scientific reports

OPEN Influence of hospital capabilities and prehospital time on outcomes of thrombectomy for stroke in Japan from 2013 to 2016

Ai Kurogi¹, Daisuke Onozuka², Akihito Hagihara², Kunihiro Nishimura², Akiko Kada³, Manabu Hasegawa⁴, Takahiro Higashi⁵, Takanari Kitazono⁶, Tsuyoshi Ohta⁷, Nobuyuki Sakai⁸, Hajime Arai⁹, Susumu Miyamoto¹⁰, Tetsuya Sakamoto¹¹, Koji lihara^{1,12} & the J-ASPECT Study Collaborators*

To determine whether increasing thrombectomy-capable hospitals with moderate comprehensive stroke center (CSC) capabilities is a valid alternative to centralization of those with high CSC capabilities. This retrospective, nationwide, observational study used data from the J-ASPECT database linked to national emergency medical service (EMS) records, captured during 2013–2016. We compared the influence of mechanical thrombectomy (MT) use, the CSC score, and the total EMS response time on the modified Rankin Scale score at discharge among patients with acute ischemic stroke transported by ambulance, in phases I (2013–2014, 1461 patients) and II (2015–2016, 3259 patients). We used ordinal logistic regression analyses to analyze outcomes. From phase I to II, MTs increased from 2.7 to 5.5%, and full-time endovascular physicians per hospital decreased. The CSC score and EMS response time remained unchanged. In phase I, higher CSC scores were associated with better outcomes (1-point increase, odds ratio [95% confidence interval]: 0.951 [0.915–0.989]) and longer EMS response time was associated with worse outcomes (1-min increase, 1.007 [1.001–1.013]). In phase II, neither influenced the outcomes. During the transitional shortage of thrombectomycapable hospitals, increasing hospitals with moderate CSC scores may increase nationwide access to MT, improving outcomes.

Mechanical thrombectomy (MT) is the standard of care for patients with large vessel occlusion (LVO) related to acute ischemic stroke (AIS), but only approximately 3% of patients with AIS underwent MT in the US and Japan in 2016 and 2015, respectively^{1,2} patients with AIS and LVO could benefit from direct transportation to intervention centers; however, patients with no LVO need rapid intravenous thrombolysis at the nearest center^{3,4}. Patients with AIS admitted directly to comprehensive stroke centers (CSCs) with endovascular treatment capacities may have better outcomes than those receiving drip-and-ship treatment³, but timely MT may be impeded by the distance that patients need to travel to thrombectomy-capable hospitals. Is there a valid alternative to regional centralization of MT to CSCs with high CSC capabilities to achieve better AIS patient outcomes⁵?

¹Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. ²Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan. ³Department of Clinical Research Planning and Management, Clinical Research Center, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan. ⁴Immunization Office, Health Service Division, Health Service Bureau, Ministry of Health, Labor and Welfare, Tokyo, Japan. ⁵Division of Health Services Research, Center for Cancer Control and Information Services, National Cancer Center, Tokyo, Japan. ⁶Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan. ⁷Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Japan. ⁸Department of Neurosurgery, Kobe City Medical Centre General Hospital, Kobe, Japan. 9Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan. ¹⁰Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan. ¹¹Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan. ¹²Department of Neurosurgery, Director General of the Hospital, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmmachi, Suita, Osaka 564-8565, Japan. *A list of authors and their affiliations appear at the end of the paper. [⊠]email: kiihara@ncvc.go.jp

Item No	Components	Items				
1		Neurologists				
2	Personnel*	Neurosurgeons				
3		Endovascular physicians				
4		Emergency medicine Physical medicine and rehabilitation				
5						
6		Rehabilitation therapy				
7		Stroke nurses				
8		Computed tomography				
9	- - Diagnostic (24/7) -	Magnetic resonance imaging with diffusion				
10		Digital cerebral angiography				
11		Computed tomography angiography				
12		Carotid duplex ultrasound				
13		Transcranial Doppler				
14		Carotid endarterectomy				
15	-	Clipping of intracranial aneurysm				
16	Specific expertise	Hematoma removal/draining				
17		Coiling of intracranial aneurysm				
18		Intra-arterial reperfusion therapy				
19		Stroke unit				
20	-	Intensive care unit				
21	Infrastructure	Operating room staffed 24/7				
22		Interventional services coverage 24/7				
23	1	Stroke registry				
24	E la setta a	Community education				
25	- Education	Professional education				

 Table 1. Comprehensive stroke center score components and items. *Availability of full-time, board-certified personnel.

The existence of a single national emergency medical service (EMS) system in Japan provides a unique opportunity to conduct nationwide studies to examine the influence of prehospital time and hospital characteristics on clinical outcomes using linked data⁶.

Using data from the J-ASPECT (Nationwide survey of Acute Stroke care capacity for Proper dEsignation of Comprehensive stroke cenTer in Japan) study—a hospital-based, Japan-wide stroke registry^{7,8}—we examined whether increasing thrombectomy-capable hospitals with moderate CSC capabilities^{2,9} is a valid alternative for regional centralization of MT to CSCs with high CSC capabilities^{3,5}. Accordingly, we compared the influence of CSC capabilities and prehospital time on outcomes of MT for patients with AIS during the transitional phase before and after the pivotal trials¹⁰.

Methods

Ethics statement. To maintain confidentiality, we used deidentified databases, for which it would have been impracticable to obtain informed consent. The study was approved by the National Cerebral and Cardiovascular Center Institutional Review Board (M29-161-4, M29-161-3, and M29-088-3), which waived the requirement for individual informed consent. We reiterate that all methods were performed in accordance with the relevant guidelines and regulations.

J-ASPECT study. Participation of hospitals in the J-ASPECT study was voluntary, and the study was performed in collaboration with the Japan Neurosurgical Society (JNS) and Japan Stroke Society (JSS)^{2,7,8,11}. This study consisted of two projects: (1) an institutional survey to assess the CSC capabilities of the hospitals (Table 1)^{9,12} and (2) a retrospective cohort study using the nationwide Diagnosis Procedure Combination (DPC) inpatient database^{2,7,8,11}. Briefly, the DPC is a mixed-case classification system linked with a lump-sum payment system that was launched in 2002 by the Ministry of Health, Labor, and Welfare of Japan. By 2015, the DPC system had been adopted by an estimated 1580 acute care hospitals, representing approximately half of all Japanese hospital beds and encompassing a wide variety of centers, including rural and urban, academic and non-academic, and small and large hospitals^{7,13}. An increasing number of acute stroke cases in Japan are being registered in the J-ASPECT study each year¹⁴, with approximately 1,090,000 cases registered as of October 2020.

Assessment of facility capabilities using the institutional survey. We sent out questionnaires in 2014 to assess the CSC capabilities of the facilities using 25 items recommended by the Brain Attack Coalition to the training institutions of the JNS and JSS^{7,9}. The items are classified into five categories, as follows: personnel, diagnostic, specific expertise, infrastructure, and education (Table 1)^{7,9}. A score of 1 point was assigned for

each recommended item met by the hospital, yielding a total CSC score of up to 25. The content, development, and predictive validities of this scoring system for measuring CSC capabilities have been reported^{7,9}. Our study group previously showed that the CSC score categorized into either quintiles or quartiles is associated with short-term clinical outcomes of patients with ischemic and hemorrhagic stroke including those who received surgical and endovascular treatment for stroke. In this study, we categorized the participating thrombectomy-capable hospitals based on the CSC scores into low (<17), moderate (17–21) and high (>21).

Study design. We conducted a retrospective observational study using data from the J-ASPECT stroke database (specifically those that could be linked to the national EMS records) captured between January 2013 and December 2016. Since the JSS, JNS, and Japanese Society for Neuroendovascular Therapy (JSNET) acted quickly to revise the clinical practice guidelines for MT use in response to the publication of the pivotal trials¹⁰, we divided the study period into phases I (2013–2014) and II (2015–2016). After publishing the results of the pivotal trials, the American Heart Association/American Stroke Association (AHA/ASA) updated the clinical guidelines for the endovascular treatment of acute ischemic stroke in 2015¹⁵. In this guideline, patients should receive endovascular therapy with a stent retriever if they meet all of the criteria. In response to this, the relevant Japanese Society updated guidelines for mechanical thrombectomy¹⁶. Since the publication of these guidelines^{15,16}, mechanical thrombectomy has been considered as standard treatment for large-vessel occlusion acute ischemic stroke regardless of geographical locations. Using the J-ASPECT DPC database, we extracted data of 303,719 patients with AIS diagnosed based on the diagnostic criteria of the International Classification of Diseases, 10th Revision (ICD-10) diagnosis code I63. Of those, we included 163,292 records of patients directly transported to facilities by ambulance, in the record linkage analysis. Patients' consciousness level at admission was measured using the Japan Coma Scale (JCS) for stroke severity (Supplementary Table S1)^{7,17}.

In this study, we defined thrombectomy-capable hospitals as those where MT was performed at least once in each phase. Using government data from 2015, we further categorized hospitals into three classes according to the population density in the regions that they serve, as follows: < 300 persons/km², 300–1000 persons/km², and > 1000 persons/km².¹⁸.

We obtained permission to use all EMS data for 2013 and 2016 from the Fire and Disaster Management Agency of the Ministry of Internal Affairs and Communications⁶. Almost 99% of 771 EMS departments all over Japan participated in this study, which yielded 21,327,841 patient records. Using this database, we calculated the total EMS response time (i.e., from receipt of the emergency call to arrival at the hospital), which includes EMS response time, on-scene time, and transport time.

Data linkage and participant selection. We used one-to-one probabilistic linkage using the relink module in Stata 15.1 to match the J-ASPECT study and EMS records using the following five linkage points: date of incident/admission, hospital code, prefectures code, age, and sex^{19,20}. A participant was included only if there was a linkage across all these characteristics. After linkage, we identified patients with AIS and excluded those who (1) were younger than 18 years; (2) had been transferred from another facility; or (3) had no valid timestamps, had duplicate cases, or had missing care outcomes. We used information from insurance claims to constitute the MT group by identifying all patients treated with any kind of device, including Merci (Concentric Medical, Mountain View, CA, US), Penumbra (Penumbra, Alameda, CA, US), Trevo ProVue (Stryker, Kalamazoo, MI, US), and Solitaire-FR (Covidien, Irvine, CA, US).

Study outcomes. We assessed outcomes using the modified Rankin Scale (mRS) score at discharge.

Statistical analyses. To compare patient characteristics and outcomes between phases I and II, we used *t*-tests for normally distributed continuous variables and Mann–Whitney U tests for non-normally distributed continuous variables. We compared categorical variables using Fisher's exact or chi-square tests. After linking the records, we used multiple imputations to handle missing data points regarding the CSC scores, body mass index (BMI), and smoking history²¹. We used ordinal logistic regression analyses to investigate the associations of total EMS response time and CSC score with the mRS score at discharge, while adjusting for confounding patient-related (age, sex, stroke severity, comorbidities, BMI, smoking history, and total EMS response time) and hospital-related (CSC score⁹ and geographical category¹⁸) factors. We performed all analyses using JMP Statistical Software version 12 (SAS Institute Inc., Cary, NC, US) and Stata version 15.1 (Stata Corp., College Station, TX, US). A *p*-value < 0.05 was considered significant.

Results

Probabilistic record linkage. We were able to link 122,457 patients with AIS using the J-ASPECT and EMS data (linkage rate of 75.0%). After implementing the exclusion criteria, we included 113,564 records of patients with AIS in the final analyses (Fig. 1). Among them, 1461 patients with AIS received MT from 170 hospitals in phase I and 3259 patients received MT from 206 hospitals in phase II. From phase I to II, the proportion of patients who received MT according to population density remained unchanged (Table 2).

Comparison of patient characteristics between phases I and II. In the MT group, patients in phase II were significantly older, experienced less severe strokes, had a higher frequency of hyperlipidemia and atrial fibrillation, were treated more frequently with MT (5.5% vs. 2.7%), and had better in-hospital outcomes (30-day mortality 10.5% vs. 14.8%) than those in phase I (Table 2). From phase I to II, the use of stent retrievers significantly increased from 29.6 to 69.8%, whereas the use of aspiration catheters (Penumbra) and Merci retriev-

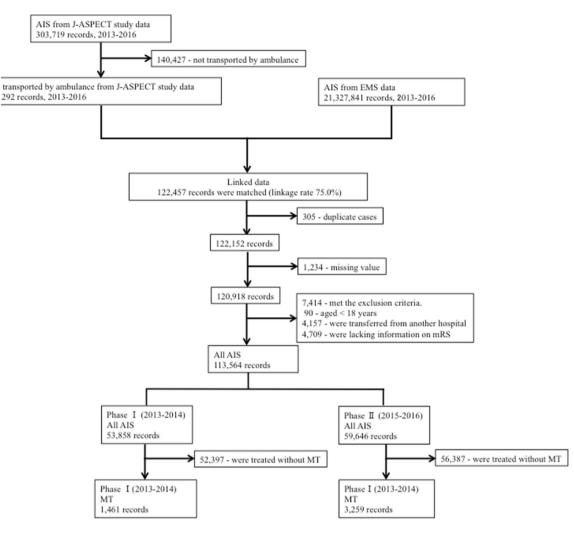


Figure 1. Flow diagram of patients. *AIS* acute ischemic stroke; *EMS* emergency medical services; *mRS* modified Rankin Scale.

.....

ers significantly decreased from 73.9 to 65.2% and from 13.4 to 0.2%, respectively. The proportion of patients who received recombinant tissue-plasminogen activator (rt-PA) administration before MT remained the same between both phases. We observed similar findings for the characteristics of all patients with AIS except for a higher frequency of hypertension, a higher baseline mRS score, and a lower rt-PA administration score in phase I.

Prehospital time of the participating hospitals in each phase. In the MT groups, the total EMS response time remained almost the same between phase I and II, despite a shorter on-scene time in phase II (Table 2). We observed no clinically meaningful differences in prehospital time metrics in all AIS patients between phases. Notably, the transport time in the MT groups remained the same from phase I to II and comparable with those of all patients with AIS in each phase.

CSC capabilities of the participating hospitals in each phase. The CSC capabilities based on hospital characteristics are summarized in Table 3. In phases I and II, the percentages of missing CSC score data in the MT groups were 6.0% and 14.7%, respectively. Among all participating hospitals, the proportion of thrombectomy-capable hospitals increased from 45.6 to 58.2% from phase I to II. The median CSC scores of all participating hospitals and thrombectomy-capable hospitals remained unchanged between phases. Although there were no between-phase differences in the CSC scores for thrombectomy-capable hospitals, the difference in the median CSC scores between all participating and thrombectomy-capable hospitals in phase II became smaller than that in phase I (17 vs. 18 in phase I, 18 vs. 19 in phase II). Among the 25 items used to assess CSC capabilities, we observed no between-phase differences in availability in all participating hospitals; however, in the thrombectomy-capable hospitals, availability of the items related to endovascular treatment such as full-time, board-certified endovascular physicians and intra-arterial reperfusion therapy significantly decreased in phase II (p = 0.05, <0.03) (Table 3).

