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The problem of sound propagation near a lined wall taking into account mean shear flow effects and
viscous and thermal dissipation is investigated. The method of composite expansion is used to
separate the inviscid part, in the core of the flow, from the boundary layer part, near the wall. Two
diffusion equations for the shear stress and the heat flux are obtained in the boundary layer. The
matching of the solutions of these equations with the inviscid part leads to a modified specific
acoustic admittance in the core flow. Depending on the ratio of the acoustic and stationary boundary
layer thicknesses, the kinematic wall condition changes gradually from continuity of normal
acoustic displacement to continuity of normal acoustic mass velocity. This wall condition can be
applied in dissipative silencers and in aircraft engine-duct systems. ©2001 Acoustical Society of
America. @DOI: 10.1121/1.1331678#
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I. INTRODUCTION

In this paper, the problem of acoustic propagation in
duct with parallel shear flow and transverse temperature
dient is investigated. The aim is to take into account vis
thermal effects in the boundary layer near a lined wall. Th
effects are accounted for by modifying the boundary con
tion at the duct wall. The effects of temperature and veloc
gradients as well as thoses caused by dissipation are con
trated in a thin layer near the wall. In the core of the flow, t
fluid is considered to be an ideal gas and the velocity and
temperature vary only slowly. Finally, a new boundary co
dition on the wall is obtained for the sound in the core flo

Several authors1–8 have addressed the problem of prop
gation in lined flow ducts for adiabatic, inviscid soun
propagation. In these cases, they have assumed continu
displacement at the wall since it seems to be the m
appropriate.9 Nayfeh10 has studied how viscothermal effec
affect the impedance for the case where the acoustic bo
ary layer is much thinner than the mean flow boundary lay
In this paper, by taking into account both viscothermal
fects near the wall and the effects of large stationary velo
and temperature gradients, it is shown that the effec
boundary condition can be continuity of normal acoustic d
placement, or continuity of normal acoustic velocity, or
mixed condition depending on the different length sca
~acoustic and mean flow boundary layer thicknesses!. This
wall condition can be applied in lined flow ducts such
dissipative silencers and aircraft engine-duct systems.

The equations of lossy fluid mechanics linearized ab
a mean state are presented in Sec. II. These equation
simplified by making classical boundary layer assumptio
for a flow near a plane wall and scaled to obtain dimensi
less equations. An asymptotic representation of these e
tions is then given in Sec. III. In the core of the flow, th

a!Present address: ‘‘Silencers: Consulting and Engineering,’’ Dorothee
76, Hamburg D-22301, Germany.
59 J. Acoust. Soc. Am. 109 (1), January 2001 0001-4966/2001/
a
a-
-
e
i-
y
en-

e
-
.
-

of
re

d-
r.
-
y
e
-

s

t
are
s
-
a-

problem reduces to solving the equations of lossless ac
tics with mean parallel shear flow and mean transverse t
perature gradient. The effects of the boundary layer can
taken into account by a modified admittance of the wall. T
modified admittance is found in Sec. IV by solving two di
fusion equations~for the shear stress and the heat flux! in the
boundary layer. In Sec. V the analysis is extended to the c
of rough lined walls.

II. GENERAL EQUATIONS

The situation for the sound propagation being inves
gated is shown in Fig. 1, where the lined wall lies in t
planey* 50 of a coordinate system (x* ,y* ,z* ). The gen-
eral equations governing the linear oscillations of a gas w
a mean flow are

]r*

]t*
1r0*“•v* 1v0* •“r* 1v* •“r0* 1r*“•v0* 50, ~1a!

]v*

]t*
1~v0* •“ !v* 1~v* •“ !v0* 1

1

r0*
“p* 1~v0* •“ !v0*

r*

r0*

5
B*

r0*
, ~1b!

]s*

]t*
1v0* •“s* 1v* •“s0* 5

Q*

r0* T0*
, ~1c!

p* 5c0*
2r* 1h0* s* , ~1d!

where the terms without subscript refer to fluctuating co
ponents and the subscript 0 refers to mean valuesv* is the
velocity, p* is the pressure,r* is the density,s* is the
entropy.T* is the temperature,cp* is the specific heat of the
gas at constant pressure,c0* is the adiabatic sound speed

c0*
2~y* !5S ]p0*

]r0*
D

s

, ~2a!tr.
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h0* ~y* !5S ]p0*

]s0*
D

r*

5
r0* c0*

2

cp*
. ~2b!

The sources of forcesB* and of heatQ* include all the
dissipation terms, and expressions for these are given in
following.

