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Using a fermiology approach to the computation of the magnetic susceptibility measured by neutron scat-
tering in hole-doped high-Tc superconductors, we estimate the effects on the incommensurate peaks caused by
higher d-wave harmonics of the superconducting order parameter induced by underdoping. The input para-
meters for the Fermi surface andd-wave gap are taken directly from angle-resolved photoemission experiments
on Bi2Sr2CaCu2O8+x (Bi2212). We find that higherd-wave harmonics lower the momentum-dependent spin
gap at the incommensurate peaks as measured by the lowest spectral edge of the imaginary part in the
frequency dependence of the magnetic susceptibility of Bi2212. This effect is robust whenever the fermiology
approach captures the physics of high-Tc superconductors. At energies above the resonance we observe di-
agonal incommensurate peaks. We show that the crossover from parallel incommensuration below the reso-
nance energy to diagonal incommensuration above it is connected to the values and the degeneracies of the
minima of the two-particle energy continuum.
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I. INTRODUCTION

The imaginary partx9sv ,qd of the magnetic susceptibility
xsv ,qd probed by neutron scattering in high-temperature
(high-Tc) superconductors is characterized by a very rich de-
pendence on energy and momentum transfer, temperature,
and doping.1–36 At temperatures well below the supercon-
ducting transition temperatureTc and for a fixed frequencyv
(of the order of thed-wave gap maximum around optimal
doping) within a finite range of frequencies,x9 displays
peaks at some symmetry related wave vectors in the Bril-
louin zone of the square lattice formed by planar Cu sites.
The positions, heights, and widths of these peaks are tem-
perature dependent and, in particular, are sensitive to the
destruction of superconductivity aboveTc to a degree that
depends on doping. As the energy transferred from the neu-
trons to the sample is varied, the positions in the Brillouin
zone of the peaks inx9 also vary(as well as their heights and
widths), i.e., the peaks are dispersing. The detailed intensity
distribution of the dynamical spin susceptibility depends on
the high-Tc superconducting family.

For the YBa2Cu3O6+x (YBCO) compounds it is observed
that the separation inq space between four incommensurate
peaks at the symmetry related wave vectorsq=sp±d ,pd and
q=sp ,p±dd decreases with increasing energy merging into
a single resonance peak at the antiferromagnetic wave vector
sp ,pd and at an energy of 41 meV for optimally doped
samples.1–19 Cooling below the superconducting transition
temperature opens up a doping-dependent spin gap, which is
proportional toTc.

15

In the La2−xSrxCuO4 (LSCO) family the dynamical mag-
netic susceptibility follows a similar dispersion. At energies
above a spin gap four incommensurate peaks on the horizon-
tal and vertical lines passing throughsp ,pd in the Brillouin

zone appear and disperse towards the antiferromagnetic zone
center as the energy transfer is increased.20–31 Although the
incommensurate peaks in LSCO seem to join at the commen-
surate wave vectorq=sp ,pd, no resonance peak has been
observed in this compound to this date. Another remarkable
observation in LSCO is that a spin gap has not been observed
in the extreme underdoped and overdoped regimes.29,30

On Bi2Sr2CaCu2O8+x (Bi2212) and Tl2Ba2CuO6+x
(TBCO) samples only a few inelastic neutron scattering mea-
surements have been performed so far. For both compounds
a resonance peak was observed,32–36 but an incommensurate
signal below the resonance has not yet been measured, per-
haps due to the limited size of single crystals currently avail-
able.

In this paper we will take the point of view that incom-
mensurate and commensurate peaks ofx9 have a common
origin as they appear to be smoothly connected in the YBCO
family.9,11,12,15,37This hypothesis seems hard to reconcile
with theoretical scenarios based on the existence of dynami-
cal stripes or on the SO(5) approach to high-Tc superconduc-
tivity. In the dynamical stripe scenario incommensurate
peaks are the natural descendants of the static charge and
spin long-range order seen in La2−xBaxCuO4 at x=1/8,38

say.39–45 In the SO(5) scenario a resonance atsp ,pd appears
naturally as a result of an antibound state in the spin-triplet
particle-particle channel.46–52Commensurate and incommen-
surate peaks ofx9 are smoothly connected in a scenario in
which it is assumed that strongly renormalized quasiparticles
close to the Fermi surface interact with a residual on-site
Hubbard or nearest-neighbor antiferromagnetic interaction,
in short a fermiology approach.

Common to all fermiology scenarios53–102(see also Refs.
103–105 for related works on the “bare” magnetic suscepti-
bility ) is the random phase approximation(RPA)
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xRPAsv,qd =
gsv,qd

1 + hsv,qdPsv,qd
s1.1d

to the magnetic susceptibility. Here,Psv ,qd is the (“bare”)
magnetic susceptibility of noninteracting fermionic(BCS)
quasiparticles that depends sensitively on the Fermi surface
(the superconducting BCS gap) above(below) Tc. The func-
tionsgsv ,qd andhsv ,qd are model dependent: A RPA treat-
ment of the single-band Hubbard model with on-site repul-
sionU yieldsgsv ,qd=Psv ,qd andhsv ,qd=−U.53–63A RPA
treatment of a single-band of fermionic(BCS) quasiparticles
with a residual interaction such as a nearest-neighbor antifer-
romagnetic interaction of strength proportional toJ yields
gsv ,qd=Psv ,qd and hsv ,qd=sJ/2dscosqx+cosqyd,64–67 as
is often done in the slave-boson treatment68–80 or the 1/z
expansion withz the number of nearest neighbors of the
t-J model.81–84A RPA treatment on the bare static propagator
x0sqd of collective spin-1 excitations due to a weak coupling
as measured by the coupling constantg with otherwise non-
interacting fermionic (BCS) quasiparticles yieldsgsv ,qd
=x0sqd andhsv ,qd=−g2x0sqd.85–89