	All AIS			MT group		
	Phase I	Phase II	1	Phase I	Phase II	
	(n=53,858)	(n=59,646)	p	(n=1,461)	(n=3,259)	р
Age (years), mean (SD)	75.7 (12.1)	76.0 (12.1)	<.001	73.4 (11.3)	74.7 (11.6)	<.001
Men, n (%)	30,850 (57.3)	34,163 (57.3)	0.989	839 (57.4)	1,839 (56.4)	0.522
JCS score at admission, n (%)			<.001			0.010
Alert	18,726 (34.8)	21,070 (35.3)		92 (6.3)	282 (8.7)	
Awake	24,137 (44.8)	26,988 (45.3)		633 (43.3)	1,450 (44.5)	
Arousable	7,021 (13.0)	7,700 (12.9)		485 (33.2)	1,044 (32.0)	
Unarousable	3,974 (7.3)	3,888 (6.5)		251 (17.2)	483 (14.8)	
Baseline mRS, median, (min, max)	1 (0, 3)	0 (0, 2)	<.001	0 (0, 2)	0 (0, 2)	0.552
Comorbidities						
Hypertension, n (%)	32,355 (60.1)	37,437 (62.8)	<.001	1,170 (80.1)	2,642 (81.1)	0.427
Hyperlipidemia, n (%)	17,500 (32.5)	20,370 (34.2)	<.001	364 (24.9)	939 (28.8)	0.006
Diabetes mellitus, n (%)	11,474 (21.3)	12,885 (21.6)	0.222	326 (22.3)	698 (21.4)	0.490
Atrial fibrillation, n (%)	13,746 (25.5)	16,439 (27.6)	<.001	717 (49.1)	1,738 (53.3)	0.007
EMS time in min, median (IQR)					1	
Response time	7 (6, 9)	7 (6, 10)	<.001	7 (6, 9)	7 (6, 9)	0.168
On-scene time	13 (10, 18)	13 (10, 18)	<.001	14 (10, 18)	13 (10, 17)	0.036
Transport time	10 (6, 16)	10 (7, 16)	<.001	10 (6, 16)	10 (6, 16)	0.858
Total EMS response time	33 (26, 41)	33 (27, 42)	<.001	33 (26, 41)	32 (26, 41)	0.404
Outcome (mRS score)		1		1		
0	5,790 (10.8)	6,855 (11.5)	<.001	87 (6.0)	296 (9.1)	<.00
1	10,050 (18.7)	11,339 (19.0)		150 (10.3)	398 (12.2)	
2	7,811 (14.5)	8,851 (14.8)		182 (12.5)	419 (12.9)	
3	6,530 (12.1)	7,463 (12.5)		142 (9.7)	380 (11.7)	
4	11,508 (21.4)	12,840 (21.5)		397 (27.2)	785 (24.1)	
5	7,685 (14.3)	8,154 (13.7)		287 (19.6)	638 (20.0)	
6	4,484 (8.3)	4,144 (6.9)		216 (14.8)	343 (10.5)	
Treatment			1			1
rtPA administration	5,452 (10.1)	6,868 (11.5)	<.001	782 (53.5)	1,763 (54.1)	0.716
MT	1,461 (2.7)	3,529 (5.5)	<.001	1,461 (100)	3,529 (100)	
Device, n (%)			1			1
Stent retriever				433 (29.6)	2,275 (69.8)	<.00
Penumbra				1,079 (73.9)	2,124 (65.2)	<.00
Merci				196 (13.4)	6 (0.2)	<.00
Population density, person/km ²			<.001			0.101
<300	14,762 (27.9)	15,148 (25.7)		303 (20.7)	702 (21.6)	
300-1000	15,489 (29.3)	18,020 (30.6)		409 (28.0)	988 (30.4)	
>1000	22,685 (42.9)	15,761 (43.7)		748 (51.2)	1,556 (47.9)	1

Table 2. Patient characteristics, EMS time metrics, treatment, and outcomes in all AIS and MT groups. *AIS* acute ischemic stroke; *EMS* emergency medical service; *IQR* interquartile range; *JCS* Japan Coma Scale; *mRS* modified Rankin Scale; *MT* mechanical thrombectomy; *rt-PA* intravenous recombinant tissue-plasminogen activator infusion; *SD* standard deviation.

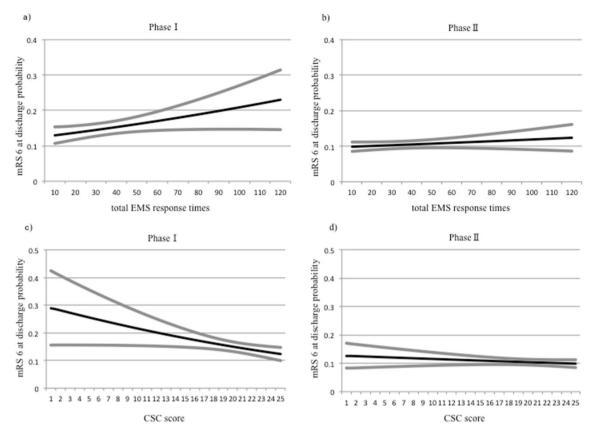
Associations between total EMS response time and clinical outcomes. No clinically meaningful differences in the median total EMS response time were observed between all patients with AIS and the MT group in each phase (e.g., 33 vs. 32 min in phase II) (Table 2). In the MT group, a longer total EMS response time was associated with worse outcomes in phase I (odds ratio [OR] for each 1-min increase, 1.007 [CI, 1.001–1.013]); however, this association was not observed in phase II (1.003 [0.998–1.007]). The relationships between the total EMS response time and probabilities of an mRS score of 6 at discharge in phases I and II in the MT groups are shown in Fig. 2a, b.

Subgroup analyses demonstrated that the effect of total response time on clinical outcomes in phase I was notable for patients aged \geq 70 years and those who reside in areas with low and intermediate population density (<300, 300–1000 persons/km²; Fig. 3a). This association was only noted for patients aged <70 years in phase II (Fig. 3b).

	All particip hospitals	All participating hospitals		Thrombecto hospitals		
	Phase I	Phase II	1	Phase I	Phase II	
	(n=373)	(n=354)	p	(n=170)	(n=206)	p
Neurologists	210 (56.3)	200 (56.5)	0.976	104 (61.2)	124 (60.2)	0.846
Neurosurgeons	364 (97.6)	347 (98.0)	0.702	168 (98.8)	204 (99.0)	0.847
Endovascular physicians	216 (57.9)	212 (59.9)	0.600	151 (88.8)	168 (81.6)	0.050
Emergency medicine	143 (38.3)	140 (39.6)	0.787	73 (42.9)	89 (43.2)	0.959
Physical medicine and rehabilitation	104 (27.9)	95 (26.8)	0.675	43 (25.3)	57 (27.7)	0.604
Rehabilitation therapy	372 (99.7)	353 (99.7)	0.966	169 (99.4)	205 (99.5)	0.892
Stroke rehabilitation nurses	116 (31.1)	111 (31.4)	0.990	68 (40.0)	81 (39.3)	0.893
Computed tomography	371 (99.5)	351 (99.2)	0.605	170 (100.0)	206 (100)	-
Magnetic resonance imaging with diffusion	359 (96.2)	340 (96.1)	0.870	169 (99.4)	203 (98.5)	0.414
Digital cerebral angiography	346 (92.8)	331 (93.5)	0.716	168 (98.8)	203 (98.5)	0.814
Computed tomography angiography	352 (94.4)	334 (94.4)	0.969	166 (97.6)	203 (98.5)	0.522
Carotid duplex ultrasound	156 (41.8)	154 (43.5)	0.631	80 (47.1)	104 (50.5)	0.508
Transcranial Doppler	91 (24.4)	92 (26.0)	0.636	54(31.8)	67 (32.5)	0.875
Carotid endarterectomy	332 (89.0)	316 (89.3)	0.845	163 (95.9)	195 (94.7)	0.581
Clipping of intracranial aneurysm	360 (96.5)	345 (97.5)	0.471	170 (100.0)	205 (99.5)	0.363
Hematoma removal/draining	359 (96.2)	345 (97.5)	0.362	169 (99.4)	205 (99.5)	0.892
Coiling of intracranial aneurysm	248 (66.5)	237 (67.0)	0.895	162 (95.3)	180 (87.4)	0.008
Intra-arterial reperfusion therapy	290 (77.7)	281 (79.4)	0.569	167 (98.2)	193 (93.7)	0.030
Stroke unit	144 (38.6)	138 (39.0)	0.968	82 (48.2)	97 (47.1)	0.825
Intensive care unit	282 (75.6)	265 (74.9)	0.834	136 (80.0)	168 (81.6)	0.703
Operating room staffed 24/7	250 (67.0)	240 (67.8)	0.823	145 (85.3)	173 (84.0)	0.726
Interventional services coverage 24/7	241 (64.6)	237 (67.0)	0.507	158 (92.9)	180 (87.4)	0.075
Stroke registry	198 (53.1)	195 (55.1)	0.505	102 (60.0)	131 (63.6)	0.475
Community education	107 (28.7)	101 (28.5)	0.953	63 (37.1)	71 (34.5)	0.601
Professional education	231 (62.1)	225 (63.6)	0.656	123 (72.4)	150 (72.8)	0.920
CSC score	17 (14, 20)	18 (14, 20)	0.725	19 (17, 21)	19 (17, 21)	0.447
Population density, person/km ²			0.888			0.887
< 300	108 (29.9)	105 (30.4)		47 (27.8)	54 (26.5)	
300-1000	107 (29.6)	107 (30.9)		50 (29.6)	65 (31.9)	
>1000	146 (40.4)	134 (38.7)		72 (42.6)	85 (41.7)	

Table 3. CSC capabilities based on hospital characteristics in all groups. *CSC* comprehensive stroke center; * implementation of full-time, board-certified personnel. P-values in bold are significant.

.....


Associations between CSC score and clinical outcomes. In phase I, there was an association between an increase in the CSC score and better outcomes after MT (each 1-point increase, 0.951 [0.915–0.989]). In phase II, however, the association between a higher CSC score and improved outcomes was no longer observed in the MT group (each 1-point increase, 0.987 [0.965–1.010]). The relationships between the CSC score and probabilities of an mRS score of 6 at discharge in phases I and II in the MT groups are shown in Figs. 2c, d.

Subgroup analyses demonstrated that the effect of CSC scores on clinical outcomes in phase I was notable for men, patients aged \geq 70 years, those who received preceding rt-PA administration, and those who resided in areas with intermediate population density (300–1000 persons/km²) (Fig. 3c). No influence of the CSC score on clinical outcomes was observed in any subgroup in phase II (Fig. 3d).

Discussion

Linking data from the J-ASPECT stroke database from 2013 to 2016 to the national EMS records, we demonstrated the increased use of MT and better clinical outcomes after MT with less initial stroke severity in an increasing number of thrombectomy-capable hospitals following revisions to the clinical practice guidelines for MT in 2015 by the relevant societies in Japan. Although the availability of endovascular physicians in all participating hospitals remained the same during the study period, fewer endovascular physicians were present in thrombectomy-capable hospitals in phase II, probably because of the rapid nationwide increase of such hospitals in response to the abovementioned revisions.

The influence of the CSC capabilities of the thrombectomy-capable hospitals and prehospital time on the clinical outcomes of patients with AIS who received MT in phase I may support the implementation of regional centralization of thrombectomy-capable hospitals^{3,5,22}. No such clinical influence was observed in phase II; however, we posit that, in the current transitional period, while there is a relative shortage of thrombectomy-capable

Figure 2. Relationships between the total EMS response time or the CSC scores and probabilities of an mRS score of 6 at discharge (stroke outcomes) in the MT group. Panels (**a**) and (**b**) show the effects of total EMS response time (minutes) on the probabilities of an mRS score of 6 at discharge in phases I and II, respectively, in the MT group. Panels (**c**) and (**d**) show the effects of the CSC scores on the probabilities of an mRS score of 6 at discharge in phases I and II, respectively, in the MT group. Panels (**c**) and (**d**) show the effects of the CSC scores on the probabilities of an mRS score of 6 at discharge in phases I and II, respectively, in the MT group. *EMS* emergency medical services; *CSC* comprehensive stroke center; *mRS* modified Rankin Scale; *MT* mechanical thrombectomy.

hospitals, increasing the amount of hospitals with moderate CSC scores may benefit the populations of countries with geographical conditions similar to those of Japan.

Temporal changes in patient characteristics. We demonstrated temporal changes in patient characteristics in the MT group, such as a higher age, decreased stroke severity, and better outcomes in phase II, which were consistent with those reported in previous studies of patients with AIS^{2,23}. MT use in patients with AIS who were directly transported to a suitable facility via an ambulance in phase I (2.7%) was comparable to the findings from the US hospitals that participated in the Get With The Guidelines-Stroke program (MT use 3.3%)¹. MT use (5.5%) in patients with AIS in phase II doubled from that in phase I, which may be explained by an increased awareness of the effectiveness of MT and the implementation of thrombectomy-capable hospitals in response to the revised guidelines in Japan²⁴.

In contrast, MT use in patients with AIS who were directly transported via an ambulance to a suitable facility in phase II was almost twice the proportion (3.0%) of all patients with AIS who were urgently hospitalized in Japan from April 2010 to March 2016². This is consistent with the findings of previous studies showing that only 60% of urgently hospitalized patients with AIS are transported via an ambulance^{7,25}, suggesting the underuse of ambulances for patients with AIS who are possible candidates of MT in Japan.

Influence of the CSC capabilities and total EMS response time of thrombectomy-capable hospitals on clinical outcomes in phases I and II. The observed influence of CSC capabilities of thrombectomy-capable hospitals on clinical outcomes of patients with AIS who received MT in phase I may support the concept of regional centralization of thrombectomy-capable hospitals^{3,5,22}. This is consistent with our previous studies using data before 2015. Therein, we demonstrated that hospitals with higher (vs. lower) CSC capabilities were more likely to have lower in-hospital mortality among patients with AIS and to provide timely rt-PA infusion and MT on a 24-h basis^{2,7}. Although the CSC score comprises heterogeneous items of stroke care expertise, it reflects the joint effort of multiple healthcare professionals to manage emergencies^{7,9,11,12}.

