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1 Introduction

Over the past two decades, there have been a large overlap studies among high energy

theory, condensed matter physics, quantum information and geometry based on the con-

jecture of gauge/gravity correspondence [1–3]. The typical example is the holographic

entanglement entropy (HEE) proposed by Ryu and Takayanagi that relates the minimized

codimension-2 bulk surface to the quantum information in the boundary field theory [4].

The Ryu-Takayanagi conjecture greatly simplifies the computations of the entanglement

entropy in the field theory, and numerous papers investigates the relation between the

bulk geometry and the quantum information in the boundary field theory. For recent re-

views, please refer to refs. [5, 6]. Among these studies, one interesting thing is to adopt

the HEE to probe the thermalization process or phase transitions in the strongly coupled

systems [7–17].

Mutual information measures the correlations between two subsystems in quantum

information theory [18]. The holographic setup of mutual information can be obtained by

calculating the length of the wormhole which connects the two sides of an eternal AdS

black hole [19–21]. In [20], the authors defined the thermofield double states (TFD) to

describe the states of the entangled two sides of the black hole, i.e.,

|Ψ〉 ≡
∑
i

e−
β
2
Ei |i〉L ⊗ |i〉R , (1.1)
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where β is the inverse of the temperature while |i〉L and |i〉R are the identical quantum states

on the two-sided AdS black holes. Supposing there are two identical space-like subregions

A and B on each side of the black hole, the mutual information I(A,B) between A and B

can be computed as

I(A,B) ≡ S(A) + S(B)− S(A ∪B) , (1.2)

where S(A), S(B) are the entanglement entropy of A and B respectively, while S(A∪B) is

the entanglement entropy of the union of A and B. Holographically, S(A) and S(B) can be

calculated by the areas of the minimal surfaces in the bulk geometry associated to A and

B independently from the Ryu-Takayanagi conjecture, while S(A ∪ B) can be computed

from the minimal surface which crosses the horizon and stretches through the wormhole

connecting the two subregions A and B [22].

The disruption of mutual information was related to the butterfly effect by Shenker and

Stanford [23]. Specifically, as a small perturbation, such as a light-like energy perturbation,

is added to one side of the eternal black hole, the mutual information between the two

sides may be disrupted after an amount of time t∗, which means there is no dependence

or entanglement between the two sides of the black hole. The time t∗, usually called the

scrambling time in black hole systems, is proportional to the logarithm of the entropy of

the black hole, e.g., t∗ ∼ β log(S)/2π, in which S is the Bekenstein-Hawking entropy. The

disruption of the mutual information is a piece of evidence of the system’s high sensitivity

to the initial conditions, which reminds us of the terminology in chaos theory-butterfly

effect. Recent literatures relevant to the butterfly effect can be found in [24–29].

In this paper, we intend to study the static and dynamical mutual information in the

background of massive gravity [30, 31]. As we know from [32–34] that the graviton mass

in the bulk breaks the diffeomorphism invariance, which makes the stress-energy tensor

non-conserved in the dual field theory. The non-conservation of the stress-energy tensor

causes the momentum dissipation in the boundary field theory. Therefore, from this aspect

the graviton mass plays the role of inhomogeneity in the boundary field theory, i.e., greater

graviton mass is dual to greater inhomogeneity in the boundary.1 There have been a

number of papers investigating the inhomogeneous effects caused by massive gravity so far,

see for example [35–43].

Firstly, we study the holographic mutual information of two identical strips in a static

background of a 3+1-dimensional massive gravity. For the strips with larger length, the

mutual information between them decreases monotonically as the graviton mass increases;

however, the mutual information between two shorter strips first increases and then de-

creases with respect to the graviton mass. A plausible reason is that the graviton mass

(or equivalently spatial inhomogeneity) would have greater effects on the strips with larger

length. When the system is near-homogeneous (or equivalently with small graviton mass),

the mutual information for the strips with shorter length will increase with respect to the

1Strictly speaking, the term “inhomogeneity” used here represents the meaning of translational symmetry

breaking or momentum dissipation, which was used previously in the framework of holography in the

paper [34]. To be consistent with existing literatures, here we still take the term “inhomogeneity” to

represent the same meaning.
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temperature of the black hole (referring to the right panel of figure 4 and discussions in the

main context), which is similar to the relation between mutual information and tempera-

ture in the pure homogeneous case [24]. However, as the graviton mass grows big enough,

i.e., far from homogeneity, the mutual information will instead decrease with respect to the

graviton mass, which behaves distinctly from the homogenous case. Therefore, we argue

that the greater graviton mass (or stronger inhomogeneous effects) would play a dominant

role in decreasing the mutual information compared with the temperature. On the other

hand, if the strips are longer, the mutual information decreases monotonically according to

the graviton mass regardless of the system being near or far from homogeneity. It intuition-

aly suggests that the spatial inhomogeneity would have greater impacts to the strips with

larger length by destroying the mutual information monotonically. A detailed discussion of

the relation between mutual information and the graviton mass in the static background

case is given in section 3.

