective velocity may be sééms an average of 102 1071 10°
the mean velocity over the boundary layer weightedy 3"
and can be writtetM o= 8, My, whereMy=M_(0) with O ®
<|p,|=1.

In the same way, the conservation of enefgy. (5d)] 4
leads to a value for the heat flge=dT,/d{ at the wall “Al

3A

1 - Pc(0) = 2i Al

R2U0= "= (y= D= =4 - ABeiée(0), (213 :
where uo(y)

A® _de 1+i)o¢]d 21b

eff ™ o d¢Z exd( I)Ug] ¢ ( ) FIG. 2. (a) Variation of the effective velocity divided by the core velocity,

. . . B, . as a function of the ratio of the acoustic and stationary boundary layer
is the effective difference between mean temperature anglicknessess*, for three mean velocity profiles. Solid line: linear; dashed

wall temperature involved in the added displacement and caline: quadratic, and dash-dot line: exponent{a). Mean velocity profiles.
be written A® 4=BA0,, where A®;=0,—0, with 0

<|Bd=1. laver thi i i i
. . yer thicknesssee Fig. 2b)]. The ratio of the acoustic over
The added displacement may be written the stationary boundary layer thickness is calléd
(1+1)6a(y—=1 , =5,/A.
&p(0)= " 2pu |00, +k*|pc(0) (1) For the first profile, the inner mean velocity is linear
AO o Mp({)=—My(1—6*¢) for 0<¢<1/5*,
~ | kMerr+ ®—W) £(0), 2 My(0)=0 for £>1/5*,
which leads to a relation giving the modified admittance  and in this case
ABg oy, =iy ) _(1+i)o” 1 —1+i of
1_(1_:8v)kM0+®_W:8t YC—Y+2—pW T+k Oy B,= 2 ex 5 (24
23 (2) The second profile is quadratic
It can be seen from Ed23) that the effect of the clas- _ 2 e
sical shear and thermal wavéaduced by the acoustics in Mp(§)=—Mo(1=6%£/2)° for 0=(=2/5",
the core of the flowwhich leads to the second term on the My({)=0 for {>2/6*,
right-hand side of23) is weak(of the orders,). SinceY is ) ;
much larger thard, for a typical lined wall, this term is only @nd in this case
?mportant for a hard wall and will be neglected in frontof i 5* 2(—1+i) 5* .
in what follows. ,13,,:7 ex — -1 7—(—1+|) . (25

When B, and 8;—0, Eq.(23) is equivalent to the con-
tinuity of acoustic normal displacement across the boundary (3) The last profile is exponential, i.e.My({)
layer: £,(0)=0 or Y,=Y/(1-kMg). WhenB, andB;—1, =—Mgexp(-5¢), and in this casg,=5*/(5* +1—i).

Eq. (23) is transformed in a condition of conservation of the The real and imaginary parts @, as a function ofs*
normal mass velocity across the boundary layerare plotted in Fig. &) for the three profiles. When the acous-
pc(0)v(0)=pyw(0) or OyY.=0,Y. tic boundary layer thicknessi,, is small compared to the

This behavior is illustrated here for three simplified stationary boundary layer thickneds(i.e., 5* <1), B8, goes
mean velocity profiles with a constant temperature. The outeto zero. In this case, continuity of displacement can be ap-
mean velocity is taken as constant, i.®Bl.(y)=Mgy. The plied across the boundary layer. On the other hand, when
slope at the origin is the same for all three profiles:5*>1, B, goes to 1, which means that continuity of velocity
duy/dy(0)=My/A where A is the stationary boundary is applicable across the boundary layer. For a given station-
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y mean 1 T . . s
velocity
up sk
\ real part
0.6+ P
B,
0.4}
imaginary part
0.2t e 4
- i o 107" 10° d 10
I/\/V\W’\»M/"\/\/VV\ MAAMUIY MVMOWN"U\WVL] HE 5
rough lined wall FIG. 4. Variation of the effective velocity divided by the core velocjsy,,
) o as a function of the ratio of the acoustic and stationary boundary layer
FIG. 3. Schematic description of the rough wall geometry. thickness,s*, for a rough wall with an exponential mean velocity profile.