One major finding of this study was the lack of association between the CSC capabilities and clinical outcomes of MT in phase II. This unexpected finding may be explained by several observations. First, and most notably, despite the similar CSC scores in phases I and II in the thrombectomy-capable hospitals in this study,

Phase I - Total EMS response time Phase II - Total EMS response time a) b) Characteristics Odds ratio (95% CI) Characteristics Odds ratio (95% CI) Tot Tota 1.007 (1.001, 1.013) 1.003 (0.998, 1.007) Female 1.009 (0.999, 1.019) Female 1.000 (0.993, 1.006) Age, y <70 1.008 (1.000, 1.017) ≥70 1.008 (1.000, 1.016) ≥70 1.000 (0.995, 1.005) tΡΔ tΡΔ 1.006 (0.996, 1.015) .004 (0.999, 1.010) Yes 1.007 (0.998, 1.016) Yes 0.999 (0.992, 1.006) Рорь 1.013 (1.002, 1.024) <300 <300 1.002 (0.995, 1.009) 300-1000 1.013 (1.000, 1.027) 300-1000 1.003 (0.995, 1.011) >1000 1 000 (0 990 1 009) >1000 1.003 (0.996, 1.010) 1.02 1.02 .98 1.04 .98 d) c) Phase I - CSC score Phase II - CSC score Cha Odds ratio (95% CI) Cha Odds ratio (95% CI) Tota Tota 0.951 (0.915, 0.989) 0.987 (0.965, 1.010) Sex Sex Male 0.945 (0.901, 0.992) Male 0.993 (0.962, 1.026) 0.981 (0.949, 1.013) 0.957 (0.899, 1.019) Femal Age, y Age, y 0.991 (0.928, 1.057) <70 1.018 (0.971, 1.066) <70 >70 0.937 (0.894, 0.983) >70 0.975 (0.949, 1.001) tPA tPA No 0.948 (0.896, 1.003) No 0.987 (0.954, 1.021) 0.937 (0.887, 0.989 0.978 (0.945, 1.012) Population den: Population den: <300 0 931 (0 864 1 004) <300 1 001 (0 948 1 058) 300-1000 0.926 (0.860, 0.996) 0.960 (0.906, 1.017) 300-1000 1.001 (0.953, 1.053) 0.972 (0.936, 1.009) >1000 >1000

Figure 3. Subgroup analyses of the effect of the total EMS response time and the CSC score on outcomes. The forest plot shows the effect size of a 1-min increase of the total EMS response time on the mRS score at discharge in phases I (panel **a**) and II (panel **b**), respectively, in the MT group, analyzed according to ordinal logistic regression across subgroups. Dots indicate point estimates for the effect of the total EMS response time. The forest plot shows the effect size of a 1-point increase of the CSC score on the mRS score at discharge in phases I (panel **c**) and II (panel **d**), respectively, in the MT group, analyzed according to ordinal logistic regression across subgroups. Dots indicate point estimates for the CSC score. *EMS* emergency medical services; *CSC* comprehensive stroke center; *mRS* modified Rankin Scale; *MT* mechanical thrombectomy.

1.1

95

1.05

1.1

the availability of specific items related to endovascular therapy (e.g., full-time availability of board-certified endovascular physicians and intra-arterial reperfusion therapy) decreased. This relative shortage was probably because of the rapid increase in hospitals where MT can be performed. In contrast, in all participating hospitals, the availability of those items remained almost the same from phase I to II, which is consistent with the results in our previous study. Therein, we showed that the implementation of six items, mainly related to endovascular therapy, increased > 20% from 2010 to 2018, especially between 2010 and 2014¹².

Second, even in thrombectomy-capable hospitals with comparable CSC capabilities in phases I and II, there may be a difference in the quality of in-hospital care related to MT, depending on the availability of endovascular physicians^{26–29}. For example, thrombectomy-capable hospitals without sufficient in-house endovascular physicians are more likely to make use of those from neighboring hospitals to perform MT, which may increase the onset-to-reperfusion time and worsen the clinical outcomes^{26,30}.

Another key finding of this study was that the total EMS response time was not associated with clinical outcomes of MT in phase II, regardless of the level of urbanization. The influence of the total EMS response time on clinical outcomes in the MT group in phase I is in line with previous studies evaluating the effect of onset-to-treatment time on outcomes of patients who received MT¹⁰. The total median EMS response time (phase I, 33 min; phase II, 32 min) in the MT group remained unchanged between phase I and II and was shorter than that in a US study (36 min)³¹, suggesting that the total EMS response time may not be an effective target in shortening the onset-to-treatment time. However, this may be characteristic of countries, such as Japan, where a greater proportion of the population lives closer to hospitals than that in more expansive countries. In more expansive countries, driving time exceeding 90 min may be more common. Despite this, we believe that our findings may not be unique to Japan¹⁸ (e.g., 79% of adults in the US reside within 60 min of a hospital that provides acute cardiac therapy³²).

The influence of the total EMS response time in phase II may be outweighed by other processes involved in the onset-to-treatment time, such as a delay in EMS activation³³ and the in-hospital workflow before MT³⁴. In this study, we did not have information on the time from symptom recognition to the ambulance call or on the

in-hospital workflow; therefore, we could not quantify the role of those processes on the outcomes of patients with AIS who received MT^{26,35}. A recent study suggested that patients with a lower socioeconomic status may be more likely to delay EMS activation than those with a higher status³³; however, educational campaigns raising awareness of the signs and symptoms of stroke have had little effect on the actual response to a stroke event^{36,37}. In contrast, fast reperfusion is a modifiable factor associated with better clinical outcomes when successful reperfusion is achieved^{34,38}. A recent meta-analysis of the pivotal trials that led to the change in guidelines showed that the intermediary outcome, the rate of successful reperfusion, was higher with faster (vs. slower) hospital-arrival-to-groin-puncture time³⁴. This nationwide study lends real-world support to the findings of existing literature on the importance of in-hospital workflow to improve clinical outcomes of patients with AIS who receive MT^{38,39}.

In the US, AIS care and quality may differ between institutions, with CSCs outperforming primary stroke centers (PSCs) in timely acute reperfusion therapy and risk-adjusted mortality³³. Recently, we developed the Close The Gap-Stroke (CTGS) program, the first nationwide quality improvement program within the J-ASPECT study; it allows prospective evaluation of the quality of acute stroke care in Japan, using the DPC database and electronic medical records^{14,29}. Further studies are necessary to examine the influence of CSC capabilities on performance in terms of quality indicators and clinical outcomes of patients with AIS who received MT after the JSS started to certify PSCs who are able to perform MT.

Our study suggests that equal accessibility to MT remains an urgent unmet need in real-world situations, which may justify the nationwide implementation of thrombectomy-capable hospitals with moderate CSC capabilities since 2015⁴⁰.

In 2019, in Japan, the JSNET started to certify endovascular physicians who are qualified only to perform MT, and the JSS started to certify PSCs that are encouraged to perform MT. Availability of MT in the PSCs is in line with the increasing availability of endovascular treatment at PSCs in the US⁴⁰. The current findings may lend support to this certification policy, as it may assist in equalizing the accessibility to MT.

Limitations

First, selection bias and unmeasured residual confounders may exist¹⁰. The participating hospitals in the J-ASPECT study were more likely to commit to quality improvement in stroke care than non-participating hospitals; however, the number of MTs performed in phase I corresponded to approximately 74.4% of those reported in the Japanese Registry of Neuroendovascular Therapy—the official registry of the JSNET⁴¹. Further, the geographical locations of the thrombectomy-capable and all participating hospitals in this study were comparable with those reported in the previous nationwide study on rt-PA use in Japan¹⁸. This suggests that the findings may represent the real-world situation in Japan. Second, the DPC database lacks data regarding several important factors, including the National Institutes of Health Stroke Scale (NIHSS) score, time metrics, and imaging results^{7,8,13,14}. Thus, we used the JCS score, rather than the NIHSS score, as an index of stroke severity. Nationwide implementation of the CTGS program of the J-ASPECT study may solve this issue. Third, the LVO site was not included in the analysis; however, our recent study showed that approximately 86.4% of patients with AIS underwent MT from January 2013 to December 2015 according to the guidelines²⁹. Fourth, we did not examine the effect of CSC capabilities on in-hospital care provision^{29,39}. The result of the CTGS, an ongoing nationwide quality improvement initiative in Japan, may answer this question^{14,29}. Finally, long-term outcomes (\geq 90 days) after AIS were not evaluated. Further studies are necessary to address these issues.

Conclusion

In the current transitional period, while there is a relative shortage of thrombectomy-capable hospitals, increasing the number of hospitals with moderate CSC scores may benefit the general Japanese population by equalizing access to MT in response to AIS. Certification of endovascular physicians qualified to perform MT may also promote such accessibility in thrombectomy-capable hospitals.

Data availability

We have documented the data, methods, and materials used to conduct the research in this report. The individual patient data are not publicly available owing to the memorandum signed by the directors of the participating hospitals and the principal investigator of the J-ASPECT Study group.

Received: 9 May 2021; Accepted: 24 January 2022 Published online: 28 February 2022

References

- 1. Smith, E. E. *et al.* Increase in endovascular therapy in get with the guidelines-stroke after the publication of pivotal trials. *Circulation* **136**, 2303–2310 (2017).
- Kada, A. *et al.* National trends in outcomes of ischemic stroke and prognostic influence of stroke center capability in Japan, 2010–2016. *Int. J. Stroke*; doi:https://doi.org/10.1177/1747493019884526 (2019).
- 3. Ismail, M. *et al.* Mothership versus drip and ship for thrombectomy in patients who had an acute stroke: a systematic review and meta-analysis. *J. Neurointerv. Surg.* **11**, 14–19 (2019).
- 4. Gerschenfeld, G. *et al.* Two paradigms for endovascular thrombectomy after intravenous thrombolysis for acute ischemic stroke. *JAMA Neurol.* **74**, 549–556 (2017).
- 5. Venema, E. *et al.* Prehospital triage strategies for the transportation of suspected stroke patients in the United States. *Stroke* 51, 3310–3319 (2020).
- 6. Kitamura, T. et al. Nationwide public-access defibrillation in Japan. N. Engl. J. Med. 362, 994–1004 (2010).
- Iihara, K. et al. Effects of comprehensive stroke care capabilities on in-hospital mortality of patients with ischemic and hemorrhagic stroke: J-ASPECT study. PLoS ONE 9, e96819. https://doi.org/10.1371/journal.pone.0096819 (2014).

- 8. Kurogi, R. *et al.* Comparing intracerebral hemorrhages associated with direct oral anticoagulants or warfarin. *Neurology* **90**, e1143–e1149. https://doi.org/10.1212/WNL.00000000005207 (2018).
- Kada, A. et al. Development and validation of a score for evaluating comprehensive stroke care capabilities: J-ASPECT Study. BMC Neurol. 17, 46. https://doi.org/10.1186/s12883-017-0815-4 (2017).
- 10. Saver, J. L. *et al.* Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. *JAMA* **316**, 1279–1288 (2016).
- 11. Kurogi, R. *et al.* Effects of case volume and comprehensive stroke center capabilities on patient outcomes of clipping and coiling for subarachnoid hemorrhage. *J. Neurosurg.* **134**, 929–939 (2021).
- Kurogi, A. *et al.* Temporal trends and geographical disparities in comprehensive stroke centre capabilities in Japan from 2010 to 2018. *BMJ Open* 10, e033055. https://doi.org/10.1136/bmjopen-2019-033055 (2020).
- 13. Yasunaga, H., Ide, H., Imamura, T. & Ohe, K. Impact of the Japanese diagnosis procedure combination-based payment system on cardiovascular medicine-related costs. Int. Heart. J. 46, 855-866 (2005).
- 14. Nishimura, A. *et al.* Development of quality indicators of stroke centers and feasibility of their measurement using a nationwide insurance claims database in Japan—J-ASPECT Study. *Circ. J.* **83**, 2292–2302 (2019).
- 15. William, J. P. *et al.* 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke* **46**, 3020–3035 (2015).
- 16. Japanese Guideline for the Management of Stroke 2015 (addendum 2017), www.jsts.gr.jp/img/guideline2015_tuiho2017.pdf. (2015)
- Shigematsu, K., Nakano, H. & Watanabe, Y. The eye response test alone is sufficient to predict stroke outcome—reintroduction of Japan Coma Scale: a cohort study. *BMJ Open* 3, e002736. https://doi.org/10.1136/bmjopen-2013-002736 (2013).
- Kunisawa, S. *et al.* Association of geographical factors with administration of tissue plasminogen activator for acute ischemic stroke. J. Am. Heart Assoc. 2, e000336. https://doi.org/10.1161/JAHA.113.000336 (2013).
- Zhu, Y., Matsuyama, Y., Ohashi, Y. & Setoguchi, S. When to conduct probabilistic linkage vs. deterministic linkage? A simulation study. J. Biomed. Inform. 56, 80–86 (2015).
- 20. Jaro, M. A. Probabilistic linkage of large public health data files. Stat. Med. 14, 491–498 (1995).
- 21. Rubin, D. B. Multiple imputation for nonresponse in surveys 485-486 (Wiley, Hoboken, 1989).
- 22. Holodinsky, J. K. *et al.* Modeling stroke patient transport for all patients with suspected large-vessel occlusion. *JAMA Neurol.* **75**, 1477–1486 (2018).
- 23. Stecksén, A. et al. Thrombolytic therapy rates and stroke severity. Stroke 43, 536–538 (2012).
- 24. Takagi, T. *et al.* Distribution and current problems of acute endovascular therapy for large artery occlusion from a two-year national survey in Japan. *Int. J. Stroke* **15**, 289–298 (2020).
- Powers, W. J. et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare
 professionals from the American Heart Association/American Stroke Association. Stroke 49, e46–e110. https://doi.org/10.1161/
 STR.000000000000158 (2018).
- Menon, B. K. et al. Components and trends in door to treatment times for endovascular therapy in get with the guidelines-stroke hospitals. Circulation 139, 169–179 (2019).
- 27. Xian, Y. et al. Association of preceding antithrombotic treatment with acute ischemic stroke severity and in-hospital outcomes among patients with atrial fibrillation. JAMA 317, 1057–1067 (2017).
- Meretoja, A. et al. Effectiveness of primary and comprehensive stroke centers: PERFECT stroke: a nationwide observational study from Finland. Stroke 41, 1102–1107 (2010).
- 29. Ren, N. *et al.* Measuring quality of care for ischemic stroke treated with acute reperfusion therapy in Japan—the close the gapstroke. *Circ. J.* **85**, 201–209 (2021).
- Seker, F. et al. Time metrics to endovascular thrombectomy in 3 triage concepts: a prospective, observational study (NEURO-SQUAD). Stroke 51, 335–337 (2020).
- Schwartz, J., Dreyer, R. P., Murugiah, K. & Ranasinghe, I. Contemporary prehospital emergency medical services response times for suspected stroke in the United States. *Prehosp. Emerg. Care* 20, 560–565 (2016).
- 32. Nallamothu, B. K., Bates, E. R., Wang, Y., Bradley, E. H. & Krumholz, H. M. Driving times and distances to hospitals with percutaneous coronary intervention in the United States: implications for prehospital triage of patients with ST-elevation myocardial infarction. *Circulation* 113, 1189–1195 (2016).
- Ader, J. et al. Hospital distance, socioeconomic status, and timely treatment of ischemic stroke. Neurology 93, e747–e757. https:// doi.org/10.1212/WNL.000000000007963 (2019).
- Bourcier, R. et al. Association of time from stroke onset to groin puncture with quality of reperfusion after mechanical thrombectomy: a meta-analysis of individual patient data from 7 randomized clinical trials. JAMA Neurol. 76, 405–411 (2019).
- Janssen, P. M., Venema, E. & Dippel, D. W. J. Effect of workflow improvements in endovascular stroke treatment. Stroke 50, 665–674 (2019).
- 36. Rasura, M. et al. Effectiveness of public stroke educational interventions: a review. Eur. J. Neurol. 21, 11-20 (2014).
- 37. Boden-Albala, B. et al. Comparison of acute stroke preparedness strategies to decrease emergency department arrival time in a
- multiethnic cohort: the stroke warning information and faster treatment study. *Stroke* 46, 1806–1812 (2015).
 38. Kaesmacher, J. *et al.* Effect of pre- and in-hospital delay on reperfusion in acute ischemic stroke mechanical thrombectomy. *Stroke* 51, 2934–2942 (2020).
- Man, S. et al. Comparison of acute ischemic stroke care and outcomes between comprehensive stroke centers and primary stroke centers in the United States. Circ. Cardiovasc. Qual. Outcomes 11, e004512. https://doi.org/10.1161/CIRCOUTCOMES.117.004512 (2018).
- Yamagami, H. *et al.* Guidelines for Mechanical Thrombectomy in Japan, the Fourth Edition, March 2020: a guideline from the Japan Stroke Society, the Japan Neurosurgical Society, and the Japanese Society for Neuroendovascular Therapy. *Neurol. Med. Chir.* (*Tokyo*) 61, 163–192 (2021).
- Sakai, N. et al. Japanese Surveillance of Neuroendovascular Therapy in JR-NET-Part II. Japanese Registry of Neuroendovascular Treatment 3. Main report. Neurol. Med. Chir. 15, 106–115 (2019).