In all the parameter regimes we considered in this paper, we find that the critical width

of the strip, which renders the mutual information vanishing, always decreases according

to the graviton mass. Moreover, as the width of the boundary strip increases, it is found

that the critical charge which disrupts the mutual information increases as well. As we

know, in the massive gravity the temperature of the black hole will decrease as the charge

increases. Therefore, we can infer that the critical width of the strip increases when the

temperature of the black decreases, which is consistent with the results obtained in [24].

In order to study the dynamical behavior of mutual information in the boundary field

theory, one of the approaches is to add extra energy perturbations into the bulk, which

will lead to a shift on the horizon of the black hole. This shift will affect the mutual

information on the two sides of the black hole. The dynamics of the bulk after adding the

perturbations can be conveniently investigated in the shock wave geometry with Kruskal

coordinates [44]. We find that as the shift grows (more added perturbed energy at the

initial time), the mutual information will be reduced more significantly, which reminds us

of the phenomenon in chaos theory — butterfly effect. By turning on the graviton mass,

we also find that the greater the mass is, the smaller the mutual information will be, which

indicates that the spatial inhomogeneity will reduce the mutual information just like in the

static case mentioned above.

This paper is organized as follows: in section 2 we briefly review the dynamical holo-

graphic mutual information in the shock wave geometry. We investigate the static mutual

information in the massive gravity background in section 3. In section 4 we study the dy-

namical mutual information by adding energy perturbations into the bulk of the massive

gravity. Finally we draw our conclusions and discussions in section 5. Through out this

paper we use natural units (G = c = ~ = 1) for simplicity.

2 Reviews of shock wave geometry and holographic mutual information

The butterfly effect of a black hole is usually studied in the shock wave geometry, therefore,

we are going to briefly introduce the key ingredients of the shock wave geometry at first.

For simplicity, we will adopt a planar symmetric black hole in 3 + 1 dimensions with the
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Figure 1. Penrose diagrams for an eternal black hole without (left panel) and with (right panel)

a perturbation. h is the shift on the horizon between the left and right Kruskal coordinate ν.

line element,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2) , (2.1)

in which (x, y) are the transverse directions in the bulk while r represents the radial direc-

tion. The Hawking temperature of this black hole is T = κ/2π, in which κ = f ′(r)|rh/2
is the surface gravity with rh the horizon radius. From the AdS/CFT dictionary, the

temperature T can be regarded as the temperature of the dual field theory.

2.1 Shock wave geometry

The shock wave geometry is conveniently discussed in the Kruskal coordinates [44]. The

metric in eq. (2.1) can be rewritten as

ds2 =
1

κ2

f(r)

µν
dµdν + r2(dx2 + dy2) , (2.2)

in which

µ = ±e−κU , ν = ∓eκV , (2.3)

µν = −e2κr? , µ/ν = −e−2κt, (2.4)

where U = t − r? and V = t + r? are the Eddington-Finkelstein coordinates, which can

be defined by the tortoise coordinate r? =
∫
dr/f(r). Therefore, as r approaches the

event horizon and boundary, r? tends to −∞ and 0 respectively. The Penrose diagram

of the geometry (2.2) is shown on the left panel of figure 1, where a dot represents a two

dimensional space in (x, y) directions. We suppose µ > 0, ν < 0 in the left exterior region

while µ < 0, ν > 0 in the right region as in [24]. Thus from eq. (2.4) we know that the

event horizon and boundary are located at µν = 0 and µν = −1, respectively. The light is

going along µ = constant and ν = constant.