The RPA approximation(1.1) has been improved in three
ways. First, the single-band Hubbard model can be general-
ized to the three-band Hubbard model.90–94Second, the feed-
back effect of the magnetic fluctuations encoded by Eq.(1.1)
on the propagator of the fermionic(BCS) quasiparticles can
be included self-consistently through the so-called fluctua-
tion exchange(FLEX) approximation.95–100 Third, all unac-
counted for interactions among the fermionic(BCS) quasi-
particles can be included in a phenomenological way by
substituting in Eq.(1.1) v by v+ iG with G a positive func-
tion of v, temperatureT, doping x, and high-Tc supercon-
ducting family.101,102

The goal of this paper is to assess the effects on the in-
commensurate peaks of the magnetic susceptibilityx caused
by the presence of a higherd-wave harmonic in the super-
conducting order parameter of underdoped Bi2212. Indeed, it
is observed in several angle-resolved photoemission
(ARPES) experiments on underdoped Bi2212 that there are
deviations from a pured-wave order parameter.106–109These
deviations result in a rounding of the superconducting gap in
the vicinity of its nodes.110 It is observed that the gap slope at
the node decreases with underoping.111–113We interpret this
deviation as the signature of ad-wave order parameter ex-
tending to next-nearest-neighbor bonds between planar Cu
sites, i.e., they push closer to 0 the anisotropy ratiovD /vF
between the slope of the superconducting gapvD and the
Fermi velocity vF, which are tangent and perpendicular to
the Fermi surface, respectively.

Below, we adopt a phenomenological fermiology scenario
by which we compute the RPA susceptibility(1.1) assuming
thatPsv ,qd is calculated with the BCS dispersion measured
by ARPES whilegsv ,qd=Psv ,qd andhsv ,qd=−U. To sim-
plify the matter and to isolate the effect of decreasing
vDsxd /vFsxd with underdoping, i.e., decreasingx, we assume
that residual lifetime effects are small and substitute

v → v + iG, s1.2d

whereG=1 meV is of the order of the energy resolution of
most experiments. The lowest spectral edge inxRPA9 sv ,qd

considered as a function ofv with q held fixed defines the
q-dependent spin gap. We find that increasing the higher
harmonics by an increment of 15% relative to optimal dop-
ing, which corresponds to a decrease ofTc by 28% in Bi2212
as was observed in Ref. 107, decreases theq-dependent spin
gap by an amount that depends on the wave vector(see Figs.
3 and 4) and agrees qualitatively with YBCO measurements.
This result is a robust feature of all fermiology scenarios and
is consistent with the experimental observation of a fast de-
creasing(or even vanishing) spin gap with underdoping.15,29

The paper is organized as follows. The fermiology ap-
proach is defined through a RPA magnetic susceptibility in
Sec. II. Numerical results are presented in Sec. III and inter-
preted in Sec. IV. We close with a summary in Sec. V.

II. RPA MAGNETIC SUSCEPTIBILITY

One lesson inferred from ARPES data is that the low-
energy excitations in the superconducting state of Bi2212 are
sharply defined quasiparticles obeying the BCS dispersion114

Ek = Î«k
2 + Dk

2 s2.1ad

in the close vicinity to the Fermi surface defined by the con-
dition «k =0 and with a superconducting gap consistent with
a d-wave symmetry, i.e.,

Dk = − Dk8, skx8,ky8d = s±ky, 7 kxd,

Dk = Dk8, skx8,ky8d = s±kx, 7 kyd. s2.1bd

This fact suggests that it might be plausible to treat the su-
perconducting state of high-Tc superconductors as a conven-
tional BCS superconductor in the close vicinity to the Fermi
surface, an assumption that we will make from now on. Fol-
lowing Norman in Ref. 62 the measured Fermi surface is
fitted from the tight-binding expansion

«k =
1

2o
j=0

`

tjscosaj ·k + cosb j ·kd s2.1cd

with a0=b0=0 andaj, b j a pair of orthogonal vectors joining
a site of the square lattice to two of itsj th nearest neighbors.
Similarly, the d-wave BCS gap is fitted from the tight-
binding expansion

Dk = D1scoskx − coskyd + D2scos 2kx − cos 2kyd

+ D3scos 2kxcosky − coskxcos 2kyd + ¯ . s2.1dd

In practice we truncate the expansions atj =5 for the Fermi
surface and to the first two terms for thed-wave BCS gap. As
opposed to the slave-boson approach which attempts to cap-
ture the doping dependence of thetj’s and theD j’s from the
large U limit of the Hubbard model, we will take the phe-
nomenological point of view that the BCS dispersion(2.1) of
the “bare” quasiparticles is an input deduced from ARPES
data for the Bi2212 family.

We will assume in this paper that anomalous features at
energy scales far away from the Fermi energy, say of the
order 2 maxk Dk such as is the case for the incommensurate
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and commensurate peaks observed at optimal doping with
inelastic neutron scattering, can be accounted for by postu-
lating the existence of “bare” noninteracting BCS quasipar-
ticles whose dispersion is given by a fit to ARPES data and
which interact weakly through some small residual interac-
tions which we take to be an on-site Hubbard repulsion with
coupling constantU. In this spirit, the renormalization of the
“bare” magnetic susceptibility

Psv,qd =
1

N
o
k

o
s8,s=±

Cq,k
s8,sffss8Ek+qd − fssEkdg

ssv + i0+d − ss8Ek+q − sEkd
,

s = − if s8 = s= − 1, + otherwise,

Cq,k
s8,s =

1

4
S1 + s8s

«k+q«k + Dk+qDk

Ek+qEk
D , s2.2ad

is, within the RPA,

xRPAsv,qd =
Psv,qd

1 − UPsv,qd
. s2.2bd

Here,N is the number of sites on a square lattice with peri-
odic boundary conditions,fsxd=fexpsbxd+1g−1 is the Fermi
distribution(b the inverse temperature), and the BCS disper-
sion (2.1) is used.