The x axis is chosen to be aligned with the mean velo
ity. Gradients ofv0* , r0* , s0* , andp0* in the x andz direc-
tions are considered negligible in comparison with their g
dients in they direction normal to the wall~assuming a fully
developed stationary flow!. Furthermore, the stationary pre
sure is assumed constant in they direction (dp0* /dy* 50).
This last assumption leads to

ds0*

dy*
52

cp*

r0*

dr0*

dy*
5

cp*

T0*

dT0*

dy*
, ~3!

and tod(r0* /c0*
2)/dy* 50.

For simplicity the sound is assumed to propagate only
the x direction ~an extension to propagation in bothx andz
directions is straightforward!. Then, by introducing dimen
sionless quantities, the variables may be written as follow

x* 5xca /v* , y* 5yca /v* , t* 5t/v* , c0* 5cac0~y!,

u0* 5cau0~y!, u* 5cau~y!E,

v0* 50, v* 5cav~y!E,

p0* 5raca
2p0, p* 5raca

2p~y!E,

T0* 5TaT0~y!, T* 5TaT~y!E,

r0* 5rar0~y!, r* 5rar~y!E,

s0* 5cp* s0~y!, s* 5cp* s~y!E,

~4!

where the subscripta refers to dimensional properties in th
core of the flow~for instance in the midline!, v* is the
frequency,ca is the sound speed (ca

25cp* (g21)Ta), u and
v are the velocity components in thex andy directions, and
E5exp(2iv* t*1ik*x* )5exp(2it1ikx) where k5k* ca /
v* is the wave number.

Using expressions~4! with the above assumptions, Eq
~1! are transformed to

FIG. 1. Schematic description of the geometry.
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2 iVr1r0S iku2 iV
dj

dy
1 ik

du0

dy
j D2 iV

dr0

dy
j50, ~5a!

2 iVu2 iV
du0

dy
j1

ikp

r0
5

da
2

2

rw

r0
Bx , ~5b!

2 iVv1
1

r0

dp

dy
5

da
2

2

rw

r0
By , ~5c!

2 iVs1 iV
1

r0

dr0

dy
j5

da
2

2

rw

r0

Q

T0
, ~5d!

p5c0
2r1s, ~5e!

whereV512ku0 andj52v/ iV is the acoustical displace
ment in they direction,da5(2mav* /rw* ca

2)1/2 is the dimen-
sionless acoustic boundary layer thickness,rw* 5rarw is the
density at the wall, andma is the dynamic viscosity of the
fluid. For simplicity the dynamic viscosity and the therm
conductivity are assumed to be constant and the bulk vis
ity is assumed to be equal to zero; then, the dissipation te
Bx , By andQ are given by

Bx5
d2u

dy2 1
1

3
ik

dv
dy

1
4

3
k2u, ~6a!

By5
4

3

d2v
dy2 1

1

3
ik

du

dy
2k2v, ~6b!

Q5
1

s2 S d2T

dy22k2TD12~g21!
du0

dy S du

dy
1 ikv D , ~6c!

wheres25cp* ma /ka is the Prandtl number;ka is the ther-
mal conductivity. By retaining only the two variablesj and
p, Eqs.~5! lead to

dj

dy
1F12S c0k

V D 2Gp52
rwda

2

2ir0V F Q

T0
1

k

V
BxG , ~7a!

dp

dy
2S V

c0
D 2

j5
da

2

2
By . ~7b!

The propagation equations, Eqs.~7!, must be applied
with boundary conditions at the wall. The most appropria
choice to express the boundary conditions would be to
the compliance of the wall which links pressure and norm
displacement. But, the liner characteristics are more usu
given in terms of the wall admittance. Thus, the bound
condition at the wall is written

Y5
r0cav* ~0!

p* ~0!
5

v~0!

p~0!
, ~8!

whereY is the specific acoustic admittance of the wall.

III. ASYMPTOTIC REPRESENTATION

For simplicity, it is helpful to separate the problem in
two regions:~1! the core of the flow, where the dissipatio
effects can be neglected;~2! a thin layer near the wall, within
which the viscous and thermal dissipation effects are c
fined.
60Aurégan et al.: Boundary conditions with flow
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Thus, the problem is amenable to asymptotic analy
With the method of composite expansions,11 the solution for
any quantityq(y), whereq5u,v,j,p,T,r is expressed as
q5qc(y)1qb(z) with z5y/da . The second term with sub
script b ~representing boundary layer terms near the way
50! tends to zero asz→`. The gradients of mean velocit
and temperature are assumed to be non-negligible in
boundary layer. Then, it is convenient to express them,
spectively, asua5Mc(y)1Mb(z) andTo5Qc(y)1Qb(z),
where the terms with subscriptb account for the significan
gradients near the wall.