The shock wave geometry can be obtained by adding a small perturbation of energy E

into one side, for instance left side of the black hole [44]. Supposing that at the boundary

time tw we add a light-like perturbation of the energy, which goes along a constant µ
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trajectory, into the left boundary. We label the Kruskal coordinates on the left side and

right side as µL, νL and µR, νR, respectively. The constant µ trajectory of the perturbation

implies

µL = µR = e−κtw . (2.5)

In order to find the relation between νL and νR, we employ the relation

µLνL = −e2κLr?L , µRνR = −e2κRr?R . (2.6)

Generally speaking, κL = κR = κ for the energy E of the perturbation is much smaller

than the mass of the black hole M . On the other hand, we are interested in the case

tw →∞, which implies r → rh. In this case, we can approximate r? ≈ 1
2κ(log(r − rh) + c)

with c a constant of integration. Hence, e2κr? = C(r − rh), where C = ec. Therefore, we

have the identification

νL = νR + Ceκtw(rhL − rhR) ≡ νR + h , (2.7)

in which the relation CL = CR = C has been used. It should be stressed that even

(rhL − rhR) → 0, the formula eκtw(rhL − rhR) is still finite in eq. (2.7). The difference h

between νL and νR is the shift close to the horizon. The Penrose diagram of the shock

wave geometry is shown on the right panel of figure 1.

To get the standard shock wave geometry as showed in [23], one often employs the

replacement ν → ν+h(θ)Θ(µ), where Θ(µ) is a step function. The shock wave geometry is

strictly a solution to the Einstein equation Gµν = δTµµ, in which δTµµ ∼ Ee
2π
β
twδ(µ)δ(x)

is the boost energy arising from the null perturbation at the initial time.

The scrambling time t? is defined as the value of tw when h ∼ O(1) for in this case

the mutual information vanishes [23]. On the basis of eq. (2.7) and the first law of the

black hole thermodynamics, the scrambling time can be written as t? ∼ β
2π log[c(rh)S], in

which c(rh) is a function of the black hole horizon. In various gravity models, this form is

universal and the only difference is embodied in the function c(rh) [45].

2.2 Holographic mutual information

As depicted on the left panel of figure 1, an eternal black hole has two asymptotic AdS

regions, which can be holographically described by the so-called TFD states of the two

identical, non-interacting conformal field theories [20]. Our objective is to compute the

mutual information of a subregion A on the left asymptotic boundary and its partner B

on the right asymptotic boundary. For simplicity, we will let A = B so that the left and

right boundaries are identical.

We are interested in the 3+1-dimensional planar black holes, thus the AdS bound-

ary has a 2-dimensional space parameterized by coordinates (x, y). We will consider the

subregion A or B as a strip, which has the width x ∈ (0, x0) and extends along the y

direction with length Y .2 Therefore, the entanglement entropy SA of the subregion A is

2Without loss of generality, we set Y ≡ 1 in the numerics.
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SA = AreaA/4, where AreaA is the area of the minimal surface in the bulk, i.e.,

AreaA =

∫
dydx

√
γ = Y

∫ x0

0
dx r

√
f−1r′2 + r2 , (2.8)

where r′ = dr/dx. If regarding the integrand in eq. (2.8) as a ‘Lagrangian’ L, one can

define a conserved quantity associated to translation in x-direction, that is

r3√
r2 + f−1r′2

= r2
min , (2.9)

where rmin is the turning point of the surface with r′ = 0. According to the symmetry

of the surface, the turning point locates at x = x0/2. With the help of the conserved

equation (2.9), x0 can be written as

x0 =

∫ x0

0
dx = 2

∫ ∞
rmin

dr

r
√
f

1√
(r/rmin)4 − 1

, (2.10)

and the minimal area in eq. (2.8) can be rewritten as

AreaA = 2Y

∫ ∞
rmin

dr
r√
f

1√
1− (rmin/r)4

. (2.11)

Since B is identical with A, AreaB thus takes the same form as AreaA. As stressed in the

introduction, we will employ the mutual information, defined by I(x0) = SA +SB −SA∪B,

to study the correlation between regions A and B. Therefore, our next step is to find

SA∪B or the area AreaA∪B, which is the minimal surface connecting regions A (left) and B

(right) by passing through the horizon of the black hole. From [24], the total area AreaA∪B
including both sides of the horizons can be expressed as

AreaA∪B = 4Y

∫ ∞
rh

dr r
√
f−1 . (2.12)

Combining all the eqs.(1.2), (2.11) and (2.12) together, we have

I(x0) =
1

4

(
4Y

∫ ∞
rmin

dr
r√
f

1√
1− (rmin/r)4

− 4Y

∫ ∞
rh

dr
r√
f

)
. (2.13)

We are interested in how the width of the strip x0 affects the mutual information. Substi-

tuting eq. (2.10) into eq. (2.13), we obtain

I(x0) =
1

2
Y x0r

2
min + Y

∫ ∞
rmin

dr
r√
f

√
1− (rmin/r)4 − Y

∫ ∞
rh

dr
r√
f
. (2.14)