Acknowledgements

We thank all the enrollees of the J-ASPECT study for their contribution to this project. The institutions and names of the J-ASPECT study Collaborators are listed in Supplementary Table S2.

Author contributions

AI KUROGI: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data. Daisuke Onozuka: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data. Akihito Hagihara: Study concept or design; Analysis or interpretation of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of the manuscript for content, including medical writing for content; Study concept or design. Akiko Kada: Major role in the

acquisition of data; Analysis or interpretation of data Manabu Hasegawa: Major role in the acquisition of data Takahiro Higashi: Study concept or design; Analysis or interpretation of data. Takahiro Higashi: Study concept or design. Takanari Kitazono: Major role in the acquisition of data; Analysis or interpretation of data. Tsuyoshi Ohta: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design. Nobuyuki Sakai: Study concept or design. Hajime Arai: Major role in the acquisition of data. Susumu Miyamoto: Major role in the acquisition of data. Tetsuya Sakamoto: Major role in the acquisition of data. Koji Iihara: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data.

Funding

This study was supported by the Practical Research Project for lifestyle-related diseases, including cardiovascular diseases and diabetes mellitus, managed by the Japan Agency for Medical Research and Development (JP19ek0210088, JP20ek0210129, JP20ek0210147, JP21ek0210147); Grants-in-Aid from the Japanese Ministry of Health, Labour and Welfare (H28-Shinkin-Ippan-011, 19AC1003); KAKENHI grants (25293314, 18H02914) from the Japan Society for the Promotion of Science; and Intramural Research Fund (20–4-10) for Cardiovascular Diseases of National Cerebral and Cardiovascular Center.

Competing interests

Dr. Iihara is the principal investigator. Dr. Kada reports receiving personal fees from Bayer Yakuhin, Ltd. outside of the submitted work. Dr. Hagihara reports receiving a KAKENHI grant from the Japan Society for the Promotion of Science and grants from the Japan Agency for Medical Research and Development during the conduct of the study. Dr. Nishimura reports receiving grants from the Japanese Ministry of Health, Labour and Welfare and the Japan Agency for Medical Research and Development during the conduct of the study. Dr. Kitazono reports receiving grants from the Japanese Ministry of Health, Labour and Welfare and the Japan Agency for Medical Research and Development during the conduct of the study; personal fees from Bayer Yakuhin, Ltd., Daiichi Sankyo Co., Ltd., and Chugai Pharmaceutical Co., Ltd.; and grants from Takeda Pharmaceuticals Co., Ltd., Daiichi Sankyo Co., Ltd., Mitsubishi Tanabe Pharma Co, Eisai Co., Ltd., Astellas Pharma Inc., Chugai Pharmaceutical Co., Ltd., and MSD KK, outside of the submitted work. Dr. Ohta reports receiving funding for travel to speak at conference, Takeda Pharmaceutical, Tanabe Mitsubishi, Daiichi Sankyo, Otsuka Pharmaceutical, Stryker, Bayer, Kaneka, MSD, Medicos Hirata, Kyorin Pharmaceutical, Kochi Prefecture Kidney bank society, Uji Tokushukai Hospital, The Japanese Congress of Neurological Surgeons, Eisai, Medtronic and Terumo. He also reports Speakers' Bureaus, Takeda Pharmaceutical, Tanabe Mitsubishi, Daiichi Sankyo, Otsuka Pharmaceutical, Stryker, Bayer, Kaneka, MSD, Medicos Hirata, Kyorin Pharmaceutical , Kochi Prefecture Kidney bank society , Uji Tokushukai Hospital, Eisai, Medtronic and Terumo. Dr. Sakai reports receiving grants from Terumo Co., Ltd. and Daiichi Sankyo Co., Ltd.; and personal fees from Biomedical Solutions Co., Ltd., Johnson and Johnson Co., Ltd., Medtronic Co., Ltd., Penumbra Co., Ltd., Stryker Co., Ltd., and Terumo Co., Ltd., outside of the submitted work. Dr. Higashi reports receiving grants from the Japan Agency for Medical Research and Development and a KAKENHI grant from the Japan Society for the Promotion of Science during the conduct of the study. Dr. Sakamoto reports receiving grants from the Japan Agency for Medical Research and Development during the conduct of the study; personal fees from Boehringer Ingelheim Japan, Inc.; and grants from Asahi Kasei Pharma Corporation, Japan Blood Products Organization, and the Japanese Ministry of Health, Labour and Welfare, outside the submitted work. Dr. Iihara reports receiving grants from the Japanese Ministry of Health, Labour and Welfare, the Japan Agency for Medical Research and Development, and a KAKENHI grant from the Japan Society for the Promotion of Science during the conduct of the study; as well as grants from Otsuka Pharmaceutical Co., Ltd., Kaneka Medix Corporation, Eisai Co., Ltd., and Mitsubishi Tanabe Pharma Co., outside the submitted work. All other authors have nothing to disclose.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-06074-1.

Correspondence and requests for materials should be addressed to K.I.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

the J-ASPECT Study Collaborators

Masayoshi Takigami¹³, Kenji Kamiyama¹⁴, Kiyohiro Houkin¹⁵, Shogo Nishi¹⁶, Sadao Kaneko¹⁷, Koji Oka¹⁸, Yusuke Nakagaki¹⁹, Hiroshi Ooyama²⁰, Katsumi Takizawa²¹, Naoki Tokumitsu²², Susumu Suzuki²³, Nozomi Suzuki²⁴, Teruo Kimura²⁵, Naoto Izumi²⁶, Kazumi Nitta²⁷, Masafumi Ohtaki²⁸, Masanori Isobe²⁹, Mikio Nishiya³⁰, Mitsunobu Kaijima³¹, Syouji Mabuchi³², Kuniaki Ogasawara³³, Naohiko Kubo³⁴, Yukihiko Shimizu³⁵, Keiichi Saito³⁶, Tatumi Yamanome³⁷, Akinori Yabuta³⁸, Atsuo Yoshino³⁹, Junichi Harashina⁴¹, Masami Shimoda⁴², Hiroyuki Jimbo⁴³, Hideki Murakami⁴⁴, Hiroyuki Masaoka⁴⁵, Hirotoshi Ohtaka⁴⁶, Hiroki Yoshida⁴⁷, Ichiro Suzuki⁴⁸, Michihiro Kohno⁴⁹, Yoshinori Arai⁵⁰, Akira Isoshima⁵¹, Mitsuhiko Hokari⁵², Kensuke Kawai⁵³, Taketoshi Maehara⁵⁴, Hajime Arai⁵⁵, Takakazu Kawamata⁵⁶, Makoto Noguchi⁵⁷, Haruhiko Hoshino⁵⁸, Hirofumi Hiyama⁵⁹, Kensaku Yoshida⁶⁰, Mitsuyuki Fujitsuka⁶¹, Yasuaki Takeda⁶², Hirohide Karasudani⁶³, Shiro Kobayashi⁶⁴, Michio Nakamura⁶⁵, Junichi Ono⁶⁶, Sumio Suda⁶⁷, Hiromu Hadeishi⁶⁸, Kenji Wakui⁶⁹, Hirokazu Tanno⁷⁰, Naoaki Sato⁷¹, Hideki Sakai⁷², Takashi Matsumoto⁷³, Naoki Koketsu⁷⁴, Ichiro Nakahara⁷⁵, Toshinori Hasegawa⁷⁶, Naoto Kuwayama⁷⁷, Nobuhiko Mizutani⁷⁸, Noriyuki Suzaki⁷⁹, Keizo Yasui⁸⁰, Akira Ikeda⁸¹, Youtarou Takeuchi⁸², Toshihiko Wakabayashi⁸³, Hisashi Tanaka⁸⁴, Junpei Yoshimoto⁸⁵, Ogura Koichiro⁸⁶, Toshio Yokoe⁸⁸, Kenichi Murao⁹⁰, Tomonori Yamada⁹¹, Amami Kato⁹², Akatsuki Wakayama⁹³, Hiroharu Kataoka⁹⁴, Kouich Iwatsuki⁹⁵, Yoshikazu Nakajima⁹⁶, Hidefuku Gi⁹⁷, Ryunosuke Uranishi⁹⁸, Yusaku Nakamura⁹⁹, Kazunori Yamanaka¹⁰⁰, Hiroyuki Matsumoto¹⁰¹, Hiroaki Fujiwara¹⁰², Yoshiyasu Iwai¹⁰³, Masashi Morikawa¹⁰⁴, Kazuyuki Tane¹⁰⁶, Kazuo Hashikawa¹⁰⁷, Shunichi Yoneda¹⁰⁸, Kohsuke Yamashita¹⁰⁹, Masahiko Kitano¹¹⁰, Kazuhito Nakamura¹¹¹, Katsuhiko Kono¹¹², Kenji Ohata¹¹³, Toshihiko Kuroiwa¹¹⁴, Kazusige Maeno¹¹⁵, Motohiro Arai¹¹⁶, Masaaki Iwase¹¹⁷, Kenji Hashimoto¹¹⁸, Takashi Tsuruno¹¹⁹, Shinichiro Kurokawa¹²⁰, Takeshi Matsuyama¹²¹, Takamichi Yuguchi¹²², Yoshihumi Teramoto¹²³, Takayuki Matsuo¹²⁴, Naoki Kitagawa¹²⁶, Makio Kaminogo¹²⁷, Seisaburo Sakamoto¹²⁸, Yoshiharu Tokunaga¹²⁹, Ei-Ichirou Urasaki¹³⁰, Junichi Kuratsu¹³¹, Akira Takada¹³², Shu Hasegawa¹³³, Toru Nishi¹³⁴, Isao Fuwa¹³⁵, Hiromasa Tsuiki¹³⁶, Hiromasa Tsuiki¹³⁷, Kazunari Koga¹³⁸, Hiroshi Egami¹³⁹, Tadao Kawamura¹⁴⁰, Makoto Goda¹⁴¹, Yu Takeda¹⁴², Yasuyuki Nagai¹⁴³, Masaki Morisige¹⁴⁴, Yutaka Yamaguchi¹⁴⁵, Shiro Miyata¹⁴⁶, Hideo Takeshima¹⁴⁷, Kazutaka Yatsushiro¹⁴⁸, Hajime Ohta¹⁴⁹, Kazuho Hirahara¹⁵⁰, Teruaki Kawano¹⁵¹, Souichi Obara¹⁵², Hiroshi Seto¹⁵³, Shunichi Tanaka¹⁵⁴, Koiti Moroki¹⁵⁵, Kazunori Arita¹⁵⁶, Shogo Ishiuchi¹⁵⁷, Toshimitsu Uchihara¹⁵⁸, Susumu Mekaru¹⁵⁹, Tomoaki Nagamine¹⁶⁰, Jin Momoji¹⁶¹, Satoshi Yamamoto¹⁶², Atusi Kimoto¹⁶³, Tsutomu Kadekaru¹⁶⁴, Akihiko Saito¹⁶⁵, Osamu Onodera¹⁶⁶, Hideaki Takahashi¹⁶⁷, Hiroyuki Arai¹⁶⁸, Shigekazu Takeuchi¹⁶⁹, Hiroki Takano¹⁷⁰, Osamu Fukuda¹⁷¹, Mitsuo Kouno¹⁷², Igarashi Michitoku¹⁷³, Michiya Kubo¹⁷⁴, Hiroaki Hondo¹⁷⁵, Miyamori Tadao¹⁷⁶, Ryouichi Masuda¹⁷⁷, Takata Hisashi¹⁷⁸, Toru Masuoka¹⁷⁹, Naoki Shirasaki¹⁸¹, Hisashi Nitta¹⁸², Makoto Kimura¹⁸³, Hisato Minamide¹⁸⁴, Shunsuke Shiraga¹⁸⁵, Mitsutoshi Nakada¹⁸⁶, Shuji Sato¹⁸⁷, Hiroki Toda¹⁸⁸, Osamu Yamamura¹⁸⁹, Masanori Kabuto¹⁹⁰, Jyunya Hayashi¹⁹¹, Hiroyuki Kinouchi¹⁹³, Toyoaki Shinohara¹⁹⁴, Hidehito Koizumi¹⁹⁵, Mikito Uchida¹⁹⁶, Syougo Imae¹⁹⁷, Hiroshi Ozawa¹⁹⁸ Osamu Nishizaki¹⁹⁹, Masakazu Suga²⁰⁰, Kanehisa Kohno²⁰¹, Kiichiro Zenke²⁰², Hiromichi Sadashima²⁰³, Hikaru Mizobuchi²⁰⁴, Satoru Hayashi²⁰⁵, Masanori Morimoto²⁰⁶, Takeshi Kohno²⁰⁷, Tetsuya Ueba²⁰⁸, Hiroyuki Nishimura²⁰⁹, Norihito Shirakawa²¹¹, Masahiro Kagawa²¹², Naoki Hayashi²¹³, Atsushi Shindo²¹⁴, Kimihiro Yoshino²¹⁵, Tetsuya Masaoka²¹⁶, Kenwakai Otemati Hospital²¹⁷, Ichiro Nakahara²¹⁸, Akira Nakamizo²¹⁹, Yuji Okamoto²²⁰, Shigenari Kin²²¹, Haruki Takahashi²²², Satoshi Suzuki²²³, Koji lihara²²⁴, Katsuyuki Hirakawa²²⁵, Akira Nakamizo²²⁶, Akio Ookura²²⁷, Koichirou Matsukado²²⁸, Hidenori Yoshida²²⁹, Hiroshi Nakane²³⁰, Isao Inoue²³¹, Kei Hisada²³², Tsutomu Hitotsumatsu²³³, Kouichi Kuramoto²³⁴, Junya Hayashi²³⁵, Hiromichi Ooishi²³⁶, Masani Nonaka²³⁷, Motohiro Morioka²³⁸, Haruhisa Tsukamoto²³⁹, Hiroshi Sugimori²⁴⁰, Shinichirou Ishihara²⁴¹, Nobuaki Momozaki²⁴², Masayuki Miyazono²⁴³, Akihiro Nemoto²⁴⁴, Nobuo Hirota²⁴⁵, Hiroaki Tanaka²⁴⁶, Hiroshi Tanaka²⁴⁸, Atsushi Tsuchiya²⁴⁹, Katsumi Sakata²⁵⁰, Hidetoshi Murata²⁵¹, Motohiro Nomura²⁵², Hitoshi Ozawa²⁵³, Kotaro Tsumura²⁵⁴, Makoto Inaba²⁵⁵, Taturou Mori²⁵⁶, Tomoaki Terada²⁵⁷, Takahisa Mori²⁵⁸, Masato Sugitani²⁵⁹, Yuichiro Tanaka²⁶⁰, Masaru Yamada²⁶¹, Mitsunori Matsumae²⁶², Keiichirou Onitsuka²⁶³, Kosuke Miyahara²⁶⁴, Sumio Endou²⁶⁵, Atsuhiro Kojima²⁶⁶, Shinichi Yagi²⁶⁷, Hidekazu Takahashi²⁶⁸, Hiroyuki Kaidu²⁶⁹, Akira Tsunoda²⁷⁰,