In Figs. 1(a) and 1(b) we present a plot of the static limit
of the RPA magnetic susceptibility(2.2b) and of the static
“bare” magnetic susceptibility(2.2a), respectively. It is seen
that there are no significant differences between the static
limits of the “bare” and RPA magnetic susceptibilities for
small momentum transferq (small forward scattering) but
that for large momentum transfer,q close to sp ,pd, the
renormalization effects are of order 1 as they signal the prox-
imity to an antiferromagnetic instability of the BCS ground
state. These renormalization effects modify the quasiparticle
self-energy and have been proposed as an explanation to the
peak-dip-hump shape seen in the ARPES signal as a function
of frequency.74,115In this paper we do not consider this feed-
back on the quasiparticle self-energy. However, since the ef-
fects of higherd-wave harmonics on the RPA magnetic sus-
ceptibility are robust, we expect them to survive in a
selfconsistent approach.

We close this section by noting that the imaginary part
P9sv ,qd of the “bare” susceptibility(2.2a) simplifies to

P9sv,qd =
p

N
o
k

Cq,k
+,−d„v − E2sq,kd…,

Cq,k
+,− =

1

4
S1 −

«k+q«k + Dk+qDk

Ek+qEk
D ,

E2sq,kd = Ek+q + Ek , s2.3d

in the zero-temperature limit and for positive frequencies as
is relevant in inelastic neutron scattering. We shall see in
Sec. IV that the numerical results from Sec. III can be un-
derstood in terms of the frequency dependence of the two-
particle density of states(DOS)

n2sv,qd: =
1

2N
o
k

d„v − E2sq,kd… s2.4d

since it differs very little from that ofP9sv ,qd /p for a fixed
wave vectorq close to the commensurate vectorsp ,pd and
at very low temperatures, as is illustrated in Fig. 1(c).

III. NUMERICAL RESULTS

We have calculated numerically the RPA(2.2b) to the
magnetic susceptibility with the inclusion of lifetime effects
implemented through substitution(1.2). Hereby, we are using
the BCS dispersion(2.1) with the hopping and superconduct-
ing parameters extracted from fits to the Fermi surface and
gap measured with ARPES within the Bi2212 family for the
underdoped and optimally doped regimes(see Refs. 62, 107,
and 116–118). These parameters can be found in Table I. For
each doping concentration the value of the on-site Hubbard
repulsionU is chosen so that the energy of the resonance is
consistent with unpolarized neutron data in Refs. 32 and 34
and with the indirect determination of the resonance energy
via the peak-dip-hump feature from APRES data in Refs. 119
and 120. The value of the coupling constantU increases with
underdoping, a trend consistent with the naive expectation
that moving away from half-filling in the Hubbard model

FIG. 1. Plot of the real partsxRPA8 s0,qd (a) andP8s0,qd (b) as
a function ofq in the upper-right quadrant of the Brillouin zone for
the BCS dispersion of Bi2212 at optimal doping(see Table I). (c)
Plot of P9sv ,p ,pd / fpn2sv ,p ,pdg as a function ofv.0 in the
relevant energy range for the BCS dispersion of Bi2212 at optimal
doping (see Table I). The inset displays thev dependence of the
imaginary partP9sv ,p ,pd (thick line) and pn2sv ,p ,pd (dashed
line). The temperature is here taken to beT=0 K while a damping
G=0.1 meV is used.
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reduces the effect of the strong interactions. ARPES experi-
ments on Bi2212 indicate that the Fermi surface is(if at all)
only weakly dependent on doping.117,118To simplify matters,
we have implemented this observation by keeping the hop-
ping parameters unchanged as a function of doping.

To perform the summations in formula(2.2b), we meshed
the Brillouin zone with 102431024 points. In order to
reduce the effects of a finite lifetime in Fig. 1, we reducedG
in Eq. (1.2) from the experimental resolution,1
meV to 0.1 meV. The temperature is taken to be vanishing
in most instances except in Figs. 3 and 6 whereT=5 K.

It is convenient to use polar coordinates to represent the
wave-vector dependence of the superconducting gap on the
Fermi surface. To this end, define along the arc of the Fermi
surface that belongs to the upper-right quadrant of the Bril-
louin zone the angle 0øføp /2 through[see Fig. 2(a)]

f = arctanSp − ky

p − kx
D . s3.1d

In terms of this angle, define the auxiliary gap function

D̃sfd ª D0fB coss2fd + s1 − Bdcoss6fdg,

D0 ª max
kP Fermi surface

Dk . s3.2d

The auxiliary gap functionD̃sfd obeys the samed-wave
symmetry as the gap functionDk does on the Fermi surface.

The parameterB enteringD̃sfd is taken to be a function of
doping x that can be determined for Bi2212 from ARPES

measurements(see Table I).107 The agreement betweenD̃sfd
andDk for k on the Fermi surface is excellent. The slope of
the superconducting gapvD tangent to the Fermi surface at

the node of the gap is proportional tosdD̃d / sdfd at f=p /4.
It decreases with underdoping as is apparent from Table I.

The gap functionDk on the Fermi surface is depicted in Fig.
2(c) for the parameters of Table I.