It is of great interest to find the critical value of the width x0c where the mutual information

vanishes, i.e., I(x0c) = 0, which leads to

x0c =
2

r2
min

[ ∫ ∞
rh

dr
r√
f
−
∫ ∞
rmin

dr
r√
f

√
1− (rmin/r)4

]
. (2.15)
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3 Holographic mutual information in the static background case

Massive gravity is a deformation of the Einstein gravity with graviton mass [30, 31]. Diffeo-

morphism invariance is broken in massive gravity because of the graviton mass. Therefore,

the stress energy tensor is not conserved any more in the dual field theory. The non-

conservation of the stress energy tensor corresponds to a momentum dissipation on the

dual boundary field theory [34]. Therefore, from this sense the graviton mass plays the

role of inhomogeneity on the boundary field theory. It is of great interest to investigate

the effect of inhomogeneity on the holographic mutual information, in particular, we are

going to explore the effects of the graviton mass on the mutual information with and with-

out energy perturbations in the following context. The action of the massive gravity is as

follows [32, 35]

S =
1

16πG

∫
d4x
√
−g
[
R+

6

l2
− 1

4
FµνF

µν +m2
4∑
i

ciUi(gµν , fρσ)

]
, (3.1)

where m is the graviton mass parameter, Fµν = ∂µAν − ∂νAµ is the field strength, fµν is

the reference metric, ci are constants, and Ui are symmetric polynomials of the eigenvalues

of the 4× 4 matrix Kµν ≡
√
gµαfαν :

U1 = [K] ,

U2 = [K]2 − [K2] ,

U3 = [K]3 − 3[K][K2] + 2[K3] ,

U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4] . (3.2)

The square root in K stands for (
√
A)µν(

√
A)νλ = Aµλ and [K] = Kµ

µ =
√
gµαfαµ. In 3+1-

dimensions, a black hole solution with line element in eq. (2.1) can have the gravitational

potential as

f(r) = −M
r

+
Q2

4r2
+
r2

l2
+
c0c1m

2

2
r + c2

0c2m
2, (3.3)

in which M and Q are the mass and charge of the black hole respectively; c0, c1 and c2

are constant parameters associated to the graviton mass. In this paper, we will fix the

parameters c0 = c1 = 1, c2 = −1/2 in order to render the background thermodynamically

stable [35, 39]. The temperature of the black hole is readily obtained as

TMG =
3

4π
− Q2

16π
+
c2

0c2m
2

4π
+
c0c1m

2

4π
. (3.4)

3.1 Effect of the width of the strip on the mutual information

Firstly, we are going to study the relation between the mutual information and the width

of the strip in the background of massive gravity. One can readily read off the relation

between the width of the strip and the position of the turning point rmin from eq. (2.10).

The relation is shown on the left panel of figure 2. From eq. (2.10) one finds that as

rmin → rh, the integral for the width x0 diverges, which can be seen as well from the

left plot of figure 2. Intuitively the left panel of figure 2 is also correct, since as we know

– 7 –
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Figure 2. Left: the relation between the width of the strip x0 and rmin. Right: the relation

between the mutual information I(x0) and the position of the turning point rmin. For both cases,

we set m = 0.6, Q = 2, and rh = 1.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
x00.0

0.1

0.2

0.3

0.4

0.5
I�x0 �

Figure 3. The relation between the mutual information I(x0) and width of the strip x0 for m = 0.6,

Q = 2, and rh = 1.

greater rmin is closer to the infinite boundary, therefore, it is obvious that the greater rmin

corresponds to the smaller width of the strip. From eq. (2.13) or (2.14), one can see that as

rmin → rh the mutual information diverges, since in this case the widths of the strips on the

two boundaries are nearly divergent (cf. the left panel of figure 2). From [24] we know that

the mutual information for divergent strips will be divergent too. This phenomenon can

also be found on the right panel of figure 2. In addition, from this subgraph we observe that

the mutual information vanishes where rmin ≈ 1.25, which indicates that there is a critical

value for the position of the turning point (or equivalently a critical width of the strip x0c

from the left panel of figure 2) rendering the mutual information vanishing. Combining the

two panels in figure 2, we plot the relation between the mutual information and the width

of the strip x0 explicitly in figure 3, from which we can clearly see that the critical width

of the strip is roughly x0c ≈ 1.13. In addition, we find that the mutual information always

grows as the width of the strip increases, which is easy to understand for in this case the

subsystems on the two asymptotic boundaries are larger and their entanglements becomes

greater as well.