Kyoichi Nomura²⁷¹, Takamitsu Fujimaki²⁷², Hidetoshi Ooigawa²⁷³, Masahiko Tanaka²⁷⁴, Hiroshi Wanihuchi²⁷⁵, Hirochiyo Wada²⁷⁶, Akio Hyodo²⁷⁷, Ken Asakura²⁷⁸, Akazi Kazunori²⁷⁹, Hideyuki Kurihara²⁸⁰, Shigehiro Ohmori²⁸¹, Hiroshi Kusunoki²⁸², Satoshi Magarisawa²⁸³, Shinichi Okabe²⁸⁵, Shinji Yamamoto²⁸⁶, Hiroko Oyama²⁸⁷, Shin Tsuruoka²⁸⁸, Mikihiko Takeshita²⁸⁹, Akira Matsumura²⁹⁰, Kazuya Uemura²⁹¹, Hitoshi Tabata²⁹², Keishi Fujita²⁹³, Masashi Nakatsukasa²⁹⁵, Norifumi Shimoeda²⁹⁶, Hideo Kunimine²⁹⁷, Masayuki Ishihara²⁹⁸, Kazuhiro Kikuchi²⁹⁹, Nozomu Murai³⁰⁰, Warou Taki³⁰¹, Nobukuni Murakami³⁰², Minoru Kidooka³⁰³, Yoshihiro Iwamoto³⁰⁴, Hiroshi Tenjin³⁰⁵, Kouji Shiga³⁰⁶, Nobuhito Mori³⁰⁷, Eiji Kohmura³⁰⁸, Takeshi Kondoh³⁰⁹, Haruo Yamashita³¹⁰, Keigo Matsumoto³¹¹, Naoya Takeda³¹², Takayuki Sakaki³¹³, Hiroji Miyake³¹⁴, Eiichiro Mabuchi³¹⁵, Masayuki Yokota³¹⁶, No³¹⁷, Hideyuki Ohnishi³¹⁸, Masaaki Saiki³²¹, Minoru Asahi³²², Junji Koyama³²³, Yoshio Sakagami³²⁴, Shinya Noda³²⁵, Junichi lida³²⁶, Tetsuya Morimoto³²⁷, Hiroyuki Nakase³²⁸, Hidehiro Hirabayashi³³⁰, Naoyuki Nakao³³¹, Toshikazu Kuwata³³², Yoshinari Nakamura³³³, Hiroshi Ishiguchi³³⁴, Teruyuki Habu³³⁵, Masamichi Kurosaki³³⁶, Hiroki Ohkuma³³⁷, Seiko Hasegawa³³⁸, Hiromu Konno³³⁹, Atsuhito Takemura³⁴⁰, Atsuya Okubo³⁴¹, Hitoshi Saito³⁴², Junta Moroi³⁴³, Hiroaki Shimizu³⁴⁴, Masayuki Sasou³⁴⁵, Yoichi Watanabe³⁴⁶, Kiyoshi Saito³⁴⁷, Masahiro Satoh³⁴⁸, Zenichiro Watanabe³⁴⁹, Takayuki Koizumi³⁵⁰, Shoji Mashiyama³⁵¹, Tomoyoshi Oikawa³⁵², Sonoda Yukihiko³⁵³, Rei Kondo³⁵⁴, Atsuo Shinoda³⁵⁵, Eiichiro Kamatsuka³⁵⁶, Keiten So³⁵⁷, Toshihiko Kinjo³⁵⁸, Kennji Itou³⁵⁹, Yohei Kudoh³⁶⁰, Kazuhiko Sato³⁶¹, Arai Hiroaki³⁶², Hidenori Endo³⁶³, Hiroshi Karibe³⁶⁴, Kou Takahashi³⁶⁵, Masayuki Nakajima³⁶⁶, Kazuyoshi Watanabe³⁶⁷, Kazuhiko Nozaki³⁶⁸, Motohiro Takayama³⁶⁹, Tarou Komuro³⁷⁰, Fumio Suzuki³⁷¹, Hidenori Suzuki³⁷³, Hiroto Murata³⁷⁴, Fumitaka Miya³⁷⁵, Seiji Fukazawa³⁷⁶, Seiya Takehara³⁷⁷, Yoshihiko Watanabe³⁷⁸, Teiji Nakayama³⁷⁹, Haruhiko Sato³⁸⁰, Shinji Amano³⁸¹, Katsuhiro Kuroda³⁸², Akira Morooka³⁸³, Takafumi Wataya³⁸⁴, Tetsuya Tanigawara³⁸⁵, Toru Iwama³⁸⁶, Junki Ito³⁸⁷, Shinji Noda³⁸⁸, Kazuyuki Kouno³⁸⁹, Kazuo Kitazawa³⁹⁰, Yoshikazu Kusano³⁹¹, Masanobu Hokama³⁹², Hiroki Sato³⁹³, Sumio Kobayashi³⁹⁴, Shinsuke Muraoka³⁹⁵, Masaki Miyatake³⁹⁶, Kensuke Hayashida³⁹⁷, Keiichi Sakai³⁹⁸, Fusao Ikawa³⁹⁹, Gen Ishida⁴⁰⁰, Takato Kagawa⁴⁰¹, Youichirou Namba⁴⁰², Hiroyuki Nakashima⁴⁰³, Koji Tokunaga⁴⁰⁴, Isao Date⁴⁰⁵, Masaaki Uno⁴⁰⁶, Masaki Chin⁴⁰⁷, Hidemichi Sasayama⁴⁰⁸, Hideyuki Yoshida⁴⁰⁹, Akira Watanabe⁴¹¹, Kunihiko Harada⁴¹², Manabu Urakawa⁴¹³, Yasuhiro Hamada⁴¹⁴, Michiyasu Suzuki⁴¹⁵, Takafumi Nishizaki⁴¹⁶, Katsuhiro Yamashita⁴¹⁷, Ryuji Nakamura⁴¹⁸, Masayuki Sumida⁴¹⁹, Shinichi Wakabayashi⁴²⁰, Kaoru Kurisu⁴²¹, Atsushi Tominaga⁴²², Masaaki Shibukawa⁴²³, Kawamoto Yukihiko⁴²⁴, Shinji Okita⁴²⁵, Kenjirou Hujiwara⁴²⁶, Takashi Matsuoka⁴²⁷, Osamu Hamasaki⁴²⁸, Junichiro Satomi⁴²⁹, Masahito Agawa⁴³⁰, Hirofumi Oka⁴³¹, Kunikazu Yoshimura⁴³², Sei Haga⁴³³, Katsuyuki Asaoka⁴³⁴, Toshitaka Nakamura⁴³⁵, Makoto Takeda⁴³⁶, Nobuaki Kobayasi⁴³⁷, Satoshi Ushikoshi⁴³⁸, Nobuhiro Mikuni⁴³⁹, Jun Niwa⁴⁴⁰, Rokuya Tanikawa⁴⁴¹, Akinori Yamamura⁴⁴², Akira Takahashi⁴⁴³, Noriaki Watabe⁴⁴⁴, Junkoh Sasaki⁴⁴⁵, Yasunari Otawara⁴⁴⁶, Kazuyuki Miura⁴⁴⁷, Teiji Tominaga⁴⁴⁸, Tatsuya Sasaki⁴⁴⁹, Takayuki Sugawara⁴⁵⁰, Masayuki Ezura⁴⁵¹, Kenji Yamamoto⁴⁵², Syuichi Ishikawa⁴⁵³, Yoshida Masahiro⁴⁵⁴, Sunao Takemura⁴⁵⁵, Masahisa Kawakami⁴⁵⁶, Satoshi Ihara⁴⁵⁷, Yasushi Shibata⁴⁵⁸, Takashi Saegusa⁴⁵⁹, Toshihiko luchi⁴⁶⁰, Chiaki Ito⁴⁶¹, Seiichiro Hoshi⁴⁶², Sumio Isimaru⁴⁶³, Osamu Okuda⁴⁶⁴, Kazunari Yoshida⁴⁶⁵, Takekazu Akiyama⁴⁶⁶, Masateru Katayama⁴⁶⁷, Masahiko Kasai⁴⁶⁸, Tomonori Kobayashi⁴⁶⁹, Oikawa Akihiro⁴⁷⁰, Naohisa Miura⁴⁷¹, Osamu Tao⁴⁷², Takahiro Oota⁴⁷³, Atumi Takenobu⁴⁷⁴, Toshihiro Kumabe⁴⁷⁵, Sachio Suzuki⁴⁷⁶, Takashi Kumagai⁴⁷⁷, Keiichi Nishimaki⁴⁷⁸, Kazuhiro Hongo⁴⁷⁹, Yasuyuki Toba⁴⁸⁰, Kuroyanagi Takayuki⁴⁸¹, Hiroaki Shigeta⁴⁸², Atsushi Sato⁴⁸³, Satoshi Kuroda⁴⁸⁴, Cheho Park⁴⁸⁵, Sotaro Higashi⁴⁸⁶, Hirofumi Oyama⁴⁸⁷, Kazuyoshi Hattori⁴⁸⁸, Yoichi Uozumi⁴⁸⁹, Norimoto Nakahara⁴⁹⁰, Mitsuhito Mase⁴⁹¹, Nobukazu Hashimoto⁴⁹², Toshikazu Ichihashi⁴⁹³, Katsunobu Takenaka⁴⁹⁴, Shinichi Shirakami⁴⁹⁵, Yoshinari Okumura⁴⁹⁶, Kazuhiro Yokoyama⁴⁹⁷, Susumu Miyamoto⁴⁹⁸, Yoshinori Akiyama⁴⁹⁹, Kenji Hashimoto⁵⁰⁰, Masaaki Saiki⁵⁰¹, Kazuo Yamamoto⁵⁰², Naofumi Isono⁵⁰³, Tsugumichi Ichioka⁵⁰⁴, Nakazawa Kazutomo⁵⁰⁵, Misao Nishikawa⁵⁰⁶, Tsuyoshi Inoue⁵⁰⁷, Manabu Kinoshita⁵⁰⁸, Shinichi Yoshimura⁵¹⁰, Minoru Saitoh⁵¹¹, Hideo Aihara⁵¹², Hajimu Miyake⁵¹³, Kazuyuki Kuwayama⁵¹⁴, Kotaro Ogihara⁵¹⁵, Shiqeki Nishino⁵¹⁶, Yasuyuki Miyoshi⁵¹⁷, Tadashi Arisawa⁵¹⁸, Shiqeru Daido⁵¹⁹, Kimihisa Kinoshita⁵²⁰, Keisuke Migita⁵²¹, Keiichi Akatsuka⁵²², Hirosuke Fujisawa⁵²³, Junkoh Yamamoto⁵²⁴, Yosimasa Kinosita⁵²⁵, Satoshi Inoha⁵²⁶, Hitonori Takaba⁵²⁷, Tadahisa Shono⁵²⁸, Hitoshi Tsugu⁵²⁹, Shuji Hayashi⁵³⁰, Tatsuya Abe⁵³¹, Susumu Nakashima⁵³², Takehisa Tuji⁵³³,

Keizou Yamamoto⁵³⁴, Akihiko Kaga⁵³⁵, Reizou Kanemaru⁵³⁶, Koji Takasaki⁵³⁷, Junichi Imamura⁵³⁸, Masahiro Noha⁵³⁹, Saburo Watanabe⁵⁴⁰, Nobuyuki Sakai⁵⁴¹, Hiroaki Minami⁵⁴², Tomoyoshi Okumura⁵⁴³, Shinjitsu Nishimura⁵⁴⁴, Shinichi Numazawa⁵⁴⁵, Yasunari Niimi⁵⁴⁶, Isao Kitahara⁵⁴⁷, Hidemitu Nakagawa⁵⁴⁸, Kiyoshi Kazekawa⁵⁴⁹, Kouzou Fukuyama⁵⁵⁰, Makoto Ichinose⁵⁵¹, Koji Matuoka⁵⁵², Yasuhiro Fujimoto⁵⁵³, Youichi Hashimoto⁵⁵⁴, Takeshi Matsuoka⁵⁵⁵, Takamitsu Uchizawa⁵⁵⁶, Tomohiko Satou⁵⁵⁷, Makoto Hasebe⁵⁵⁸, Tomoaki Kameda⁵⁵⁹, Hiroaki Sawaura⁵⁶⁰, Takayuki Kubodera⁵⁶¹, Satoshi Utsuki⁵⁶², Kazuaki Awamori⁵⁶³, Chiaki Takahashi⁵⁶⁴, Kazumasa Yamatani⁵⁶⁵, Toshiyuki Tsukada⁵⁶⁶, Ryoichi Hayashi⁵⁶⁷, Masakazu Kitahara⁵⁶⁸, Yukinari Kakizawa⁵⁶⁹, Yasumasa Yamamoto⁵⁷⁰, Takashi Yoshida⁵⁷¹, Shinji Okumura⁵⁷², Yasunobu Gotou⁵⁷³, Takashi Tominaga⁵⁷⁴, Hirotoshi Hamaguchi⁵⁷⁵, Nozomi Mori⁵⁷⁶, Naoki Shinohara⁵⁷⁷, Yasushi Ejima⁵⁷⁸, Mayumi Mori⁵⁷⁹, Hitoshi Miyake⁵⁸⁰, Masaru Idei⁵⁸¹, Yoshihiro Nishiura⁵⁸², Hiromichi Koga⁵⁸³, Kazuya Morimoto⁵⁸⁴, Jae-Hyun Son⁵⁸⁵, Yoshimasa Niiya⁵⁸⁶, Tsuneo Shishido⁵⁸⁷, Mamoru Murakami⁵⁸⁸, Takaaki Yoshida⁵⁹⁹, Masahito Hara⁵⁹⁰, Tatsuya Nakamura⁵⁹¹, Takuya Kawai⁵⁹², Takashi Inoue⁵⁹³, Isao Sasaki⁵⁹⁴, Katsuhiko Hayashi⁵⁹⁵, Ichiro Fujishima⁵⁹⁶, Naoko Fujimura⁵⁹⁷, Seiko Kataoka⁵⁹⁸ & Masayuki Yokota⁵⁹⁹

