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[1] The recent sharp decline in Arctic sea ice has triggered
an increase in the interest of Arctic sea ice predictability, not
least driven by the potential of significant human industrial
activity in the region. In this study we quantify how long
Arctic sea ice predictability is dominated by dependence
on its initial conditions versus dependence on its secular
decline in a state‐of‐the‐art global circulation model (GCM)
under a ‘perfect model’ assumption. We demonstrate initial‐
value predictability of pan‐Arctic sea ice area is continuous
for 1–2 years, after which predictability is intermittent in
the 2–4 year range. Predictability of area at these longer
lead times is associated with strong area‐thickness cou-
pling in the summer season. Initial‐value predictability
of pan‐Arctic sea ice volume is significant continuously for
3–4 years, after which time predictability from secular trends
dominates. Thus we conclude predictability of Arctic sea
ice beyond 3 years is dominated by climate forcing rather
than initial conditions. Additionally, we find that forecast
of summer conditions are equally good from the previous
September or January initial conditions. Citation: Blanchard‐
Wrigglesworth, E., C. M. Bitz, and M. M. Holland (2011), Influ-
ence of initial conditions and climate forcing on predicting Arctic
sea ice, Geophys. Res. Lett. , 38 , L18503, doi:10.1029/
2011GL048807.

1. Introduction

[2] Predicting Arctic sea ice has long been practiced by
elders of Inuit communities in the Arctic, whose livelihoods
depend on sea ice for travel and hunting [Fox, 2003]. There
is increasing interest in predicting Arctic sea ice among
shipping and resource extraction industries, spurred in part
by the recent sharp decline of Arctic sea ice area, particularly
in summer [Serreze et al., 2007]. For example, advanced
knowledge of the opening of the northwest and northeast
passages could offer faster and cheaper travel between
the Atlantic and Pacific oceans [Arctic Climate Impact
Assessment, 2004].
[3] The persistence of anomalies in Arctic sea ice area has

multiple important timescales [Blanchard‐Wrigglesworth
et al., 2011]. There is an initial exponential decay of the
lagged correlation from a given month that results in a neg-
ligible correlation after 2–4 months. For example, correla-
tion of Arctic sea ice area anomalies in May with successive
months is essentially zero by September. Beyond this initial

loss of persistence, there is a reemergence that occurs in
some seasons owing to coupled interactions between sea ice
area anomalies, thickness anomalies (which tend to persist
much longer than area anomalies), and sea surface temper-
ature (SST) anomalies. The reemergence is observed in
nature, but it is more pronounced in a GCM analyzed in the
study.
[4] Global Climate Models (GCMs) have been employed

to assess the prognostic predictability of Arctic sea ice in a
few studies by using ‘perfect model’ approach in which
ensemble integrations are initialized from a reference model
integration. Such studies neglect errors from imperfect
knowledge of the initial state and therefore give the upper
limit of predictability for the model. One study found central
Arctic thickness predictability for 2 years, while Arctic sea
ice area predictability was only better than expected from
damped persistence for a few months near the ice edge
[Koenigk and Mikolajewicz, 2009]. Another found sea ice
area in a year with above average thickness generally
exhibits longer predictability than in a year with below
average thickness [Holland et al., 2010]. These studies are
valuable precursors to practical GCM predictions but they
have only evaluated predictability from initial conditions
(‘predictability of the first kind’ [Lorenz, 1975]). This ‘initial‐
value’ predictability is measured by comparing the time
evolution of the spread of an ensemble forecast distribution to
its asymptotic limit.
[5] Predictability from changing boundary conditions

(‘predictability of the second kind’ [Lorenz, 1975]), such as
results from anthropogenic climate forcing, could be very
important for a system whose mean state is rapidly chang-
ing, as is the case for Arctic sea ice. This ‘forced’ predict-
ability results in a transient in the ensemble mean of an
ensemble forecast distribution. A question of interest is how
long initial‐value predictability dominates over forced pre-
dictability in sea ice, or is there a gap when there is no
predictability. A similar question has been explored for
Pacific upper ocean temperatures, which showed within
5–8 years predictability from climate forcings exceeds that
from initial values [Branstator and Teng, 2010]. We assess
the ‘forced’ predictability in sea ice through the use of rel-
ative entropy [Kleeman, 2002] from information theory,
which has recently been applied in the context of oceanic
temperature predictability [Teng and Branstator, 2010].