– 8 –
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Figure 4. Left: the relation between I(x0) and black hole charge Q while fixing m = 0.6, rh = 1.

The curves from top to down correspond to rmin increasing from 1.21 to 1.27 with steps 0.02; right:

the relation between the mutual information I(x0) and the graviton mass m by fixing Q = 2, rh = 1.

Curves from top to down correspond to rmin increasing from 1.21 to 1.27 with steps 0.02.

3.2 Effects of the graviton mass and black hole charge on the mutual infor-

mation

The effects of graviton mass m and charge Q of the black hole on the mutual information

I(x0) are shown in figure 4. From the left panel of figure 4 we see that for each curve, the

mutual information decreases as the charge increases. Besides, there is a critical charge Qc
that makes the mutual information vanishing, which means that there is no entanglement

between the paired subregions we considered. For a small fixed charge, we find that the

mutual information is smaller for greater rmin. As we know from the preceding subsection,

bigger rmin actually corresponds to smaller width of the strip on the boundary. There-

fore, the left panel of figure 4 also indicates that smaller subregions have smaller mutual

information between them, which is consistent with the preceding subsection.

From ref. [24] we learn that when the temperature of the black hole grows, the critical

width of the strip decreases. It also means that for a fixed width of the strip, as temperature

grows the mutual information of the two strips will grow as well. In the case of the

massive gravity, the temperature will decrease as the charge Q increases when fixing other

parameters of the background, please refer to eq. (3.4). Therefore, from the left panel

of figure 4 we see that as charge grows (temperature decreases) the mutual information

decreases monotonically, which matches the conclusions mentioned before. Incidentally, we

also checked other cases of the graviton mass, similar results were obtained.

However, it is interesting to see that the mutual information does not have monotonic

decreasing behavior to the graviton mass on the right panel of figure 4. In particular, when

rmin is bigger (x0 is smaller) the mutual information first increases to a maximum value and

then decreases with respect to the graviton mass. Let’s call the critical graviton mass as mc

which corresponds to the maximum value of mutual information. From eq. (3.4) we see that

as m grows the temperature of the black hole grows as well when fixing other parameters.

Therefore, from the conclusions in the preceding subsection it seems that as m grows the

mutual information should increase as well, since the mutual information increases with

– 9 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
2

0 5 10 15 20
m0.0

0.2

0.4

0.6

0.8

x0 c

0.0 0.5 1.0 1.5 2.0 2.5
Q0.4

0.5

0.6

0.7

0.8

0.9
x0 c

Figure 5. Left: relation between the critical width x0c and graviton mass m by fixing charge

Q = 2. Curves from top to down correspond to rh increasing from 1 to 5 with steps 2, respectively.

Right: relation between critical width x0c and the charge Q while fixing the graviton mass m = 0.6.

Curves from top to down correspond to rh increasing from 1 to 2 with steps 0.4, respectively.

respect to the temperature. However, as we see from the right panel of figure 4, the mutual

information decreases as m grows in the regime m > mc, which contradicts the above

conclusions.

The possible way coming to rescue is that the conclusion in the previous subsection is

mainly valid in the (near-)homogeneous case. However, when taking into account of the

inhomogeneous effects induced by the graviton mass, the conclusions should be different.

Therefore, we can infer from the right panel of figure 4 that when m < mc the inhomo-

geneous effects are tiny. Hence, in this case the mutual information still grows as the

temperature grows (i.e., m increases); however, when m > mc the inhomogeneous effects

are significant, which will disrupt the mutual information and finally render it vanishing as

m is big enough. Therefore, we can infer that greater inhomogeneity will spoil the mutual

information.

Finally, let’s come to the top curve on the right panel which shows that the mutual

information decreases monotonically with respect to m. In fact the top curve corresponds

to a smaller rmin (bigger width x0 of the strip). Therefore, it makes us speculate that

the inhomogeneity will have greater effects on longer strips than shorter ones to reduce

the mutual information. Therefore, for a long strip the mutual information only decreases

according to m since now the inhomogeneous effects dominate.

3.3 The critical width

The critical width x0c of the strip is the width that renders the mutual information van-

ishing, i.e., I(x0c) = 0. On the left panel of figure 5, by fixing the charge Q = 2, we

see that the critical width x0c decreases as the graviton mass m grows for various black

hole horizons rh. This means that the greater inhomogeneity will reduce the critical width

x0c. For a fixed value of m, the critical width x0c decreases with respect to the increasing

horizon rh. We know that the greater horizon corresponds to higher temperature of the

black hole, therefore, the left plot of figure 5 also indicates that the higher temperature

also reduces the critical width x0c.