¹³Sapporo City General Hospital, Sapporo, Japan. ¹⁴Nakamura Memorial Hospital, Sapporo, Japan. ¹⁵Hokkaido University Hospital, Sapporo, Japan. ¹⁶Sapporo Higashi Tokushukai Hospital, Sapporo, Japan. ¹⁷Kashiwaba Neurosurgical Hospital, Sapporo, Japan. ¹⁸Nakamura Memorial South Hospital, Sapporo, Japan. ¹⁹Takikawa Neurosurgical Hospital, Takikawa, Japan. ²⁰Muroran City General Hospital, Muroran, Japan. ²¹Japanese Red Cross Asahikawa Hospital, Asahikawa, Japan. ²²Nayoro City Hospital, Nayoro, Japan. ²³Rumoi Central Clinic, Rumoi, Japan. ²⁴Japanese Red Cross Kitami Hospital, Kitami, Japan. ²⁵Doutou Neurosurgical Hospital, Kitami, Japan. ²⁶Meiseikai Abashiri Neurosurgical Rehabilitation Hospital, Abashiri, Japan. ²⁷Hokuto Hospital, Obihiro, Japan. ²⁸Obihiro Kosei General Hospital, Obihiro, Japan. ²⁹Kushiro Rosai Hospital, Kushiro, Japan. ³⁰Hakodate Neurosurgical Hospital, Hakodate, Japan. ³¹Hokushikai Megumino Hospital, Eniwa, Japan. ³²Otaru Municipal Medical Center for Brain Cardiovascular and Mental Disorders, Otaru, Japan. ³³Iwate Medical University Hospital, Shiwa, Japan. ³⁴Morioka Red Cross Hospital, Morioka, Japan. ³⁵Iwate Prefectural Isawa Hospital, Oshu, Japan. ³⁶Iwate Prefectural Iwai Hospital, Ichinoseki, Japan. ³⁷Iwate Prefectural Oofunato Hospital, Ohunato, Japan. ³⁸Iwate Prefectural Ninohe Hospital, Ninohe, Japan. ³⁹Nihon University Itabashi Hospital, Tokyo, Japan. ⁴¹Kasai Shoikai Hospital, Tokyo, Japan. ⁴²Tokai University Hachioji Hospital, Hachioji, Japan. ⁴³Tokyo Medical University Hachioji Medical Center, Hachioji, Japan. ⁴⁴Inagi Municipal Hospital, Inagi, Japan. ⁴⁵NHO Disaster Medical Center, Tachikawa, Japan. ⁴⁶Higashiyamato Hospital, Higashiyamato, Japan. ⁴⁷Kyorin University Hospital, Mitaka, Japan. ⁴⁸Japanese Red Cross Medical Center, Tokyo, Japan. ⁴⁹Tokyo Medical University Hospital, Tokyo, Japan. ⁵⁰Makita General Hospital, Tokyo, Japan. ⁵¹Omori Red Cross Hospital, Tokyo, Japan. ⁵²Nitobe Memorial Nakano General Hospital, Tokyo, Japan. 53 NTT Medical Center Tokyo, Tokyo, Japan. 54 Tokyo Medical and Dental University Hospital, Tokyo, Japan. ⁵⁵Juntendo University Hospital, Tokyo, Japan. ⁵⁶Tokyo Womens Medical University Hospital, Tokyo, Japan. ⁵⁷Tokyo Teisin Hospital, Tokyo, Japan. ⁵⁸Tokyo Saiseikai Central Hospital, Tokyo, Japan. ⁵⁹JCHO Tokyo Takanawa Hospital, Tokyo, Japan. ⁶⁰Tokyo Metropolitan Hiroo Hospital, Tokyo, Japan. ⁶¹Kuqayama Hospital, Tokyo, Japan. ⁶²JCHO Tokyo Yamate Medical Center, Tokyo, Japan. ⁶³Matsudo City Hospital, Matsudo, Japan. ⁶⁴Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan. ⁶⁵Narita Red Cross Hospital, Narita, Japan. ⁶⁶Chiba Cerebral and Cardiovascular Center, Ichihawa, Japan. ⁶⁷Kimitsu Chuo Hospital, Kisarazu, Japan. ⁶⁸Kameda Medical Center, Kamogawa, Japan. ⁶⁹Chiba Neurosurgical Clinic, Chiba, Japan. ⁷⁰NHO Chiba Medical Center, Chiba, Japan. ⁷¹Kobari General Hospital, Noda, Japan. ⁷²NHO Toyohashi Medical Center, Toyohashi, Japan. ⁷³Toyokawa City Hospital, Toyokawa, Japan. ⁷⁴Tosei General Hospital, Seto, Japan. ⁷⁵Fujita Health University Hospital, Toyoake, Japan. ⁷⁶Komaki City Hospital, Komaki, Japan. ⁷⁷Kasugai Municipal Hospital, Kasugai, Japan. ⁷⁸Konan Kosei Hospital, Konan, Japan. ⁷⁹NHO Nagoya Medical Center, Nagoya, Japan. ⁸⁰Nagoya Daini Red Cross Hospital, Naqoya, Japan. ⁸¹JCHO Chukyo Hospital, Naqoya, Japan. ⁸²Meitetsu Hospital, Naqoya, Japan. ⁸³Naqoya University Hospital, Nagoya, Japan. ⁸⁴Minato Medical Coop-Kyoritsu General Hospital, Nagoya, Japan. ⁸⁵Nagoya Memorial Hospital, Nagoya, Japan. ⁸⁶Toyota Kosei Hospital, Toyota, Japan. ⁸⁸Nishio Municipal Hospital, Nishio, Japan. ⁹⁰Shiroyama Hospital, Habikino, Japan. ⁹¹NHO Osakaminami Medical Center, Kawachinagano, Japan. ⁹²Kindai University Hospital, Osakasayama, Japan. ⁹³Osaka Neurological Institute, Toyonaka, Japan. ⁹⁴National Cerebral and Cardiovascular Center, Suita, Japan. 95 Osaka University Hospital, Suita, Japan. 96 Sakai City Medical Center, Sakai, Japan. ⁹⁷Baba Memorial Hospital, Sakai, Japan. ⁹⁸Bellland General Hospital, Sakai, Japan. ⁹⁹Kindai University Sakai Hospital, Sakai, Japan. ¹⁰⁰Fuchu Hospital, Izumi, Japan. ¹⁰¹Kishiwada Tokushukai Hospital, Kishiwada, Japan. ¹⁰²Meisei Hospital, Osaka, Japan. ¹⁰³Osaka City General Hospital, Osaka, Japan. ¹⁰⁴Yodogawa Christian Hospital, Osaka, Japan. ¹⁰⁶Tane General Hospital, Osaka, Japan. ¹⁰⁷NHO Osaka National Hospital, Osaka, Japan. ¹⁰⁸Nipponbashi Hospital, Osaka, Japan. ¹⁰⁹Osaka Red Cross Hospital, Osaka, Japan. ¹¹⁰Tominaga Hospital, Osaka, Japan. ¹¹¹Suisyoukai Murata Hospital, Osaka, Japan. ¹¹²Saiseikai Noe Hospital, Osaka, Japan. ¹¹³Osaka City University Hospital, Osaka, Japan. 114 Osaka Medical College Hospital, Takatsuki, Japan. 115 Takatsuki General Hospital, Takatsuki, Japan. ¹¹⁶Midorigaoka Hospital, Takatsuki, Japan. ¹¹⁷Kansai Medical University Takii Hospital, Moriguchi, Japan. ¹¹⁸Matsushita Memorial Hospital, Moriguchi, Japan. ¹¹⁹Yao Tokushukai General Hospital, Yao, Japan. ¹²⁰Ishinkai Yao General Hospital, Yao, Japan. ¹²¹Wakakusa Daiichi Hospital, Higashiosaka, Japan. ¹²²Hanwa Memorial Hospital, Osaka, Japan. ¹²³Yuaikai Hospital, Osaka, Japan. ¹²⁴Nagasaki University Hospital, Nagasaki, Japan. ¹²⁶Saiseikai Naqasaki Hospital, Naqasaki, Japan. ¹²⁷Sasebo City General Hospital, Sasebo, Japan. ¹²⁸Sasebo Chuo Hospital, Sasebo, Japan.¹²⁹Nagasakiken Shimabara Hospital, Shimabara, Japan.¹³⁰NHO Nagasaki Kawatana