Solid line: rough wall; dashed line: smooth wdlame as Fig. @)].

ary boundary layer thicknesd, continuity of displacement

applies at high frequencies while continuity of mass velocityroughness thickness Assuming that the axial acoustic ve-

applies at low frequencies. For a given frequency, continuityocity is equal to 0 ay=0, Eq.(23) then becomes

of displacement applies at low Mach numigee., giving a _ AO .

thick .statlonary boqndary Iay)erwhllle contmu!ty Qf mass (1_(1_/3u)k|\/|o+ = aﬁt)Yc=Y- (26)

velocity applies at high Mach numbére., resulting in a thin w

stationary boundary layerThese findings are in qualitative where

agreement with the experimental observations of Ingard and

Singhal's 5 L
gha IBU__

It should be noted that, when both acoustic and station- Mo

ary boundary layer thicknesses are of the same oider and

=3J,, B, and B; are complex, so they not only change the 4o

value but also the character of the admittance. ~ 1 *dYy .

It may be seen from Eq20a that the most important ﬂ‘_A_G)O(A@l+ jo d—gexr[(—lﬂ)o-g]dg), 279
part of the acoustic shear stress comes from the transfer, b&/ PR )
the normal fluctuating displacement, of axial momentum>©1=©w—©1 is the difference between the wall tempera-
from the stationary flow into the lined waf this effect be- '€ and the temperature yt=0.

ing induced by viscosity. The parametg, controls this The effect of roughness is illustrated for the case of an
transfer fromg, =0 (no tra.nsfe)to B,=1 (full transfep. B exponential velocity profile with a slip velocity, in the case

can be seen from Eq20b) to be the ratio of the mean ve- of a constant temperature. The stationary velocity profile

locity in the layer where the shear wave is significant over2K€S th_e formM,(¢) = = (Mo—Mj)exp(~5*¢) and in this
the core mean velocity. The same reasoning holds for th&§25€8y= (" +(1=)M1/Mg)/(&" +1-1i).

Ml+j0mdd—h?)exp{(—l+i)§]d§), (27a

thermal flux and the parametgx 14 The real and imaginary parts ﬁ, as a function ofs*
are plotted in Fig. 4 foM;=0.5M. It can be seen that
V. ADMITTANCE OF A ROUGH LINED WALL continuity of normal displacemenf%zO) is never attained

. ) for a rough wall(solid line in Fig. 4. When the acoustic

The mean velochy proﬂles_ of t_urbL_JIent flow over a boundary layer thickness, is small compared to the station-
rough wall is schemaucally d_eppted in F|g. 3. Co_mpared_ toary boundary layer thicknessA (ie., &*<1), B,
a smooth wall profile, the main dlffer(_ance is the slip vequtyHMl/MO’ and the boundary condition isY.=Y/(1
M, at th(_a ou_ter bouqdary of the equivalent _roughness thICk-_le) instead of Y,=Y/(1—kM,) for the case of a
ness. This slip velocity depends on the equivalent roughne
and on the core velocity.

Taking mtq account the gbove analy5|s'of.the VISCOUS |~ 3 NCLUSIONS
effects, the axial momentum linked to the slipping velocity
M is transferred into the roughness of the wall even if the  The effective acoustic admittance of a liner, taking ac-
acoustic boundary layer thickness is small compared.to count of viscothermal effects, can be computed for the case
Then, the continuity of mass velocity must be applied over avhere acoustic and stationary boundary layer thicknesses are
distance equal to the roughness of the WalThis can be small compared to the wavelength. The main effect of vis-
written asp,v(0)=—i(1—-kM;)p;1£(0)=p, Y p(0), where cosity is the transfer of axial momentum and heat flux of the
p1 andp,, are the density corresponding, respectively, to thestationary flow into the lined wall. The effective admittance
y=0 and to the wall temperature. The origin of the coordi-is given as a function of two coefficieng3, and 8; which
natesy and{ is taken at the outer boundary of the equivalentmainly depend on the ratio of the acoustic and stationary

Sooth wall(i.e., continuity of displacement
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