The first terms~inviscid terms in the core of the flow!
can be obtained from Eqs.~5! without dissipation and with-
out large gradients near the wall. In the core of the flow, E
~7! lead to the convected wave equation for the outer p
surepc

d

dy F S c0c

Vc
D 2 dpc

dy G1F12S c0ck

Vc
D 2Gpc50, ~9!

whereVc512kMc and c0c
2 5Qc . This equation may also

be written10

d2pc

dy2 1S 1

Qc

dQc

dy
2

2k

Vc

dMc

dy D dpc

dy
1S Vc

2

Qc
2k2D pc50, ~10!

which is the classical Pridmore-Brown12 equation with tem-
perature gradient. An effective admittance could be defi
for the outer region by

Yc5
vc~0!

pc~0!
, ~11!

while the relationship between the normal velocity and
normal pressure gradient given by Eq.~5c! can be simplified
as iVcvc5dpc /dy.

In the boundary layer, taking the limitda→0, Eqs.~7!
reduce to

djb

dz
52

rwda

2ir0V FQb

T0
1

k

V
BbG , ~12a!

dpb

dz
50, ~12b!

where

Bb5
d2ub

dz2 , ~13a!

and

Qb5
1

s2

d2Tb

dz2 12~g21!
dMb

dz

dub

dz
. ~13b!

The solution of Eq.~12b! ~which tends to zero asz
→`! is pb50. Thus, the pressure is constant across
boundary layer to the first order inda .

Integration of Eq.~12a! leads to

jb~0!52daE
0

` rw

2ir0b~z!Vb~z!

3F Qb

Qc~0!1Qb~z!
1

kBb

Vc~0!1Vb~z!Gdz. ~14!
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Without any dissipation, the kinematic condition in the ca
of a vanishing stationary boundary thickness is continuity
acoustic normal displacement.9 Using the above notation
this means thatjb(0)50. Equation~14! shows that this con-
dition does not hold when there is dissipation, and that
added normal displacementjb(0) is introduced by the vis-
cothermal effects.13 The expression for the added displac
ment may be simplified ifDQ05Q02Qw @where Q0

5Qc(0) andQw5Qc(0)1Qb(0) is the wall temperature#
andM05Mc(0) are small compared to 1. To the first ord
in the parametersM0 andDQ0 , the added displacement ma
be written

jb~0!52
idn

2 S 1

Qws2

dTb

dz
~0!1k

dub

dz
~0! D . ~15!

The added displacementjb(0), which needs to be included
in the boundary conditions, is defined only in terms of t
heat fluxq5dTb /dz and the shear stresst5dub /dz at the
wall. How these are determined is shown in the next sect

IV. DETERMINATION OF THE ADDED
DISPLACEMENT

The diffusion of momentum and heat has to be det
mined in the boundary layer to find the kinematic conditi
which can be applied. The momentum equation in thex di-
rection Eq.~5b! becomes, to the first order inM0 andDQ0

d2ub

dz2 12iub522iuc~0!2
2i

da

dMb

dz
jc~0!12ik

pc~0!

rw
.

~16!

This equation may be transformed into an expression for
shear stresst5dub /dz which is involved in the added dis
placement

d2t

dz2 12i t5
d f

dz
, ~17!

where

f ~z!52
2i

da

dMb

dz
jc~0!12ik

pc~0!

rw
. ~18!

The boundary conditions associated with Eq.~17! aret→0
when z→` and u(0)5ub(0)1uc(0)50, which can be
transformed using Eq.~16! into dt/dz(0)5 f (0).

The shear waves described by Eq.~17! is excited in two
ways. In the first way, a shear wave is excited by the aco
tics in the core of flow@i.e., the second term in the definitio
of f (z)#. This wave is the classical one found in dynam
boundary layers near a rigid wall. The second way@which
corresponds to the first term in the definition off (z)# is very
weak when the wall is rigid@j(0)50#. It corresponds to
waves induced by changes to the stationary velocity and
the normal displacement near the wall.