In Figs. 3(a)–3(c) we illustrate for three different wave
vectors depicted in Fig. 2(b), q=sp ,pd, the antiferro-
magnetic wave vector,q=s1.26p ,pd, a wave vector on
the horizontal symmetry axis passing throughsp ,pd, and
q=s1.065p ,0.805pd, a wave vector off the symmetry axes,
how the dependences on frequency of the imaginary part
xRPA9 sv+ iG ,qd of the RPA magnetic susceptibility(2.2b)
changes with underdoping. In each panel the four curves
correspond to the four dopings in Table I. As the doping
decreases(i.e., decreasingTc) the leading edge moves to the
left (i.e., to lower frequencies). The q-dependent spin gap,
which we define by the lowest spectral edge inxRPA9 consid-
ered as a function of frequency, decreases with decreasing
doping for both the commensurate wave vectorsp ,pd and
the incommensurate pointss1.26p ,pd ands1.065p ,0.805pd
on the symmetry axis and off the symmetry axis passing

TABLE I. Values of the parameters used to fit the superconduct-
ing gap(see Ref. 107) in the Bi2212 family measured with ARPES
as a function of doping. The gap parameters forTc=87 K, Tc

=83 K, andTc=75 K follow from a fit to ARPES data(Ref. 107),
and for Tc=68 K from an extrapolation. For the band parameters
we use the same values as Norman in Ref. 62(units in meV): t0
=87.9,t1=−554.7,t2=132.7,t3=13.2,t4=−184.9, andt5=26.5. The
last row lists the values of the coupling constantU. The doping
decreases when reading the columns from left to right: The second,
third, fourth, and fifth columns correspond to optimally doped,
slightly underdoped, and underdoped samples, respectively. All
quantities are in units of meV.

Parameters Tc=87 K Tc=83 K Tc=75 K Tc=68 K

D1 18.3 18.8 18.8 19.6

D2 −2.1 −3.9 −5.8 −8.8

D0 35.0 37.0 38.0 41.0

B 0.96 0.92 0.89 0.84

udD̃ /df uf=p/4
57.0 52.0 44.8 36.3

U 165 173 180 191

FIG. 2. Panel(a) displays the Fermi surface of Bi2212 with
t0, . . . ,t5 as in Table I. The anglef measures the position along the
Fermi arc centered aboutsp ,pd (holelike) in the Brillouin zone.
Panel(b) displays the reciprocalq space together with the symme-
try axes(parallel and diagonal) and the three wave vectorssp ,pd,
s1.26p ,pd, and s1.065p ,0.805pd. Panel(c) displays the absolute
value of the gap functionuDsfdu on the Fermi surface as a function
of Fermi surface anglef for Bi2212 with the parameters of Table I.
Plotted are the gaps for optimally doped samples(solid line),
slightly underdoped(long dashed line), and underdoped samples
(dashed and dotted lines). For the momentum transferq
=s1.26p ,pd vertical lines at the Fermi surface angles, where the
pairwise nested wave vectorsk1, k1+q, k2 andk2+q lie, are drawn
(see Sec. IV).

PHYSICAL REVIEW B 70, 214511(2004)

214511-4



throughsp ,pd, respectively. This behavior is consistent with
the observed doping dependence of theq-dependent spin gap
in the LSCO and YBCO families. The intensities of the
peaks in all panels of Figs. 3(a)–3(c) increase with underdop-
ing. This increase in intensity is accompanied by a narrowing
of the line shape in panels b and c.

In Fig. 4 the intensities of the imaginary part of the RPA
spin susceptibility are shown as a function of frequency and
wave vector for the four doping concentrations of Table I. At

the corresponding resonance energies(39, 37, 34, and
31 meV, respectively) the peaks are at thesp ,pd point.
When the frequency is reduced from the resonance energy,
dominant incommensurate peaks in thesp±d ,pd and
sp ,p±dd direction occur, and a subdominant structure on the
diagonal lines which pass through two incommensurate
points inq space shows up. The peaks are dispersing with a
downward curvature. Above the resonance energy the domi-
nant peaks cross over from the parallel to the diagonal sym-
metry axes passing throughsp ,pd. The same happens below
19.2 meVsTc=87 Kd, 17.6 meVsTc=83 Kd, 15.2 meVsTc

=75 Kd, and 12.8 meVsTc=68 Kd, respectively.(We will
then speak of parallel and diagonal peaks, respectively.) For
frequencies larger than the resonance energy incommensu-

FIG. 3. Panel (a) displays the frequency dependences of
xRPA9 sv ,qd at the commensurate wave vectorq=sp ,pd for four
different valuesx of doping in the Bi2212 family with the BCS
dispersions taken from Table I. Curves with the leading edge
moving to the left (i.e., to lower frequencies) have decreasing
dopingx sTcd. Panels(b) and (c) are the same as panel(a) except
for the incommensurate wave vectorsq=s1.26p ,pd and q
=s1.065p ,0.805pd being held fixed. For all three wave vectors the
q-dependent spin gap decreases with underdoping. The temperature
is here taken to beT=5 K while a dampingG=1 meV is used.

FIG. 4. Panels(a)–(d) display the intensities ofxRPA9 sv ,qx,pd in
log10 scale in thesv ,qxd plane at fixedqy=p for four different
doping concentrations in the Bi2212 family with the BCS disper-
sions taken from Table I. Panels(a), (b), (c), and(d) correspond to
samples with a transition temperatureTc of 87, 83, 75, and 68 K,
respectively. As a guide to the eye contour lines are drawn at an
intensity which is about 0.5% of the maximum intensity of the
dynamical spin susceptibility. Panels(e)–(h) are the same as panels
(a)–(d) except for theq vector which runs along the diagonal in-
stead of the horizontal line in reciprocal space. The temperature is
here taken to beT=0 K while a dampingG=1 meV is used.
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rate peaks on the diagonal symmetry axes passing through
the antiferromagnetic wave vectorsp ,pd have recently been
observed in both La2−xBaxCuO4 (Ref. 38) and YBCO.19 Ex-
perimentally this diagonal pattern is seen up to 200 meV in
La2−xBaxCuO4, and up to 100 meV in YBCO, i.e., well be-
yond the regime of applicability of our model(say 2maxkDk
away from the Fermi energy). The crossover to dominant
diagonal peaks at low energies has not been observed in
experiments. If the wave vector is restricted to the horizontal
symmetry axes in the Brillouin zone, the spin gapDSGsqx,pd
remains finite for all values ofqx. However, if the wave
vector lies on the diagonal symmetry axes, the spin gap
DSGsqx,qxd vanishes for certain values ofqx=qy.