Medical Center, Kawatana, Japan. ¹³¹Kumamoto University Hospital, Kumamoto, Japan. ¹³²Kumamoto City Hospital, Kumamoto, Japan. ¹³³ Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan. ¹³⁴ Saiseikai Kumamoto Hospital, Kumamoto, Japan. ¹³⁵Arao Municipal Hospital, Arao, Japan. ¹³⁶Kumamoto Rousai Hospital, Yatsushiro, Japan. ¹³⁷Minamata City General Hospital and Medical Center, Minamata, Japan. ¹³⁸JCHO Kumamoto General Hospital, Yatsushiro, Japan. ¹³⁹Uki General Hospital, Uki, Japan. ¹⁴⁰Tenshindo Hetsugi Hospital, Oita, Japan.¹⁴¹Almeida Memorial Hospital, Oita, Japan.¹⁴²Oita Prefectural Hospital, Oita, Japan.¹⁴³NHO Beppu Medical Center, Beppu, Japan. ¹⁴⁴JCHO Nankai Medical Center, Saiki, Japan. ¹⁴⁵Oitaoka Hospital, Oita, Japan. ¹⁴⁶Seiwakai Wada Hospital, Hyuqa, Japan. ¹⁴⁷University of Miyazaki Hospital, Miyazaki, Japan. ¹⁴⁸Fujimoto General Hospital, Miyakonojo, Japan. ¹⁴⁹Miyakonojo Medical Association Hospital, Miyakonojo, Japan. ¹⁵⁰Kagoshima City Hospital, Kaqoshima, Japan.¹⁵¹Kaqoshima Tokushukai Hospital, Kaqoshima, Japan.¹⁵²Obara Hospital, Makurazaki, Japan. ¹⁵³Izumi General Medical Center, Izumi, Japan. ¹⁵⁴Kagoshima Prefectural Kanoya Medical Center, Kanoya, Japan. ¹⁵⁵Tokuda Neurosurgical Hospital, Kanoya, Japan. ¹⁵⁶Kagoshima University Hospital, Kagoshima, Japan. ¹⁵⁷University of the Ryukyus Hospital, Nakagami, Japan. ¹⁵⁸Okinawa Prefectural Hokubu Hospital, Nago, Japan. ¹⁵⁹Urasoe General Hospital, Urasoe, Japan. ¹⁶⁰Okinawa Prefectural Nanbu Medical Center/Nanbu Child Medical Center, Shimajiri, Japan.¹⁶¹Naha City Hospital, Naha, Japan.¹⁶²Okinawa Miyako Hospital, Miyakojima, Japan. ¹⁶³Okinawa Kyodo Hospital, Naha, Japan. ¹⁶⁴Nanbu Tokushukai Hospital, Shimajiri, Japan. ¹⁶⁵Niigata City General Hospital, Niigata, Japan. ¹⁶⁶Niigata University Medical & Dental Hospital, Niigata, Japan. ¹⁶⁷Niigata Cancer Center Hospital, Niigata, Japan. ¹⁶⁸Niigata Neurosurgical Hospital, Niigata, Japan. ¹⁶⁹Nagaoka Chuo General Hospital, Nagaoka, Japan. ¹⁷⁰Tachikawa General Hospital, Nagaoka, Japan. ¹⁷¹Saito Memorial Hospital, Minamiuonuma, Japan. ¹⁷²Niigata Tokamachi Hospital, Tokamachi, Japan. ¹⁷³Niigata Prefectural Central Hospital, Joetsu, Japan. ¹⁷⁴Saiseikai Toyama Hospital, Toyama, Japan. ¹⁷⁵Toyama Prefectural Central Hospital, Toyama, Japan. ¹⁷⁶Toyama City Hospital, Toyama, Japan. ¹⁷⁷Yatsuo General Hospital, Toyama, Japan. ¹⁷⁸Himi Municipal Hospital, Himi, Japan. ¹⁷⁹Tonami General Hospital, Tonami, Japan. ¹⁸¹Kaga Medical Center, Kaga, Japan. ¹⁸²Komatsu Municipal Hospital, Komatsu, Japan. ¹⁸³Yawata Medical Center, Komatsu, Japan. ¹⁸⁴Ishikawa Prefectural Central Hospital, Kanazawa, Japan. ¹⁸⁵Kanazawa Medical University Hospital, Kahoku, Japan. ¹⁸⁶Kanazawa University Hospital, Kanazawa, Japan. ¹⁸⁷Kanazawa Neurosurgical Hospital, Nonoichi, Japan. ¹⁸⁸Japanese Red Cross Fukui Hospital, Fukui, Japan. ¹⁸⁹University of Fukui Hospital, Yoshida, Japan. ¹⁹⁰Fukui Katsuyama General Hospital, Katsuyama, Japan. ¹⁹¹Hayashi Hospital, Echizen, Japan. ¹⁹³University of Yamanashi Hospital, Chuo, Japan. ¹⁹⁴Kofu Neurosurgical Hospital, Kofu, Japan. ¹⁹⁵Yamanashi Prefectural Central Hospital, Kofu, Japan. ¹⁹⁶Yamanashi Kosei Hospital, Yamanashi, Japan. ¹⁹⁷Fujiyoshida Municipal Hospital, Fujiyoshida, Japan. ¹⁹⁸Yamanashi Red Cross Hospital, Minamitsuru, Japan. ¹⁹⁹Saiseikai Imabari Hospital, Imabari, Japan. ²⁰⁰Matsuyama Shimin Hospital, Matsuyama, Japan. ²⁰¹Ehime Prefectural Central Hospital, Matsuyama, Japan. ²⁰²Uwajima City Hospital, Uwajima, Japan. ²⁰³Okinawatokushuukai Uwajimatokushukai Hospital, Uwajima, Japan. ²⁰⁴Izumino Hospital, Kochi, Japan. ²⁰⁵Chikamori Hospital, Kochi, Japan. ²⁰⁶Kochi Health Sciences Center, Kochi, Japan. ²⁰⁷Japanese Red Cross Kochi Hospital, Kochi, Japan. ²⁰⁸Kochi Medical School Hospital, Nankoku, Japan. ²⁰⁹Hata Kenmin Hospital, Sukumo, Japan. ²¹¹Takamatsu Municipal Hospital, Takamatsu, Japan. ²¹²Takamatsu Red Cross Hospital, Takamatsu, Japan. ²¹³Osaka Neurosurgical Hospital, Takamatsu, Japan. ²¹⁴Kagawa University Hospital, Kita, Japan. ²¹⁵Kagawa Rosai Hospital, Marugame, Japan. ²¹⁶Mitoyo General Hospital, Kanonji, Japan. ²¹⁷Kenwakai Otemati Hospital, Kitakyushu, Japan. ²¹⁸Kokura Memorial Hospital, Kitakyushu, Japan. ²¹⁹Steel Memorial Yawata Hospital, Kitakyushu, Japan. ²²⁰Saiseikai Yahata General Hospital, Kitakyushu, Japan. ²²¹Fukuokashinmizumaki Hospiral, Onga, Japan. ²²²Obase Hospital, Miyako, Japan. ²²³Kieikai Hospital, Fukuoka, Japan. ²²⁴Kyushu University Hospital, Fukuoka, Japan. ²²⁵Fukuoka City Hospital, Fukuoka, Japan. ²²⁶NHO Kyushu Medical Center, Fukuoka, Japan. ²²⁷Saiseikai Fukuoka General Hospital, Fukuoka, Japan. ²²⁸Hamanomachi Hospital, Fukuoka, Japan. ²²⁹Fukuoka Tokushukai Medical Center, Kasuga, Japan. 230NHO Fukuoka Higashi Medical Center, Koga, Japan. 231Fukuoka Seisyukai Hospital, Kasuya, Japan.²³²Hachisuga Hospital, Munakata, Japan.²³³Shin Koga Hospital, Kurume, Japan. ²³⁴Omuta City Hospital, Omuta, Japan. ²³⁵Kawasaki Hospital, Yame, Japan. ²³⁶Tanushimaru Central Hospital, Kurume, Japan. ²³⁷Fukuoka University Hospital, Fukuoka, Japan. ²³⁸Kurume University Hospital, Kurume, Japan. ²³⁹Kitakyushu Municipal Medical Center, Kitakyushu, Japan. ²⁴⁰Saga-Ken Medical Centre Koseikan, Saga, Japan. ²⁴¹Yayoigaoka Kage Hospital, Tosu, Japan. ²⁴²Imari Arita Kyoritsu Hospital, Nishimatsuura, Japan. ²⁴³NHO Ureshino Medical Center, Ureshino, Japan. 244 Yokohamashintoshi Neurosurgecal Hospital, Yokohama, Japan. 245 Yokosuka City Uwamachi Hospital, Yokosuka, Japan. 246Yokohama City Minato Red Cross Hospital, Yokohama, Japan. ²⁴⁸Chigasaki Municipal Hospital, Chigasaki, Japan. ²⁴⁹Kanto Rosai Hospital, Kawasaki, Japan. ²⁵⁰Yokohama City University Medical Center, Yokohama, Japan. ²⁵¹Yokohama City University Hospital, Yokohama, Japan. ²⁵²Yokohama Sakae Kyosai Hospital, Yokohama, Japan. ²⁵³Ushioda General Hospital, Yokohama, Japan. ²⁵⁴Sekishinkai Kawasakisaiwai Hospital, Kawasaki, Japan. ²⁵⁵Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan. ²⁵⁶JCHO Yokohama Chuo Hospital, Yokohama, Japan. ²⁵⁷Showa University Fujigaoka Hospital, Yokohama, Japan. ²⁵⁸Shonan Kamakura General Hospital, Kamakura, Japan. ²⁵⁹Sagamihara Kyodo Hospital, Sagamihara, Japan. ²⁶⁰St.Marianna University School of Medicine, Kawasaki, Japan. ²⁶¹Yamato Municipal Hospital, Yamato, Japan. ²⁶²Tokai University Hospital, Isehara, Japan. ²⁶³Tomei Atsugi Hospital, Atsugi, Japan. ²⁶⁴NHO Yokohama Medical Center, Yokohama, Japan. ²⁶⁵Yokohamasinmidori Hospital, Yokohama, Japan. ²⁶⁶Saitama City Hospital, Saitama, Japan. ²⁶⁷Kanto Neurosurgical Hospital, Kumagaya, Japan. ²⁶⁸Ageo Central General Hospital, Ageo, Japan. ²⁶⁹Musashino General Hospital, Kawagoe, Japan. ²⁷⁰Koshigaya Municipal Hospital, Koshigaya, Japan. ²⁷¹Saitama Medical Center, Kawagoe, Japan. ²⁷²Saitama Medical University Hospital, Iruma, Japan. ²⁷³Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan. 274Kan-Etsu Hospital, Tsurugashima, Japan. 275Saiseikai Kurihashi Hospital, Kuki, Japan. ²⁷⁶Fukaya Red Cross Hospital, Fukaya, Japan. ²⁷⁷Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan. 278 Japanese Red Cross Maebashi Hospital, Maebashi, Japan. 279 Institute of Brain and Blood Vessels Mihara Memorial Hospital, Isesaki, Japan. ²⁸⁰NHO Takasaki General Medical Center, Takasaki, Japan. ²⁸¹Kurosawa Hospital, Takasaki, Japan. ²⁸²Nishiagatsuma Welfare Hospital, Agatsuma, Japan. ²⁸³Kiryu Kosei General Hospital, Kiryu, Japan. ²⁸⁵Seirei Memorial Hospital, Hitachi, Japan. ²⁸⁶Tsuchiura Kyodo

General Hospital, Tsuchiura, Japan. ²⁸⁷Ibaraki Prefectural Central Hospital, Kasama, Japan. ²⁸⁸JA Toride Medical Center, Toride, Japan. ²⁸⁹Ushiku Aiwa General Hospital, Ushiku, Japan. ²⁹⁰University of Tsukuba Hospital, Tsukuba, Japan. ²⁹¹Tsukuba Medical Center Hospital, Tsukuba, Japan. ²⁹²Tsuchiura Kyodo Hospital Namegata District Medical Center, Namegata, Japan. 293 Ibaraki Seinan Medical Center Hospital, Sashima, Japan. 295 Saiseikai Ustunomiya Hospital, Utsunomiya, Japan. ²⁹⁶Shimotsuga General Hospital, Tochigi, Japan. ²⁹⁷Fujii Neurosurgical Hospital, Utsunomiya, Japan. ²⁹⁸NHO Tochigi Medical Center, Utsunomiya, Japan. ²⁹⁹Kurosu Hospital, Sakura, Japan. ³⁰⁰Kyoto City Hospital, Kyoto, Japan. ³⁰¹Takeda Hospital, Kyoto, Japan. ³⁰²Saiseikai Kyoto Hospital, Nagaokakyo, Japan. ³⁰³Kyoto Okamoto Memorial Hospital, Kuse, Japan. ³⁰⁴Kyoto Yamashiro General Medical Center, Kizugawa, Japan. ³⁰⁵Kyoto Second Red Cross Hospital, Kyoto, Japan. ³⁰⁶Ayabe City Hospital, Ayabe, Japan. ³⁰⁷Kyoto Min-Iren Chuo Hospital, Kyoto, Japan. ³⁰⁸Kobe University Hospital, Kobe, Japan. ³⁰⁹Shinsuma General Hospital, Kobe, Japan. ³¹⁰Kobe Red Cross Hospital, Kobe, Japan. ³¹¹JCHO Kobe Central Hospital, Kobe, Japan. ³¹²Nishikobe Medical Center, Kobe, Japan. ³¹³Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan. ³¹⁴Nishinomiya Kyoritsu Neurosurgical Hospital, Nishinomiya, Japan. ³¹⁵Takarazuka City Hospital, Takarazuka, Japan. ³¹⁶The Veritas Hospital, Kawanishi, Japan. ³¹⁷Takarazuka Daiichi Hospital, Takarazuka, Japan. ³¹⁸Ohnishi Neurological Center, Akashi, Japan. ³²¹NHO Himeji Medical Center, Himeji, Japan. ³²²Ako City Hospital, Ako, Japan. ³²³Toyooka Hospital, Toyooka, Japan. ³²⁴Hyogo Prefectural Awaji Medical Center, Sumoto, Japan. ³²⁵Itami Kousei Neurosurgical Hospital, Itami, Japan. ³²⁶Nara Prefectural Nara Hospital, Nara, Japan. ³²⁷Kouseikai Takai Hospital, Tenri, Japan. ³²⁸Nara Medical University Hospital, Kashihara, Japan. ³³⁰NHO Nara Medical Center, Nara, Japan. ³³¹Wakayama Medical University Hospital, Wakayama, Japan. ³³²Wakayama Rosai Hospital, Wakayama, Japan. ³³³NHO Minami Wakayama Medical Center, Tanabe, Japan. ³³⁴Shingu Municipal Medical Center, Shingu, Japan. ³³⁵Wakayama-Seikyo Hospital, Wakayama, Japan. ³³⁶Tottori University Hospital, Yonego, Japan. ³³⁷Hirosaki University Hospital, Hirosaki, Japan. ³³⁸Kurosishi General Hospital, Kuroishi, Japan. ³³⁹Japanese Red Cross Society Hachinohe Hospital, Hachinohe, Japan. 340 Aomori City Hospital, Aomori, Japan. 341 Odate Municipal General Hospital, Odate, Japan. ³⁴²Akita City Hospital, Akita, Japan. ³⁴³Research Institute for Brain and Blood Vessels-Akita, Akita, Japan. ³⁴⁴Akita University Hospital, Akita, Japan. ³⁴⁵Kazuno Kosei Hospital, Kazuno, Japan. ³⁴⁶Fukushima Red Cross Hospital, Fukuchima, Japan. ³⁴⁷Fukushima Medical University Hospital, Fukuchima, Japan. ³⁴⁸Fujita General Hospital, Date, Japan. ³⁴⁹Southern Tohoku Hospital, Koriyama, Japan. ³⁵⁰Takeda General Hospital, Aizuwakamatsu, Japan. ³⁵¹Iwaki Kyoritsu General Hospital, Iwaki, Japan. ³⁵²Minamisoma City General Hospital, Minamisoma, Japan. ³⁵³Yamagata University Hospital, Yamagata, Japan. ³⁵⁴Yamagata City Hospital Saiseikan, Yamagata, Japan. ³⁵⁵Shinoda General Hospital, Yamagata, Japan. ³⁵⁶Kitamurayama Hospital, Higashine, Japan. ³⁵⁷Yamagata Prefectural Shinjo Hospital, Shinjo, Japan. ³⁵⁸Okitama Public General Hospital, Higashiokitama, Japan. ³⁵⁹Yonezawa City Hospital, Yonezawa, Japan. ³⁶⁰Sanyudo Hospital, Yonezawa, Japan. ³⁶¹Tsuruoka Municipal Shonai Hospital, Tsuruoka, Japan. ³⁶²South Miyagi Medical Center, Shibata, Japan. ³⁶³Kohnan Hospital, Sendai, Japan. ³⁶⁴Sendai City Hospital, Sendai, Japan. ³⁶⁵Furukawaseiryou Hospital, Osaki, Japan. ³⁶⁶Omihachiman Community Medical Center, Omihachiman, Japan. ³⁶⁷Kohka Public Hospital, Koka, Japan. ³⁶⁸Shiga University of Medical Science Hospital, Otsu, Japan. ³⁶⁹Otsu City Hospital, Otsu, Japan. ³⁷⁰Nagahama City Hospital, Nagahama, Japan. ³⁷¹Koto Memorial Hospital, Higashiomi, Japan. ³⁷³Mie University Hospital, Tsu, Japan. ³⁷⁴Saiseikai Matsusaka General Hospital, Matsusaka, Japan. ³⁷⁵Ise Red Cross Hospital, Ise, Japan. ³⁷⁶Shizuoka City Shizuoka Hospital, Shizuoka, Japan. ³⁷⁷Yaizu City Hospital, Yaizu, Japan. ³⁷⁸Hamamatsu Rosai Hospital, Hamamatsu, Japan. ³⁷⁹Hamamatsu Medical Center, Hamamatsu, Japan. ³⁸⁰Seirei Mikatahara General Hospital, Hamamatsu, Japan. ³⁸¹Iwata Municipal General Hospital, Iwata, Japan. ³⁸²NHO Shizuoka Medical Center, Shimizu, Japan. ³⁸³Fuji Citv General Hospital, Fuji, Japan. ³⁸⁴Shizuoka Childrens Hospital, Shizuoka, Japan. ³⁸⁵Gifu Municipal Hospital, Gihu, Japan. ³⁸⁶Gifu University Hospital, Gihu, Japan. ³⁸⁷Gifu Prefectural Tajimi Hospital, Tajimi, Japan. ³⁸⁸Toki General Hospital, Toki, Japan. ³⁸⁹Saku Central Hospital, Saku, Japan. ³⁹⁰Aizawa Hospital, Matsumoto, Japan. ³⁹¹Nagano Municipal Hospital, Nagano, Japan. ³⁹²Shinonoi General Hospital, Nagano, Japan. ³⁹³Suwa Central Hospital, Chino, Japan. ³⁹⁴lida Municipal Hospital, Iida, Japan. ³⁹⁵Showa Inan General Hospital, Komagane, Japan. ³⁹⁶Japanese Red Cross Society Azumino Hospital, Azumino, Japan. 397 Azumi General Hospital, Kitaazumi, Japan. 398 NHO Shinshu Ueda Medical Center, Ueda, Japan. ³⁹⁹Shimane Prefectural Central Hospital, Izumo, Japan. ⁴⁰⁰Yasugi Municipal Hospital, Yasuqi, Japan. ⁴⁰¹NHO Hamada Medical Center, Hamada, Japan. ⁴⁰²NHO Okayama Medical Center, Okayama, Japan. ⁴⁰³Okayama Kyokuto Hospital, Okayama, Japan. ⁴⁰⁴Okayama City Hospital, Okayama, Japan. ⁴⁰⁵Okayama University Hospital, Okayama, Japan. ⁴⁰⁶Kawasaki Medical School Hospital, Kurashiki, Japan. ⁴⁰⁷Kurashiki Central Hospital, Kurashiki, Japan. ⁴⁰⁸Kurashiki Heisei Hospital, Kurashiki, Japan. ⁴⁰⁹Tsuyama Chuo Hospital, Tsuyama, Japan, ⁴¹¹Kasaoka Daijchi Hospital, Kasaoka, Japan, ⁴¹²JCHO Tokuyama Central Hospital, Shunan, Japan. ⁴¹³Yamaguchi Prefectural Grand Medical Center, Hofu, Japan. ⁴¹⁴Yamaguchi Red Cross Hospital, Yamaquchi, Japan. ⁴¹⁵Yamaquchi University Hospital, Ube, Japan. ⁴¹⁶Ube-Kohsan Central Hospital, Ube, Japan. ⁴¹⁷NHO Kanmon Medical Center, Shimonoseki, Japan. ⁴¹⁸Shimonoseki City Hospital, Shimonoseki, Japan. ⁴¹⁹Hiroshima Red Cross Hospital and Atomic Bomb Survivors Hospital, Hiroshima, Japan. ⁴²⁰Suiseikai Kajikawa Hospital, Hiroshima, Japan. ⁴²¹Hiroshima University Hospital, Hiroshima, Japan. ⁴²²Hiroshima Prefectural Hospital, Hiroshima, Japan. ⁴²³Araki Neurosurgical Hospital, Hiroshima, Japan. ⁴²⁴Mazda Hospital, Aki, Japan. ⁴²⁵Chugoku Rosai Hospital, Kure, Japan. ⁴²⁶Kohsei General Hospital, Mihara, Japan. ⁴²⁷Mitsugi General Hospital, Onomichi, Japan. ⁴²⁸Miyoshi Central Hospital, Miyoshi, Japan. ⁴²⁹Tokushima University Hospital, Tokushima, Japan. ⁴³⁰Tokushima Prefecture Naruto Hospital, Naruto, Japan. ⁴³¹Tokushima Prefectural Kaifu Hospital, Kaifu, Japan. ⁴³²Kansai Medical University Hospital, Hirakata, Japan.
 ⁴³³Kyushu Rosai Hospital, Kitakyushu, Japan.
 ⁴³⁴Teinekeijinkai Hospital, Sapporo, Japan.
 ⁴³⁶Bapporo Azabu Neurosurgical Hospital, Sapporo, Japan. Central General Hospital, Hakodate, Japan. ⁴³⁷Otaru Chuo Hospital, Otaru, Japan. ⁴³⁸NHO Hokkaido Medical Center, Sapporo, Japan. ⁴³⁹Sapporo Medical University Hospital, Sapporo, Japan. ⁴⁴⁰Hakodate Municipal Hospital, Hakodate, Japan.⁴⁴¹Sapporoteishinkai Hospital, Sapporo, Japan.⁴⁴²Shinsapporo Neurosurgical Hospital, Sapporo, Japan. 443 Sapporo Shiroishi Memorial Hospital, Sapporo, Japan. 444 Sendai East Neurosurgical Hospital, Sendai, Japan. ⁴⁴⁵JA Akita Kouseiren Oomagarikousei Medical Center, Daisen, Japan. ⁴⁴⁶Noshiro Kosei Medical Center,