– 10 –
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On the right panel of figure 5, we plot the relation between the critical width x0c and

the charge Q for various horizons rh. For a fixed horizon, we find that when Q increases

the critical width x0c increases as well. In particular, when rh is small the critical width

increases more rapidly; however, when rh is big, x0c increases more mildly. As we know

from eq. (3.4) that as Q increases the temperature TMG decreases. Therefore, the right plot

of figure 5 indicates that as temperature of the black hole decreases the critical width x0c

will increase, which is consistent with the previous analysis. Moreover, for a fixed charge

Q, the critical width x0c decreases as rh increases, which states that the higher temperature

reduces the critical width x0c. This statement matches the conclusions above.

4 Holographic mutual information in the dynamical background case

As we know from section 2, when a small perturbation is added from the left boundary to

the bulk, there will be a shift h(x) near the horizon in the ν direction for a long enough

time tw. A shock wave geometry thus forms and the wormhole connecting the left and

right regions may be destroyed in some circumstances. Therefore, the mutual information

between the two subregions will be disrupted. In the previous section we studied the

holographic mutual information in the static background of massive gravity; in this section,

we are going to investigate the dynamical behavior of the holographic mutual information

in the shock wave background of massive gravity.

As in section 3, we suppose that the strip A sits in the left asymptotic boundary and

its identical partner B in the right boundary. After adding the light-like perturbations, the

areas of minimal surfaces AreaA and AreaB are unaffected by the shock wave since they

do not cross the horizon, while the AreaA∪B is affected by the shock wave since it passes

across the horizon and stretches through the wormhole. The sketchy plot of the surface

AreaA∪B is shown in figure 6. Our main goal thus is to calculate the AreaA∪B and to study

how it changes with respect to the shift h(x) for a fixed boundary separation.

Because of the symmetry of the minimal surface, we should only calculate the areas

for the regions 1, 2 and 3 in figure 6 [24, 26]. At a surface with constant x, the induced

metric can be written as

ds2 =

[
− f(r) +

1

f(r)
ṙ2

]
dt2 + r2dy2, (4.1)

in which ṙ = dr/dt. The area of minimal surface for the regions 1, 2 and 3 in figure 6 is

then given by

AreaA∪B(h) =

∫
dt r
√
−f + f−1ṙ2 . (4.2)

If regarding the integrand in eq. (4.2) as a ‘Lagrangian’ L, we can define a conserved

‘Hamiltonian’ H as

H =
−rf√

−f + f−1ṙ2
= r0

√
−f0 , (4.3)

in which f0 = f(r0) and r0 is the radial position behind the horizon satisfying ṙ = 0. From

eq. (4.3), we know that as r0 → rh, H tends to 0, which corresponds to the case that the

– 11 –
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Figure 6. The Penrose diagram of the shock wave geometry. The horizontal colorful line is the

minimal surface connecting one of the two ends of the strips (one dot in the line represents a two

dimensional surface spanned by (x, y) coordinates). The left half of the surface is divided into three

segments, i.e., black line, red line and yellow line. The surface r = r0 separates the line 2 and 3.

shock wave is absent for h→ 0. From the conservation equation eq. (4.3), t coordinate can

be written as a function of r

t(r) = ±
∫

dr

f
√

1 +H−2fr2
, (4.4)

where ± denote ṙ > 0 and ṙ < 0 respectively. Substituting eq. (4.4) into eq. (4.2), we can

get a time independent integral

AreaA∪B(h) =

∫
dr

r2√
H2 + fr2

. (4.5)

Therefore, the area of regions 1+2+3 in figure 6 can be rewritten as

AreaA∪B(h) =

∫ ∞
rh

dr
r2√

H2 + fr2
+ 2

∫ rh

r0

dr
r2√

H2 + fr2
. (4.6)

The second term contains a prefactor 2 stemming from the fact that the second and third

regions have the same area. The total area AreaA∪B(h) which connects the left and right

boundaries thus is

AreaA∪B(h) = 2

∫ ∞
rh

dr
r2√

H2 + fr2
+ 4

∫ rh

r0

dr
r2√

H2 + fr2
. (4.7)

It should be stressed that the first segment contains a divergent h-independent term which

must be subtracted by a pure AdS contribution as we compute it numerically. Considering

the contribution of AreaA and AreaB, the mutual information in the shock wave geometry

can be expressed as

I(h, x0) =
Y

4

(
4

∫ ∞
rmin

dr
r√
f

1√
1− (rmin/r)4

−4

∫ ∞
rh

dr
r2√

H2 + fr2
−8

∫ rh

r0

dr
r2√

H2 + fr2

)
.