The dispersion of the peak positions ofxRPA9 for the four
doping concentrations of Table I and withq moving along
the horizontal or diagonal lines passing throughsp ,pd are
shown in Figs. 5(a) and 5(b), respectively. With underdoping
the bell-like shape of the peak dispersion moves to lower
energies implying a decrease of theq-dependent spin gap
(see also Figs. 3 and 4). The degree of incommensuration
measured by the separation 2d of the two peaks ofxRPA9
decreases as one moves from the optimally doped to the
underdoped regimes. This agrees with neutron scattering
measurements on the YBCO and LSCO families.15,27

IV. DISCUSSION

In this section we review the mechanism causing com-
mensurate resonance peaks and incommensurate peaks in the
numerical simulations of the imaginary part of the RPA mag-
netic susceptibility. Up to multiplication with the Bose-
Einstein distribution, inelastic neutron scattering has direct
access to the imaginary partx9sv ,qd of the magnetic suscep-
tibility xsv ,qd, which is given by

xRPA9 sv,qd =
P9sv,qd

f1 − UP8sv,qdg2 + fUP9sv,qdg2 s4.1d

within the RPA approximation[x8sv ,qd andP8sv ,qd denote
the real parts ofxsv ,qd and Psv ,qd, respectively]. The
“bare” imaginary partP9sv ,qd of the magnetic susceptibil-
ity controls xRPA9 sv ,qd in two ways. First,xRPA9 sv ,qd van-
ishes wheneverP9sv ,qd does and 1ÞUP8sv ,qd. Second, at
q held fixed, any steplike discontinuity in the frequency de-
pendence ofP9sv ,qd at some frequencyvnsqd results in a
logarithmic divergence of the frequency dependence of
P8sv ,qd at vnsqd through the Kramers-Kronig relation be-
tween the imaginary and real parts of causal response func-
tions. This in turn guarantees that(i) the dynamical Stoner
condition

1 − UP8sv,qd = 0 s4.2ad

can be met at the frequency

vn
*sqd , vnsqd s4.2bd

and (ii ) xRPA9 sv ,qd acquires a pole atv1
*sqd and peaks at

vn
*sqd, wheren.1 indexes the remaining jump discontinui-

ties of P9sv ,qd.

For any small but finite dampingG, P9sv+ iG ,qd be-
comes a nonvanishing and continuous function ofv.0
when holdingq fixed. Similarly, the logarithmic singularities
in the v dependences ofP8sv ,qd are cut off by a finiteG
under the substitution(1.2). Under this substitution the dy-
namical Stoner criterion(4.2a) can only be met for a suffi-
ciently large size of the step inP9sv ,qd, and the pole atv1

*

in xRPA9 sv ,qd turns into a peak of finite height

xRPA9 sv1
* + iG,qd =

1

U2P9sv1
* + iG,qd

s4.2cd

with the full width at half maximum(FWHM)

FIG. 5. (a) Peak positions ofxRPA9 sv ,qd for fixed qy=p as a
function of qx and energy with the BCS dispersions taken from
Table I for four different samples with a transition temperatureTc of
87 K (solid triangles), 83 K (open diamonds), 75 K (solid dia-
monds), and 68 K(open triangles). (b) Peak positions ofxRPA9 sv ,qd
as function of frequency and momentum transfer withq along the
diagonalqx=qy for the same four doping concentrations as in panel
(a). Above the resonance the diagonal peaks are the dominant struc-
ture. The same happens at very low energies. At intermediate ener-
gies, the diagonal peaks are subdominant with the parallel peaks
being dominant(see Fig. 4). The temperature is here taken to be
T=0 K while a dampingG=1 meV is used.
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FWHM = U 2P9sv + iG,qd
]P8sv + iG,qd/]v

U
v=v1

*
. s4.2dd

To sum up, the condition for dynamical Stoner enhance-
ment ofxRPA9 sv ,qd, a collective effect, can be reduced to the
condition for P9sv ,qd to have steplike discontinuities as a
function of frequency when holding the wave vector fixed.

In view of Eqs.(2.3) and (2.4) steplike discontinuities in
the frequency dependence ofP9sv ,qd with q held fixed(at
zero temperature and with the inverse lifetimeG infinitesi-
mally small) are closely related to steplike discontinuities in
the frequency dependence of the two-particle DOS(2.4) at
fixed q. These jump discontinuities inn2sv ,qd occur when-
ever the two-particle energyE2sq ,kd in Eq. (2.3) reaches a
local minimum vn at the q-dependent wave vectorkn, in
which case the size of the step is proportional to121

smn
s1dmn

s2dd1/2,

0 ,
1

mn
s1,2d = U ]2E2sq,kd

]k1,2]k1,2
U

k=kn

. s4.3d

The steplike discontinuity in the two-particle DOSn2sv ,qd
at vn is present inP9sv ,qd if and only if the coherence
factorCq,k

+,− from Eq.(2.3) is nonvanishing in a neighborhood
of kn. The steplike jump is turned into a smooth increase
otherwise.104

It is shown in the Appendix that, whenq is chosen not to
be on any of the diagonals of the Brillouin zone or the hori-
zontal and vertical lines passing through the commensurate
point sp ,pd [see Fig. 2(b)], there are four distinct but two-
fold degenerate local minimav1,v2,v3,v4 of E2sq ,kd
for the parameters of Table I located at theq-dependent wave
vectork1, k2, k3, andk4, respectively, in the Brillouin zone.
When q is chosen to be on the diagonals that pass through
the commensurate pointsp ,pd, but away from it, there are
three distinct local minimav1,v2,v3 at k1, k2, and k3,
respectively, which are either doubly degenerate(v1 andv3)
or four-fold degeneratesv2d. If the momentum transfer lies
on the horizontal or vertical lines passing through the com-
mensurate point, but away from it, there are two distinct but
four-fold degenerate local minimav1,v2 of E2sq ,kd lo-
cated at theq-dependent wave vectork1 andk2, respectively.
Finally, all local minima collapse to one global but eight-fold
degenerate minimumv1 located atk1 whenq=sp ,pd or one
of its symmetry-related images.