Noshiro, Japan. ⁴⁴⁷Iwate Prefectural Kuji Hospital, Kuji, Japan. ⁴⁴⁸Tohoku University Hospital, Sendai, Japan. ⁴⁴⁹Aomori Prefectural Central Hospital, Aomori, Japan. ⁴⁵⁰Iwate Prefectural Central Hospital, Morioka, Japan. ⁴⁵¹NHO Sendai Medical Center, Sendai, Japan. ⁴⁵²Saitama Red Cross Hospital, Saitama, Japan. ⁴⁵³Ishinomaki Red Cross Hospital, Ishinomaki, Japan. ⁴⁵⁴Osaki Citizen Hospital, Osaki, Japan. ⁴⁵⁵Yamagata Saisei Hospital, Yamagata, Japan. ⁴⁵⁶Ohta Nishinouchi Hospital, Koriyama, Japan. ⁴⁵⁷Tokyo Metropolitan Childrens Medical Center, Fuchu, Japan. ⁴⁵⁸Mito Kyodo General Hospital, Mito, Japan. ⁴⁵⁹Chiba Rosai Hospital, Ichihara, Japan. ⁴⁶⁰Chiba Cancer Center, Chiba, Japan. ⁴⁶¹Chiba Childrens Hospital, Chiba, Japan. ⁴⁶²Secomedic Hospital, Funabashi, Japan. ⁴⁶³Saiseikai Kawaquchi General Hospital, Kawaquchi, Japan. ⁴⁶⁴Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan. ⁴⁶⁵Keio University Hospital, Tokyo, Japan. ⁴⁶⁶Jinmeikai Akiyama Neurosurgical Hospital, Yokohama, Japan.⁴⁶⁷Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan.⁴⁶⁸Mitsuwadai General Hospital, Chiba, Japan. ⁴⁶⁹Ebina General Hospital, Ebina, Japan. ⁴⁷⁰Tokyo Metropolitan Health and Medical Treatment Corporation Ohkubo Hospital, Tokyo, Japan. ⁴⁷¹Itabashi Chuo Medical Center, Tokyo, Japan. ⁴⁷²Ome Municipal General Hospital, Ome, Japan. ⁴⁷³Tokyo Metropolitan Tama Medical Center, Fuchu, Japan. ⁴⁷⁴Teraoka Memorial Hospital, Fukuyama, Japan. ⁴⁷⁵Kitasato University Hospital, Sagamihara, Japan. ⁴⁷⁶Yokohama Asahi Chuo General Hospital, Yokohama, Japan. ⁴⁷⁷Yamagata Prefectural Central Hospital, Yamagata, Japan. ⁴⁷⁸Japanese Red Cross Akita Hospital, Akita, Japan. ⁴⁷⁹Shinshu University Hospital, Matsumoto, Japan. ⁴⁸⁰Kobayashi Neurosurgical Neurological Hospital, Ueda, Japan. ⁴⁸¹Komoro Kosei General Hospital, Komoro, Japan. ⁴⁸²Nagano Childrens Hospital, Azumino, Japan. ⁴⁸³Ina Central Hospital, Ina, Japan. ⁴⁸⁴Toyama University Hospital, Toyama, Japan. ⁴⁸⁵Noto General Hospital, Nanao, Japan. ⁴⁸⁶Keiju Medical Center, Nanao, Japan. ⁴⁸⁷Toyohashi Municipal Hospital, Toyohashi, Japan. ⁴⁸⁸Chubu Rousai Hospital, Nagoya, Japan. ⁴⁸⁹Kamiiida Daiichi General Hospital, Nagoya, Japan. ⁴⁹⁰Nagoya Central Hospital, Nagoya, Japan. ⁴⁹¹Nagoya City University Hospital, Nagoya, Japan. ⁴⁹²Nagoya City East Medical Center, Nagoya, Japan. ⁴⁹³Chutoen General Medical Center, Kakegawa, Japan. ⁴⁹⁴Japanese Red Cross Takayama Hospital, Takayama, Japan. 495 Daiyukai General Hospital, Ichinomiya, Japan. 496 Seikeikai Hospital, Sakai, Japan. ⁴⁹⁷Higashiosaka City Medical Center, Higashiosaka, Japan. ⁴⁹⁸Kyoto University Hospital, Kyoto, Japan. ⁴⁹⁹Tenri Hospital, Tenri, Japan. ⁵⁰⁰Kishiwada City Hospital, Kishiwada, Japan. ⁵⁰¹Otsu Red Cross Hospital, Otsu, Japan. ⁵⁰²Rakuwakai Otowa Hospital, Kyoto, Japan. ⁵⁰³Higashisumiyoshi Morimoto Hospital, Osaka, Japan. ⁵⁰⁴Daiichitowakai Hospital, Takatsuki, Japan. ⁵⁰⁵Kano Hospital, Osaka, Japan. ⁵⁰⁶Moriguchi-Ikuno Memorial Hospital, Moriguchi, Japan. ⁵⁰⁷Ishikiriseiki Hospital, Higashiosaka, Japan. ⁵⁰⁸Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan. ⁵¹⁰Hyoqo College of Medicine, Nishinomiya, Japan. ⁵¹¹Akashi City Hospital, Akashi, Japan. ⁵¹²Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan. ⁵¹³Tokushima Red Cross Hospital, Komatsushima, Japan. ⁵¹⁴NHO Shikoku Medical Center for Children and Adults, Zentsuji, Japan. ⁵¹⁵NHO Iwakuni Clinical Center, Iwakuni, Japan. ⁵¹⁶Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan. ⁵¹⁷Okayama Saiseikai General Hospital, Okayama, Japan. ⁵¹⁸Fukuyama City Hospital, Fukuyama, Japan. ⁵¹⁹Onomichi Municipal Hospital, Onomichi, Japan. ⁵²⁰Kaneda Hospital, Maniwa, Japan. ⁵²¹Higashihiroshima Medical Center, Higashihiroshima, Japan. 522 Tottori Municipal Hospital, Tottori, Japan. 523 Shuto General Hospital, Yanai, Japan. ⁵²⁴Hospital of the University of Occupational and Environmental Health, Kitakyushu, Japan. ⁵²⁵Munakata Suikokai General Hospital, Fukutsu, Japan. ⁵²⁶JCHO Kyushu Hospital, Kitakyushu, Japan. ⁵²⁷Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan. ⁵²⁸Harasanshin Hospital, Fukuoka, Japan. ⁵²⁹Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan. ⁵³⁰Hakujyuji Hospital, Fukuoka, Japan. ⁵³¹Saga University Hospital, Saga, Japan. ⁵³²St. Marys Hospital, Kurume, Japan. ⁵³³Tobata Kyoritsu Hospital, Kitakyushu, Japan. ⁵³⁴JCHO Hitoyoshi Medical Center, Hitoyoshi, Japan. ⁵³⁵Oitaken Koseiren Tsurumi Hospital, Beppu, Japan. ⁵³⁶Sanseikai Kanemaru Neurosurgery Hospitai, Miyazaki, Japan. ⁵³⁷Atsuchi Neurosurgical Hospital, Kagoshima, Japan. 538NHO Kagoshima Medical Center, Kagoshima, Japan. 539Okinawa Red Cross Hospital, Naha, Japan. 540 Asahi General Hospital, Asahi, Japan. 541 Kobe City Medical Center General Hospital, Kobe, Japan. ⁵⁴²Yoshida Hospital, Kobe, Japan. ⁵⁴³Wakkanai Teishinkai Hospital, Wakkanai, Japan. ⁵⁴⁴Southern Tohoku General Hospital, Iwanuma, Japan. ⁵⁴⁵Tokyo General Hospital, Tokyo, Japan. ⁵⁴⁶St.Lukes International Hospital, Tokyo, Japan. ⁵⁴⁷Chiba Tokushukai Hospital, Funabashi, Japan. ⁵⁴⁸Nozaki Tokushukai Hospital, Daito, Japan. ⁵⁴⁹Fukuoka University Chikushi Hospital, Chikushino, Japan. 550Fukuoka Wajiro Hospital, Fukuoka, Japan. 551Shintakeo Hospital, Takeo, Japan. 552 Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan. ⁵⁵³Kansai Electric Power Hospital, Osaka, Japan. ⁵⁵⁴Tomakomaihigashi Hospital, Tomakomai, Japan. ⁵⁵⁵Date Red Cross Hospital, Date, Japan. 556 Hirosaki Stroke and Rehabilitation Center, Hirosaki, Japan. 557 Kitakami Saiseikai Hospital, Kitakami, Japan. ⁵⁵⁸Izumi Hospital, Sendai, Japan. ⁵⁵⁹Shin-Oyama City Hospital, Oyama, Japan. ⁵⁶⁰Kamagaya General Hospital, Kamagaya, Japan. ⁵⁶¹Nissan Tamagawa Hospital, Tokyo, Japan. ⁵⁶²Higashitotsuka Memorial Hospital, Yokohama, Japan. 563 Kaetsu Hospital, Niigata, Japan. 564 NHO Niigata Hospital, Kashiwazaki, Japan. 565 Toyama Red Cross Hospital, Toyama, Japan. 566 Maruko Central Hospital, Ueda, Japan. 567 Okaya City Hospital, Okaya, Japan. 568 Kenwakai Hospital, Iida, Japan. 569 Suwa Red Cross Hospital, Suwa, Japan. 570 Kyoto Katsura Hospital, Kyoto, Japan. ⁵⁷¹Shimizu Hospital, Kyoto, Japan. ⁵⁷²Mimihara General Hospital, Sakai, Japan. ⁵⁷³Osaka Saiseikai Ibaraki Hospital, Ibaraki, Japan. ⁵⁷⁴Kobe Ekisaikai Hospital, Kobe, Japan. ⁵⁷⁵Kita-Harima Medical Center, Ono, Japan. ⁵⁷⁶Fujii Masao Memorial Hospital, Kurayoshi, Japan. ⁵⁷⁷HITO Medical Center, Shikokuchuo, Japan. 578 Chidoribashi Hospital, Fukuoka, Japan. 579 Souseikai Shin Yoshizuka Hospital, Fukuoka, Japan. 580 Miyake Neurosurgical Hospital, lizuka, Japan. ⁵⁸¹Kitakyushu General Hospital, Kitakyushu, Japan. ⁵⁸²JCHO Isahaya General Hospital, Isahaya, Japan. ⁵⁸³Nakatsu Municipal Hospital, Nakatsu, Japan. ⁵⁸⁴Nakatsu Neurosurgical Hospital, Nakatsu, Japan. 585 Tomishiro Central Hospital, Tomigusuku, Japan. 586 Otaru General Hospital, Otaru, Japan. ⁵⁸⁷Shuuwa General Hospital, Kasukabe, Japan. ⁵⁸⁸Fukuchiyama City Hospital, Fukuchiyama, Japan. ⁵⁸⁹Saku Central Hospital Advanced Care Center, Saku, Japan. ⁵⁹⁰Inazawa Municipal Hospital, Inazawa, Japan. ⁵⁹¹Nishitokyo Central General Hospital, Nishitokyo, Japan. 592Koyama Memorial Hospital, Kashima, Japan. 593Shinwakai Yachiyo Hospital, Anjo, Japan. ⁵⁹⁴Ainomiyako Neurosurgery Hospital, Osaka, Japan. ⁵⁹⁵Ogaki Tokushukai Hospital, Ogaki, Japan. 596 Hamamatsu City Rehabilitation Hospital, Hamamatsu, Japan. 597 Saiseikai Futsukaichi Hospital, Achikushino, Japan. 598 Ashiya Municipal Hospital, Ashiya, Japan. 599 Kyoritsu Hospital, Kawanishi, Japan.