2. Methods

[6] We investigate predictability of pan‐Arctic sea ice
area and volume in perfect model studies with the Commu-
nity Climate System Model version 4 (CCSM4) [Gent et al.,
2011] at 1° resolution in all components. Because persis-
tence of Arctic sea ice area varies seasonally [Blanchard‐
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Wrigglesworth et al., 2011], we designed our experiments to
assess initializations from two different times of the year as
noted in Table 1. The start times were chosen to capture
times near the maximum and minimum of sea ice area
persistence. We conduct an ensemble of prediction experi-
ments (EPEs) for each start time composed of 60 runs with
initial conditions drawn from six different 20th Century
integrations (see G. A. Meehl et al. (Climate system
response to external forcings and climate change projections
in CCSM4, submitted to Journal of Climate, 2011) and
Table 1). We refer to runs with initial conditions from the
same start time and 20th century integration as a set. Each
set has either 8 or 20 members of 2 or 5 years in length (as
noted in Table 1), and all members of the set have the same
sea ice, land, and ocean initial conditions. The set members
are unique in their atmospheric initial conditions, which are
drawn from consecutive days centered on 1 January or
September. Given the rapid adjustment time scales of the
atmosphere, each member of a set can be considered inde-
pendent. All integrations have time‐varying, radiative forc-
ing [Gent et al., 2011]. We find that the varying number of
members in the sets in the first two years does not distort our
results (see auxiliary material).1

[7] We use monthly model output for all our computa-
tions. Anomalies are calculated as the departure from the
mean of each set. A time‐evolving standard deviation (s) is
computed from the anomalies across each January and
September EPE. We use years 1996–2005 of the six 20th
century integrations to construct statistics of a ‘reference’
distribution, which we assume has no memory of its initial
conditions in 1850. The time‐evolving mean (or trend) of
the reference distribution is estimated from a linear fit to the
ensemble mean of the six runs. The reference s is estimated
from anomalies of this time‐evolving mean. In the refer-
ence, s is assumed to be monthly varying but annually
periodic, a reasonable assumption for the shortness of the
period considered. All significance values are stated at the
95% confidence interval.
[8] Satellite observations of sea ice area [Fetterer et al.,

2010] from 1979–2010 are used to compute the trends
and standard deviation of observed sea ice area.

3. Results

[9] Forecast accuracy is a user defined concept with no
universally defined skill standard [Collins, 2002], so we con-
sider several measures. We begin by evaluating the growth
of the cross‐ensemble standard deviation (or ensemble

spread) of each EPE, which addresses initial‐value predict-
ability only, using the Root Mean Square Deviation (RMSD,
also known as Root Mean Square Error). The RMSD is
defined as

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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where xij is either pan‐Arctic sea ice area or volume (hence-
forth referred to as just area or volume) and the indexes j
indicates the set, i indicates ensemble member, and N the
total number of variables in the summation minus 1 [see
Collins, 2002]. We note that our interpretation of the RMSD
is in close agreement with those from the Prognostic
Potential Predictability (PPP) [Pohlmann et al., 2004] and
growth of the standard deviation of the EPE (see auxiliary
material).
[10] Figure 1 shows the RMSD for area and volume for

January and September EPEs. An RMSD of zero indicates
perfect predictability, and the reference RMSD is the limit
above which there is no predictability. Predictability is
considered significant when the RMSD of the EPE is less
than that of the reference judged using an F‐test. As
expected from its shorter persistence timescale, the initial‐
value predictability is lower for area than for volume. The
time it takes for the RMSD for area to first lose significance
is about 1.5–2 years (Figures 1a and 1c). Beyond 2 years the
RMSD for area is significant only intermittently, with a
tendency for significance to recur in some months, notably
May–July and September–October of years 3 and 4. After
4 years all initial‐value predictability of area is lost. For sea
ice volume, the initial‐value predictability of each EPE is
significant continuously for 3–4 years (Figures 1b and 1d).
[11] We compare the RMSD for each EPE to an estimate