Two criteria control the size of the first step with increas-
ing v: (i) How large the effective massesm1

s1,2d are, i.e., how
flat the two-particle dispersion is,(ii ) how large the degen-
eracy of the global minimum is. It turns out that, whenq is
chosen to be at the commensurate antiferromagnetic vector
sp ,pd, the geometrical mean of the effective massesm1

s1,2d

becomes very large because of the proximity ofk1 to an
extended saddle point for the parameters of Table I. Further-
more this effect is magnified by the eight-fold degeneracy of
the global minimum of the two-particle dispersion atq
=sp ,pd. Taken together conditions(i) and(ii ) ensure that the
dynamical Stoner criterion is met at an energy

v1
* ; vAF

* s4.4d

sufficiently far below the two-particle continuum threshold
for the resonant nature of the resulting spin-1 collective ex-
citation not to be washed out by a finite temperature of 5 K
or a damping of 1 meV. The eight-fold degeneracy is par-
tially broken to a four-fold degeneracy whenq moves away
from sp ,pd along the horizontal or vertical lines passing
throughsp ,pd (parallel incommensuration) with k1 moving
towards the nodal line andk2 moving away from it[see Fig.
2(c)]. For energies below the commensurate resonance en-
ergy

v1
* ; viIC

* , vAF
* , s4.5d

this turns the resonant commensurate peak into a downward
dispersing incommensurate peak, which eventually becomes
nonresonant due to the failure to meet the Stoner criterion.
By energy conservation the dominant incommensurate peaks
cross over to the diagonals of the Brillouin zone at frequen-
cies much lower thanvAF

* since q then connects regions
close to the nodes of the BCS dispersion.103 When the wave
vector is pushed away fromsp ,pd along the diagonals, the
eight-fold global minimum splits into three distinct minima.
The first minimumv1 being lowest in energy leads to the
diagonal peaks at low energies. Together with the lowest
minimum of the two-particle energy forq off the symmetry
axes it is also the cause of the subdominant structure on the
diagonal lines passing throughsp+d ,pd and sp ,p+dd, say,
at intermediate energies. The second four-fold degener-
ate minimum lies in general at energies just above the reso-
nancevAF

* , but below the eight-fold degenerate minima at
q=sp ,pd, and is thus responsible for the crossover to diag-
onal incommensurate peaks above the resonance energy. Fi-
nally, by choosingq away from the symmetry axes one
spreads the spectral weight of the commensurate resonance
among four distinct two-fold degenerate local minima, three
of which are in the two-particle continuum, thereby loosing
the most in height and sharpness of the peak relative to the
line shape of the commensurate resonance as a function of
frequency.

To conclude, the crossover from diagonal to parallel in-
commensuration with increasing frequency at low energies
and from parallel to diagonal peaks with increasing fre-
quency above the resonance energy is brought about by the
onset of four-fold degenerate minima of the two-particle dis-
persionE2sq ,kd at the corresponding energies. This effect is
quite sensitive to both the shape of the BCS dispersions and
the details of the residual interaction among the BCS quasi-
particles: On the one hand, an antiferromagnetic interaction
with hsv ,qd=sJ/2dscosqx+cosqyd leads to an enhancement
of the diagonal peaks compared to the parallel ones, which
potentially destroys the crossover to parallel incommensura-
tion upon increasing frequency towards the resonance.62 On
the other hand, it was observed in Refs. 76 and 78 that the
parallel peaks remain dominant at energies below but not too
far from the resonance in a slave-boson mean-field approach
to the t-t8-J model.

At low energies the intensity ofxRPA9 sv+ iG ,qd for a fixed
wave vector dies off quickly(see Figs. 3 and 4). In the fol-

PHYSICAL REVIEW B 70, 214511(2004)

214511-7



lowing we shall define the lowest, sharp spectral edge in
xRPA9 sv ,qd considered as a function of frequency at a fixed
wave vectorq to be theq-dependent spin gap. By Eqs.(2.3)
and(4.1), theq-dependent spin gap for vanishing dampingG
is given by the threshold to the two-particle continuum pro-
vided there is no resonant excitation below the threshold.
Otherwise, theq-dependent spin gap is determined by the
energy of the lowest bound state. Any sharp spectral edge in
xRPA9 sv ,qd turns into a smooth edge by the inclusion of finite
lifetime effects through substitution(1.2) in which case, to a
first approximation, theq-dependent spin gap is given by the
position of the half maximum of the leading edge on the low
frequency side.

The effects on theq-dependent spin gap caused by the
change of the gap parameters in Table I induced by under-
doping can be best understood by use of arguments based on
pseudo-Fermi-nesting. A good approximation for the position
of theq-dependent(local) minima ofE2sq ,kd is obtained by
requesting that bothkn andkn+q lie on the Fermi surface,

0 = «kn
= «kn+q, s4.6ad

and that the coherence factorCq,k
+,− be maximal, i.e.,

sgnsDkn
Dkn+qd = − 1. s4.6bd

For a fixed wave vectorq the steplike discontinuity of the
frequency dependence ofP9sv ,qd is then approximately lo-
cated at the energy

ṽn = uDsk̃ndu + uDsk̃n + qdu, s4.6cd

wherek̃n are the solutions of the equation set(4.6a). In par-
ticular, ṽ1 determines approximately the threshold to the
two-particle continuum.

At frequencies much smaller than the resonance energy
vAF

* the approximate two-particle thresholdṽ1 is effectively
governed by excitations whose pseudo-Fermi-nesting vectors
connect parts of the Fermi surface which are close to the
nodes. Hence, at these energies the decreasing slope of the
gap functionsdDd / sdfd at f=p /4 results in a decrease of
the approximate two-particle thresholdṽ1 [see vertical lines
k1 andk1+q in Fig. 2(c)].