Equation~17!, subject to the boundary conditions, lea
to

t~0!52
1

t18~0!
E

0

`

f ~z!
dt1

dz
dz, ~19!
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wheret15exp@(211i)z# is the solution of the homogeneou
part of Eq.~17! vanishing at infinity. Then, the shear stress
the wall is

t~0!5~12 i !k
pc~0!

rw
1

2i

da
Meffjc~0!, ~20a!

where

Meff5E
0

` dMb

dz
exp@~211 i !z#dz ~20b!

is the effective mean velocity involved in the added displa
ment. This effective velocity may be seen14 as an average o
the mean velocity over the boundary layer weighted byt1

and can be writtenMeff5bv M0, whereM05Mc(0) with 0
<ubvu<1.

In the same way, the conservation of energy@Eq. ~5d!#
leads to a value for the heat fluxq5dTb /dz at the wall

1

s2 q~0!5
12 i

s
~g21!

pc~0!

rw
1

2i

da
DQeffjc~0!, ~21a!

where

DQeff5E
0

` dQb

dz
exp@~211 i !sz#dz ~21b!

is the effective difference between mean temperature
wall temperature involved in the added displacement and
be written DQeff5btDQ0, where DQ05Q02Qw with 0
<ub tu<1.

The added displacement may be written

jb~0!5
~11 i !da

2rw
S g21

sQw
1k2D pc~0!

2S kMeff1
DQeff

Qw
D jc~0!, ~22!

which leads to a relation giving the modified admittance

S 12~12bv!kM01
DQ0

Qw
b tDYc5Y1

12 i

2rw
S g21

s
1k2D da .

~23!

It can be seen from Eq.~23! that the effect of the clas
sical shear and thermal waves~induced by the acoustics i
the core of the flow! which leads to the second term on th
right-hand side of~23! is weak~of the orderda!. SinceY is
much larger thanda for a typical lined wall, this term is only
important for a hard wall and will be neglected in front ofY
in what follows.

Whenbv andb t→0, Eq. ~23! is equivalent to the con
tinuity of acoustic normal displacement across the bound
layer: jb(0)50 or Yc5Y/(12kM0). Whenbv andb t→1,
Eq. ~23! is transformed in a condition of conservation of t
normal mass velocity across the boundary lay
rc(0)vc(0)5rwv(0) or Q0Yc5QwY.

This behavior is illustrated here for three simplifie
mean velocity profiles with a constant temperature. The o
mean velocity is taken as constant, i.e.,Mc(y)5M0 . The
slope at the origin is the same for all three profile
du0 /dy(0)5M0 /D where D is the stationary boundar
62 J. Acoust. Soc. Am., Vol. 109, No. 1, January 2001
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layer thickness@see Fig. 2~b!#. The ratio of the acoustic ove
the stationary boundary layer thickness is calledd*
5da /D.

~1! For the first profile, the inner mean velocity is line

Mb~z!52M0~12d* z! for 0<z<1/d* ,

Mb~z!50 for z.1/d* ,

and in this case

bv5
~11 i !d*

2 F12expS 211 i

d* D G . ~24!

~2! The second profile is quadratic

Mb~z!52M0~12d* z/2!2 for 0<z<2/d* ,

Mb~z!50 for z.2/d* ,

and in this case

bv5
id*

2 F S expS 2~211 i !

d* D21D d*

2
2~211 i !G . ~25!

~3! The last profile is exponential, i.e.,Mb(z)
52M0 exp(2d*z), and in this casebv5d* /(d* 112 i ).

The real and imaginary parts ofbv as a function ofd*
are plotted in Fig. 2~a! for the three profiles. When the acou
tic boundary layer thickness,da , is small compared to the
stationary boundary layer thicknessD ~i.e., d* !1!, bv goes
to zero. In this case, continuity of displacement can be
plied across the boundary layer. On the other hand, w
d* @1, bv goes to 1, which means that continuity of veloci
is applicable across the boundary layer. For a given stat

FIG. 2. ~a! Variation of the effective velocity divided by the core velocity
bv , as a function of the ratio of the acoustic and stationary boundary la
thicknesses,d* , for three mean velocity profiles. Solid line: linear; dash
line: quadratic, and dash-dot line: exponential.~b! Mean velocity profiles.
62Aurégan et al.: Boundary conditions with flow
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ary boundary layer thickness,D, continuity of displacemen
applies at high frequencies while continuity of mass veloc
applies at low frequencies. For a given frequency, continu
of displacement applies at low Mach number~i.e., giving a
thick stationary boundary layer!, while continuity of mass
velocity applies at high Mach number~i.e., resulting in a thin
stationary boundary layer!. These findings are in qualitativ
agreement with the experimental observations of Ingard
Singhal.15

It should be noted that, when both acoustic and stati
ary boundary layer thicknesses are of the same ordeD
.da , bv and b t are complex, so they not only change t
value but also the character of the admittance.