from an autoregressive process of order 1 (AR1 model [see,
e.g., von Storch and Zwiers, 1999]) — an estimate of the
predictability from damped persistence alone. The AR1
model is based on the one‐lag correlation (a) and variance
(s2) of the reference for the month following the start time
(e.g., for the January start, a is for January correlated with
February and s is for only the month of January). Hence, the
asymptotic limit of the AR1 model RMSD approaches that
of the reference for the start month. The parameters a and s
for area vary stronglywith season [Blanchard‐Wrigglesworth
et al., 2011], so the AR1 model RMSD for area should only
be considered relevant for the first few months. The initial
rapid rise of the AR1 model RMSD for area for the Sep-
tember EPE is due to both a low a and high s. In other
words, damped persistence alone from September conditions
offers poor predictability — much worse than from January.
However, the EPE predictability is just as good for Sep-
tember as January start times (based on comparing the
RMSD of EPEs and reference at similar lead times), which
offers hope that prognostic predictions of area can beat
simple damped persistence at least for a few months of lead
time.
[12] Initial value predictability for January and September

EPEs is generally indistinguishable in spring of the first year
for both area and volume, as evident by the similar mag-
nitude of RMSD in Figures 1e and 1f. This season leads to a
period of enhanced growth in the RMSD of the area and
volume distributions that recurs in June–July each year. It is

Table 1. Description of Ensembles of Prediction Experiments

20th Century
Run Used

for Initialization Starting Times
Length
of Runs

Number
of Members

1 Sep 2000, Jan 2001 2 years 20
2 Sep 2000, Jan 2001 5 years 8
3 Sep 2000, Jan 2001 5 years 8
4 Sep 2000, Jan 2001 5 years 8
5 Sep 2000, Jan 2001 5 years 8
6 Sep 2000, Jan 2001 5 years 8

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL048807.
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perhaps not a coincidence that initial‐value predictability
should decline at a time of high solar insolation, when snow
cover disappears, surface albedo drops sharply, and atmo-
spheric perturbations have been shown to produce the
greatest variation in sea ice volume [Bitz et al., 1996]. We
emphasize that the decline does not result in complete loss
of predictability, at least not until several years have passed.
[13] Our previous work showed that sea ice area anoma-

lies could disappear and reemerge by association with long‐
lived thickness anomalies during the summer season
[Blanchard‐Wrigglesworth et al., 2011]. Such phenomena
are possible if thickness and area anomalies are only
strongly correlated in summer and the area anomaly decays
in fall while the thickness anomaly in the central Arctic
persists all year. Volume is the hemispheric integral of local
thickness weighted by the local fractional sea ice cover.
Thus volume is strongly related to central Arctic thickness.
Figure 2 shows that sea ice area and volume are indeed
strongly correlated only in summer in both EPE and reference.
We thus expect that negligible area predictability in spring
followed by reemergence of area predictability in summer‐
fall (e.g., see Figures 1a and 1c in 2002 and 2003) is a result
of coupling between the slowly‐varying volume and the
generally faster‐varying area. While we do see winter area
predictability lasts up to 3 years, this is not imparted by
volume anomalies, but presumably originates from persis-

tence in the ocean model component. Further evidence of
the controlling influence of volume on area is that once the
EPE RMSD becomes undistinguishable from the reference
RMSD in the 5th year (see Figures 1b and 1d), area loses all
initial‐value predictability (see Figures 1a and 1c).

Figure 2. Correlation between area and volume anomalies.
Monthly r values for January and September IC EPEs and
reference run.