(4.8)

We are going to find the relation between I(h, x0) and h. We see that I(h, x0) depends

on the location of r0 for a fixed rh. Thus in order to proceed, we should find the relation
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between h and r0. From figure 6, the first segment goes from the boundary at (µ, ν) =

(1,−1) to (µ, ν) = (µ1, 0), in which

µ1 = exp

[
− κ

∫ ∞
rh

dr

f

(
1− 1√

1 +H−2fr2

)]
, (4.9)

where we have used eq. (2.3). The second segment stretches from (µ1, 0) to (µ2, ν2) at the

surface r = r0. The coordinate µ2 can be determined by the relation

µ2

µ1
= exp

[
− κ

∫ rh

r0

dr

f

(
1− 1√

1 +H−2fr2

)]
. (4.10)

In contrast, the coordinate ν2 can be determined by choosing a reference surface r = r̄ for

which r? = 0 in the black hole interior. Thus, we reach

ν2 =
1

µ2
exp

(
2κ

∫ r0

r̄

dr

f

)
. (4.11)

The third segment stretches from (µ2, ν2) to (µ3 = 0, ν3 = h/2). Therefore, with the

relation
ν3

ν2
=

h

2ν2
= exp

[
κ

∫ rh

r0

dr

f

(
1− 1√

1 +H−2fr2

)]
=
µ1

µ2
, (4.12)

we can express h as

h = 2 exp(Ξ1 + Ξ2 + Ξ3) , (4.13)

where

Ξ1 = 2κ

∫ r0

r̄

dr

f
, (4.14)

Ξ2 = 2κ

∫ rh

r0

dr

f

(
1− 1√

1 +H−2fr2

)
, (4.15)

Ξ3 = κ

∫ ∞
rh

dr

f

(
1− 1√

1 +H−2fr2

)
. (4.16)

It is obvious that h depends on the location of r0 for a fixed rh. Combining eq. (4.8) with

eq. (4.13), one can get the relation between I(h, x0) and h. Next, we will study the relation

between I(h, x0) and h numerically in the background of the shock wave geometry in the

massive gravity.

4.1 Black hole charge and butterfly effect

We are going to study how the charge affects the shock wave geometry and the dynamical

behavior of mutual information in the following context. As we already knew from the

previous subsection that as r0 → rh (we set rh = 1 in numerics), the shift h vanishes,

which can also be found in the plot (a) of figure 7. The vanishing of h means there is

no added perturbation into the bulk, therefore, the shock wave geometry goes back to the

unperturbed or the static case which we studied in the previous section.
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Figure 7. Panel (a): the relation between the shift h and the minimal radius r0 for various charges

Q; panel (b): the relation between the mutual information I(h, x0) and r0 for different Q; panel (c):

the relation between I(h, x0) and h for various Q. In numerics, we have set r̄ = 0.2, rmin = 50,

m = 0.6, rh = 1. The red, yellow and green lines correspond to Q = 0.6, 0.7, 0.8 respectively.

From the formula of Ξ3 in eq. (4.16), we can see that if the denominator in the integrand

vanishes, i.e.,
√

1 +H−2fr2 = 0, the shift h diverges. Since H is a conserved quantity, the

above equation can be readily transformed to

d(fr2)

dr

∣∣∣∣
r=rcrit

= f ′(rcrit)rcrit + 2f(rcrit) = 0 , (4.17)

in which, rcrit is the critical position that makes the shift h divergent. For instance, in the

case of Q = 0.6 and m = 0.6, a physical solution to eq. (4.17) is rcrit ≈ 0.6275 which is

consistent with plot (a) of figure 7. We have also checked the correctness of eq. (4.17) for

other parameters.

The mutual information grows as r0 increases, which is shown on panel (b) of figure 7.