For frequencies which are comparable to the resonance
energy however, the two-particle threshold increases with the
change of the gap parameters induced by underdoping. This
can be understood from the fact that at frequencies close to,
or higher than the resonance energy the approximate two-
particle thresholdṽ1 is controlled by excitations with
pseudo-Fermi-nesting vectors that connect parts of the Fermi
surface which are in the vicinity ofs0,pd or one of its sym-
metry related images. In these parts of the Fermi surface the
increase of the gap maximumD0 causes the gap function to
increase with underdoping[see vertical linesk2 andk2+q in
Fig. 2(c)].

On top of the effects caused by the change of the gap
parameters there is an additional modification ofxRPA9 sv
+ iG ,qd with underdoping induced by the increase of the cou-
pling constantU. Owing to the failure to meet the Stoner
criterion, the frequency of the incommensurate peaks at a

given wave vectorq and at energies much smaller than the
resonance energy is not changed by a not-too-large increase
in U. Thus, in the limit of aG=0, theq-dependent spin gap
is unaffected in this energy range by a not-too-large increase
of the coupling constant. For energies close to the resonance
energy vAF

* though, the increase ofU with underdoping
causes both theq-dependent spin gap and the frequency of
the (in)commensurate peaks to decrease. The quantitative
role played byU can be illustrated by reproducing the fre-
quency dependences of the RPA susceptibility in Fig. 3 with
all BCS parameters unchanged but withU fixed to its value
at optimal doping. The result is displayed in Figs. 6(a) and
6(b) where one sees that(i) the resonance energy moves with
underdoping to higher energies as a result of the increasing
gap maximum in panel 6(a), and(ii ) the leading edge moves
with underdoping to lower energies for the wave vector
s1.26p ,pd in panel 6(b). (The position of the leading edge is
defined to be at the half maximum of the edge on the low-
frequency side.) We see that the spin gap value at a wave
vector sufficiently far away fromsp ,pd is rather insensitive
to keepingU constant as in Fig. 6(b) or to adjustingU so as
to get the correct resonance energy as in Fig. 3(b). We con-
clude that the dominant doping dependence of the
q-dependent spin gap comes from the doping dependence of
the higher harmonics for a wave vector sufficiently far away
from sp ,pd.

This insensitivity depends in a crucial way on how large
U becomes with underdoping. This can be illustrated in a
rather dramatic way by switching off the BCS parameterD2
for all dopings. The parameterD1 is then chosen so that the
maximum of the superconducting gap on the Fermi surface
D0 agrees with the values in Ref. 107, i.e., we find thatD1
equals 18.8, 19.9, 20.5, and 22.1 meV, for samples with aTc
of 87, 83, 75, and 68 K, respectively. For the coupling con-
stantU we demand that its value is chosen so as to reproduce
the same resonances as in Fig. 3(a), i.e., we find thatU takes
the values 170, 184, 196, and 211 meV, whenTc takes the
values 87, 83, 75, and 68K, respectively. Evidently, the in-
crease ofU with underdoping is now much stronger than in
Table I. Having recalibratedU to the new parameters of the
BCS dispersion, we plot in Fig. 6(c) the frequency depen-
dence ofx9sv+ iG ,qd for the wave vectors1.26p ,pd. Com-
parison of Fig. 6(c) with Fig. 3(b) shows that a broad peak at
optimal doping can be turned into a resonance with under-
doping due to a too strong increase inU.

To summarize, we expect that theq-dependent spin gap
always decreases with underdoping. Far away from the anti-
ferromagnetic wave vectorsp ,pd this is mostly a conse-
quence of the decreasing slope of the gap function at the
node, whereas close tosp ,pd, it is a result of both the in-
creasing coupling constantU and the increasing higher har-
monics. This is confirmed by the numerical simulations pre-
sented in Sec. III. The effect of a decreasingq-dependent
spin gap upon changing the gap parameters induced by un-
derdoping is present in all fermiology scenarios. For ex-
ample, we have also performed calculations with a residual
nearest-neighbor antiferromagnetic interaction instead of the
on-site Hubbard repulsion as well as within a RPA treatment
of the bare propagator of collective spin-1 excitations weakly
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coupled to BCS quasiparticles in the spirit of Refs. 85–89. In
both cases we observe a softening of theq-dependent spin
gap as a result of switching on higher-orderd-wave gap har-
monics which is rooted in the same mechanism as for the
single-band Hubbard model.

V. CONCLUSIONS

In conclusion, we have examined the effects of higher
d-wave gap harmonics induced by underdoping on the dy-
namical magnetic susceptibility of high-Tc cuprates based on
a fermiology approach. The calculations are carried out for a
single-band Hubbard model with an on-site repulsion treated
within the random phase approximation. The input param-
eters for the BCS dispersions are taken directly from angle
resolved photoemission measurements on Bi2212. We find
that the inclusion of higher harmonics decreases the
q-dependent spin gap to a degree consistent with experi-
ments performed on YBCO. This effect is robust in that it
does not depend on the detailed nature of the fermiology
model. The downward dispersion of the incommensurate
peaks is reproduced and shown to move down in energy with
underdoping. We find a crossover from parallel to diagonal
incommensuration above the resonance energy. However,
this effect depends sensitively on the shape of the BCS dis-
persions and on the details of the fermiology model, here on
the assumption of an on-site Hubbard residual interaction.
With the advent of large enough Bi2212 samples for neutron
studies it will be possible to compare these predictions to
experiments.

Note added. Upon completion of this manuscript, we
learned of a related paper by Ereminet al. (Ref. 122) on
neutron resonance modes ind-wave superconductors, where
the same crossover from parallel incommensuration below
the resonance energy to diagonal incommensuration above it
was found.
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APPENDIX: DEGENERACIES OF min kE2„q,k…

The two-particle dispersionE2sq ,kd is 2p-periodic in all
four variables(kfP gf−p ,pgf3 gf−p ,pg is always in the
first Brillouin zone from now on). For any wave vectorq,
E2sq ,kd is invariant under the involutive symmetry transfor-
mation

skx,kyd → s− kx − qx,− ky − qyd, sA1ad

which can be viewed as a rotation of anglep about the point

skx,kyd = − Sqx

2
,
qy

2
D . sA1bd

For special values ofq the two-particle dispersion possesses
additional symmetries.