It may be seen from Eq.~20a! that the most importan
part of the acoustic shear stress comes from the transfe
the normal fluctuating displacement, of axial momentu
from the stationary flow into the lined wall,16 this effect be-
ing induced by viscosity. The parameterbv controls this
transfer frombv50 ~no transfer! to bv51 ~full transfer!. bv
can be seen from Eq.~20b! to be the ratio of the mean ve
locity in the layer where the shear wave is significant o
the core mean velocity. The same reasoning holds for
thermal flux and the parameterb t .14

V. ADMITTANCE OF A ROUGH LINED WALL

The mean velocity profiles of turbulent flow over
rough wall is schematically depicted in Fig. 3. Compared
a smooth wall profile, the main difference is the slip veloc
M1 at the outer boundary of the equivalent roughness th
ness. This slip velocity depends on the equivalent roughn
and on the core velocity.17

Taking into account the above analysis of the visco
effects, the axial momentum linked to the slipping veloc
M1 is transferred into the roughness of the wall even if
acoustic boundary layer thickness is small compared toD.
Then, the continuity of mass velocity must be applied ove
distance equal to the roughness of the wall.13 This can be
written asr1v(0)52 i (12kM1)r1j(0)5rwY p(0), where
r1 andrw are the density corresponding, respectively, to
y50 and to the wall temperature. The origin of the coor
natesy andz is taken at the outer boundary of the equivale

FIG. 3. Schematic description of the rough wall geometry.
63 J. Acoust. Soc. Am., Vol. 109, No. 1, January 2001
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roughness thicknesse. Assuming that the axial acoustic ve
locity is equal to 0 aty50, Eq. ~23! then becomes

S 12~12b̃v!kM01
DQa

Qw
b̃ tDYc5Y, ~26!

where

b̃v5
1

M0
S M11E

0

` dMb

dz
exp@~211 i !z#dz D , ~27a!

and

b̃ t5
1

DQ0
S DQ11E

0

` dQb

dz
exp@~211 i !sz#dz D ; ~27b!

DQ15Qw2Q1 is the difference between the wall temper
ture and the temperature aty50.

The effect of roughness is illustrated for the case of
exponential velocity profile with a slip velocity, in the cas
of a constant temperature. The stationary velocity pro
takes the formMb(z)52(M02M1)exp(2d*z) and in this
casebv5(d* 1(12 i )M1 /M0)/(d* 112 i ).

The real and imaginary parts ofb̃v as a function ofd*
are plotted in Fig. 4 forM150.5M0 . It can be seen tha
continuity of normal displacement (b̃v50) is never attained
for a rough wall ~solid line in Fig. 4!. When the acoustic
boundary layer thicknessda is small compared to the station
ary boundary layer thicknessD ~i.e., d* !1!, bv
→M1 /M0 , and the boundary condition isYc5Y/(1
2kM1) instead of Yc5Y/(12kM0) for the case of a
smooth wall~i.e., continuity of displacement!.

VI. CONCLUSIONS

The effective acoustic admittance of a liner, taking a
count of viscothermal effects, can be computed for the c
where acoustic and stationary boundary layer thicknesses
small compared to the wavelength. The main effect of v
cosity is the transfer of axial momentum and heat flux of
stationary flow into the lined wall. The effective admittan
is given as a function of two coefficientsbv and b t which
mainly depend on the ratio of the acoustic and station

FIG. 4. Variation of the effective velocity divided by the core velocity,bv ,
as a function of the ratio of the acoustic and stationary boundary la
thickness,d* , for a rough wall with an exponential mean velocity profil
Solid line: rough wall; dashed line: smooth wall@same as Fig. 2~a!#.
63Aurégan et al.: Boundary conditions with flow
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boundary layer thicknesses. When the acoustic bound
layer thickness is small compared with the stationary bou
ary layer thickness, continuity of normal displacement a
plies across the boundary layer. On the other hand, when
acoustic boundary layer thickness is large compared with
stationary boundary layer thickness, it is continuity of ma
velocity which applies across the boundary layer. If the lin
wall is rough, normal displacement continuity never appli
In this paper, only molecular diffusion effects~described by
the dynamic viscosity and the thermal conductivity! are
taken into account. Further work is needed to include
turbulent diffusion effects which can be incorporated in
complex effective viscosity and which will depend both
the normal coordinate and on frequency.
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