From this plot we see that there are also critical values of r0 that renders mutual information

vanishing. In fact, one can see from plot (a) of figure 7 that for a fixed r0, greater values

of the charge correspond to smaller values of shift h. As we know that the shift h is

proportional to the energy of the added perturbation, thus we can deduce from panel (b) of

figure 7 that the more the added energy perturbation is, the smaller the mutual information
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Figure 8. Panel (a): the relation between the shift h and the minimal radius r0 for various m;

panel (b): the relation between the mutual information I(h, x0) and r0 for various m; panel (c):

the relation between I(h, x0) and h for different m. In numerics we have set r̄ = 0.2, rmin = 50,

Q = 0.5, rh = 1. The red, yellow and green lines correspond to m = 0.2, 0.3, 0.4 respectively.

will be. The relationship between mutual information and the shift h can be more clearly

seen from the panel (c) of figure 7. As the shift grows to a critical value hcrit, the mutual

information will vanish, i.e., when the added perturbation is big enough, it will finally

disrupt the entanglement between the two strips. The disruption of the mutual information

depending on the added perturbation in the initial time reminds us of the phenomenon

in chaos theory, i.e., butterfly effect. For a fixed value of shift, the mutual information

decreases as the charge grows, which is consistent with the statements in the previous

section. In particular, when the shift is zero (or equivalently r0 → 1), i.e., there is no

added perturbation into the bulk, it will go back to the static case discussed in the previous

section.

4.2 Graviton mass and butterfly effect

Plot (a) of figure 8 shows the relation between the shift h and r0 for different graviton

masses. Just like the case in the preceding subsection, as r0 → rh = 1, h vanishes; besides,

there is also a critical value of r0 that makes the shift h diverge. The critical values of r0

match the ones from eq. (4.17). For a fixed r0, larger m corresponds to larger h according
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to the panel (a) of figure 8; meanwhile we find from the panel (b) that larger m corresponds

to smaller mutual information, which indicates that larger inhomogeneity will disrupt the

mutual information. This is consistent with the statements in the static case in the previous

section.

The relationship between the mutual information and the shift h is shown in the

plot (c) of figure 8, which can be obtained from the rest two plots (a) and (b). Just like in

the plot (c) of figure 7, the mutual information decreases according to the shift h, which

means the added perturbation will destroy the mutual information between the two sides

of the black hole. And for a fixed value of the shift, the mutual information decreases with

respect to the graviton mass as we already discussed above. There are also critical shifts

hc that render the mutual information vanishing, and it is found that larger m corresponds

to smaller hc. We have also checked other values of m for these relations and found that

they have similar behaviors as in figure 8.

5 Conclusions and discussions

In this paper we studied the holographic mutual information in the background of massive

gravity. In the static case, we found that for shorter strips the near-homogeneous mutual

information would increase as the temperature of the black hole grows, which is consistent

with the conclusions in the pure homogeneous case studied previously. However, for a

larger graviton mass, which corresponds to greater inhomogeneity in the boundary field

theory, we found that the mutual information would decrease with respect to the graviton

mass. For longer strips the mutual information would decrease monotonically with respect

to the graviton mass, which implies that the spatial inhomogeneity has larger influence to

the mutual information of strips with larger length. With the above results, we argued that

when the system is far from the homogeneity, the spatial inhomogeneity plays a dominant

role in affecting the mutual information than the temperature of the black hole. We also

investigated the effect of the charge on the mutual information and found that the mutual

information decreases as the charge increases, which is independent of the width of the

strip.

By adding the light-like perturbations into the bulk, we studied the dynamical mutual

information in the shock wave geometry of the massive gravity. The added perturbations

produce a shift on the horizon in the Kruskal coordinates. From the existing studies of the

shock wave geometry, we know that the shift is proportional to the added energy. We found

that the more the added energy was, the smaller the mutual information would be, which

suggests that the added perturbations would reduce the mutual information between the

two sides of the black hole. We also investigated the effect of the charge and graviton mass

on the critical values of the shift, where makes the dynamical mutual information vanish.

We found that the larger the values of the charge and graviton mass are, the smaller the

critical values of the shift are, which indicates that both the charge and inhomogeneity

would reduce the mutual information.

It would be interesting to study the holographic mutual information in the background

of real spatial inhomogeneity, such as adding lattice structures in the bulk [46] or for
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simplicity with the spatially dependent sources on the boundary [47]. The advantage of

the latter is that the bulk spacetime is homogeneous and isotropic; moreover, turning on

the sources of the massless scalar fields on the boundary would provide more physical

meanings of the momentum relaxation in the boundary field theory. It was shown in [47]

that the parameters related to the scalar sources are similar to the graviton mass in some

sectors of the massive gravity. Therefore, it would be very interesting to check whether

the parameters of the scalar sources really play the same role as the graviton mass to the

holographic mutual information in the massive gravity. We will leave this as our future

study.
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