At the wave vectorq=sp ,pd, E2 is left invariant by the
point-group transformations of the two-dimensional square
lattice. Together with transformation(A1a) the eight ele-
ments of the point group form a group of 16 elements.

FIG. 6. Panel (a) displays the frequency dependences of
xRPA9 sv ,qd at the commensurate wave vectorq=sp ,pd for four
different valuesx of doping in the Bi2212 family with the BCS
dispersions taken from Table I but withU fixed to 165 meV for all
doping concentrations. Panel(b) is the same as panel(a) except for
the incommensurate wave vectorq=s1.26p ,pd being held fixed.
Panel(c) displays the frequency dependences ofxRPA9 sv ,qd at the
incommensurate wave vectorq=s1.26p ,pd for four different val-
uesx of doping in the Bi2212 family without inclusion of higher
harmonics, i.e., with vanishingD2. As explained in the text we take
hereD1 to be 18.8, 19.9, 20.5, and 22.1 meV, for samples with aTc

of 87, 83, 75, and 68 K, respectively, andU increases with under-
doping from 170 meV at optimal doping to 184, 196, and 211 meV
in the underdoped regime. In this way,U is adjusted to reproduce
the positions of the resonance as observed in Bi2212. The tempera-
ture is here taken to beT=5 K while a dampingG=1 meV is used.
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Hence, the two-dimensional primitive cell ink space can be
divided into 16 triangular subcells which transform into each
other under the action of the symmetry group. As the two-
particle energy is a continuous and bounded function ink,
E2sp ,p ,kd must have at least one minimum and one maxi-
mum in each subcell. Furthermore, since the sides of the
subcells are mirror axes, the gradient of the two-particle dis-
persion atq=sp ,pd vanishes on every corner of the tri-
angles. The degeneracy of the(local) minima of E2sp ,p ,kd
in the first Brillouin zone is a direct consequence of the sym-
metry transformations. Depending on whether the minima lie
in the interior of the triangles, on the reflection axes, on
corners which are shared by four triangles or on corners
which are shared by eight triangles, the(local) minima of the
two-particle energy are either 16-fold, 8-fold, 4-fold, or
2-fold degenerate, respectively. For the BCS dispersion of
Bi2212 at optimal doping(see Table I) the symmetries and
the degeneracy of the global minimum ofE2sp ,p ,kd are
depicted in Fig. 7(a).

When q is chosen to be on either of the two diagonals
passing throughsp ,pd, the two-particle energy is symmetric
under the reflection about the corresponding diagonal in the
Brillouin zone. Together with transformation(A1a) this
yields a symmetry group with four elements. The first Bril-
louin zone decays into four polygonal subcells which are
related to each other by the action of the symmetry group.
Hence, the degeneracy of the(local) minima is four-fold,

when they are in the interior of the polygons, two-fold, when
they lie on a reflection axis and one-fold, when they are on a
corner of the subcells. This is illustrated in Fig. 7(b) for the
case whenq is on the diagonal connectings−p ,pd and
sp ,pd.

If q is located on the horizontal(vertical) axis passing
through the commensurate pointsp ,pd, E2 is left invariant
under the reflection about the horizontal(vertical) axis which
goes through the origin of the Brillouin zone. The(local)
minima are doubly degenerate, when they lie on the reflec-
tion axis or on the point(A1b); otherwise they are four-fold
degenerate[see Fig. 7(c)].

Finally, whenq is chosen not to be on any of the above
symmetry axes, the symmetries of the two-particle energy
are reduced to rotation(A1a). The degeneracy of the(local)
minima is one-fold, when they lie on the symmetry point
(A1b), and two-fold otherwise see[Fig. 7(d)].

From the continuity ofE2sq ,kd, now considered as a
function of q, it follows that the number of local minima of
the two-particle energy in the first Brillouin zone for thek ’s
is constant on an open neighborhood ofq=sp ,pd. For the
BCS dispersions of Table I this neighborhood includes the
area around the antiferromagnetic wave vector where most of
the spectral weight ofxRPA9 sv ,qd is located, as is illustrated
in Fig. 7. With these hopping and gap parameters the minima
of the two-particle energy at the commensurate pointsp ,pd
are eight-fold degenerate, since they lie on the magnetic Bril-

FIG. 7. (Color) Panel (a) displays thek dependence ofE2sq ,kd at the q vector sp ,pd in the first Brillouin zonefgf−p ,pgf
3gf−p ,pg for the BCS dispersion of Bi2212 at optimal doping(see Table I). Panels(b), (c), and(d) are the same as panel(a) except for the
momentum transferq=s1.1225p ,1.1225pd, q=s1.26p ,pd, and q=s1.065p ,0.805pd, respectively. The elevation of the contour lines in-
creases with color, red being the lowest and violet the highest. The axes of reflection are drawn in black. There are one eight-fold degenerate
minimum in panel(a), two two-fold degenerate minima and one four-fold degenerate minimum in panel(b), two four-fold degenerate
minima in panel(c), and four two-fold degenerate minima in panel(d). These minima are located at the center of the red, orange and green
ellipsoidal curves of constant energy. In the discussion we refer to the location of these minima by theq-dependent wave vectorsk1, k2, k3

andk4, respectively.
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louin zone boundary. There is one doubly and one quadruple
degenerate local minimum, and a doubly degenerate global
minimum, when the momentum transfer lies on a diagonal. If
q is chosen to be on a vertical or horizontal axis passing

through the commensurate pointsp ,pd, the two (local)
minima are four-fold degenerate. Finally, when the wave
vectorq is not on any of the symmetry axes, there are four
doubly degenerate(local) minima.
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