Figure 1. RMSD of Arctic sea ice volume and area for the (a, b) January (dark blue), (c, d) September (light blue), and
(e, f) January and September EPEs. Estimates of RMSD from the reference integration (black dashed) indicate the limit of
no predictability. The blue lines are heavy when the RMSD of the ensemble is significantly below the reference RMSD. The
red lines are the RMSD of an AR1 model, which provide a measure of the RMSD expected from persistence alone.
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[14] Next we consider how the rapid decline in area and
volume affect predictability through analysis of relative
entropy, which measures the information (in bits) provided
by a prediction over the climatology [Kleeman, 2002]. The
univariate form of relative entropy is defined as

RE ¼ 1

2
ln

�2
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�2
e

� �
þ �2
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�2
c
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where sc and se are standard deviations of the reference and
experiment respectively, and mc and me is the mean of the
reference and experiment respectively. We refer to the first
two and fourth terms in equation (2) as the dispersion
component and the third term as the signal component of the
relative entropy. Relative entropy evaluates both the pre-
dictability of the spread (dispersion) and the evolution of the
mean (signal) of the EPE distribution. The initial‐value
predictability has both dispersion and signal components,
while the forced predictability affects only the signal com-
ponent in the timeframe of our experiments. We estimate a
null hypothesis lower (rejection) level by calculating the
relative entropy with respect to the reference of a synthetic
data set whose mean and standard deviation are constructed
to be minimally significantly different from the reference at
exactly the 95% level (see auxiliary material).
[15] From the relative entropy of the EPEs (see Figure 3),

we see that most of the initial‐value predictive information
in volume is a result of the dispersion component of the
ensemble, which provides predictability for about 3–4 years
(in agreement with Figure 1). The signal component also
yields initial‐value predictability in volume, which is much

smaller than the dispersion component during the first year,
but comparable in years 2–3, particularly in the September
EPE. All initial‐value predictability for volume disappears
by year 5. The forced predictability of volume becomes
comparable with initial‐value predictability in year 3, and
forced predictability exceeds initial‐value predictability in
year 4. For volume, the sum of initial‐value and forced
predictability is significant all 5 years, except for a brief
period in the January EPE at the end of year 3.
[16] For area, dispersion provides continuous initial‐value

predictability for 2 years, and then it is intermittently sig-
nificant in years 3 and 4. Unlike volume, the greater con-
tributor to initial‐value predictability of area is from the
signal component in the first 6 months and in the 2nd winter
following the forecast start date. Given the more rapidly‐
varying, noisier nature of area compared to volume, it is
harder to define a precise time at which all area initial‐value
predictability saturates (to use a term from Branstator and
Teng [2010]), but saturation is beyond 2 years for the sig-
nal component and 4 years for the dispersion component.
The first evidence of forced predictability in area does not
appear until year 5, which is much later than for volume.
Thus, there are extensive periods in the 2–5 year range
where no significant total predictability is present.

4. Discussion and Conclusions

[17] The evolution of volume and area in the 20th Century
runs for 2000–2005 (see Table 1) can be used as a window
to the timescale for when forced predictability becomes
significant. It takes only about 4 years for the volume to
reach a new mean state (when the secular change exceeds ‐1

Figure 3. Relative entropy (unit less) of sea ice volume and area for (a, b) January and (c, d) September IC EPEs. The
dashed lines represent the 95% null hypothesis rejection levels for dispersion (blue), signal (green) and total (cyan).
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standard deviation), whereas for area it takes about 6 years.
Unfortunately, the observational record of sea ice thickness
is too incomplete to calculate this metric for observed sea ice
volume, yet we note that recent trends [Kwok and Rothrock,
2009] are comparable to those in the model. Observed sea
ice area retreat indicates it currently takes about 5 years to
reach a new mean state. The near agreement between the
model and observations (where possible) supports the
finding from our model results that at present predictability
of the Arctic sea ice system beyond about 3–5 years is
principally a boundary‐forcing problem. In contrast, pre-
dictability for less than 3–5 years is an initial‐value problem.
[18] Area predictability is considerably longer than the

predictability yielded by its inherent persistence timescale,
in part due to the coupling of area and volume anomalies
during the summer season. In the model there are times
when no significant area predictability exists from either
initial conditions or climate forcing, whereas for volume,
significant predictability is present almost continuously. We
find that beyond the spring, model predictions are equally
good whether initialized in September or January, implying
that in practice forecasts of the summer sea ice may be made
as early as the fall.
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