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ABSTRACT 

Objectives: To evaluate the influence of irradiation time on degree of conversion (DC) and microhardness of high-

viscosity bulk-fill resin composites in depths up to 6 mm.  

Materials and methods: Four bulk-fill materials (Tetric EvoCeram Bulk Fill-TECBF; x-tra fil-XF; QuixFil-QF; 

SonicFill-SF) and one conventional nano-hybrid resin composite (Tetric EvoCeram-TEC) were irradiated for 10, 20 

or 30 s at 1170 mW/cm
2
. DC and Knoop microhardness (KHN) were recorded after 24-h-dark-storage at five depths: 

0.1, 2, 4, 5 and 6 mm. Data were statistically analyzed using ANOVA and Bonferroni’s post-hoc test (α = 0.05).  

Results: With increasing bulk thickness, DC and KHN significantly decreased for TEC. TECBF and SF showed a 

significant decrease in DC and KHN at 4-mm depth after 10-s irradiation, but no decrease in DC after 30-s 

irradiation (p > 0.05). XF and QF demonstrated no significant DC-decrease at depths up to 6 mm after irradiation of 

at least 20 s. At 4-mm depth, all materials tested achieved at least 80% of maximum DC-values, irrespective of 

irradiation time. However, at the same depth (4 mm), only XF and QF irradiated for 30 s achieved at least 80% of 

maximum KHN-values.  
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Conclusions: Regarding DC, the tested bulk-fill resin composites can be safely used up to at least 4-mm 

incremental thickness. However, with respect to hardness, only XF and QF achieved acceptable results at 4-mm 

depth with 30 s of irradiation.  

Clinical relevance: Minimum irradiation times stated by the manufacturers cannot be recommended for placement 

of high-viscosity bulk-fill materials in 4-mm increments. 

Keywords: Bulk-fill resin composites, degree of conversion, microhardness, curing depth, irradiation time 
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1. Introduction 

Advances in material formulation, including improved filler morphology, progress with existing dimethacrylate 

chemistry and novel monomer technologies may improve the shortcomings of resin composite materials [1]. 

However, simplification of use of resin composites has not been frequently reported during the last decade	
   [2], 

though clinicians desire to perform high-quality dentistry at minimal chair time. Incremental layering techniques 

have long been accepted as a standard and are widely used for light-curing resin composite restorations. For years it 

has been an accepted fact that to create adequately cured composite restorations with minimal polymerization 

shrinkage and stress, separately cured layers not exceeding 2 mm should be applied	
  [3]. However, restoring cavities, 

especially deep ones, with multiple increments of resin composite is time-consuming and implies the risk of 

incorporating air bubbles or contaminants between the increments	
  [4].  

To refute the paradigm of incremental layering techniques, the chemical and physical parameters of 

composite materials had to be re-thought [5]. Lately, a new category of resin composites has been introduced: bulk-

fill resin composites including low-viscosity (flowable) and high-viscosity (sculptable) material types. In order to 

obtain good clinical outcomes, several conditions have to be met: thick layers should be optimally cured, while 

polymerization shrinkage as well as stress should be maintained low with no decrease in marginal quality. One 

approach to improve the depth of cure is to increase the material’s translucency	
   [6]. Optical properties of resin 

composite restoratives are of obvious importance in a procedure reliant on photoactivation, since they may affect 

light transmission and therefore monomer conversion upon which mechanical properties and ultimate clinical 

performance are dependent	
   [7]. To optimize material properties, manufacturers incorporated new advanced 

composite-filler technologies, pre-polymer shrinkage stress relievers, polymerization modulators and highly light-

reactive photoinitiator systems [5, 8]. Most research regarding bulk-fill resin composites recently focused on 

flowable materials, and the revealed data are very promising in sense of lower polymerization shrinkage and stress 

compared with conventional resin composites [9, 10]. Moreover, satisfactory micro-tensile bond strength	
  [11], depth 

of cure [12], degree of conversion (DC) and flexural strength have been reported for flowable bulk-fill materials [8]. 

However, flowable bulk-fill resin composites require the placement of a final capping layer made of a regular 

composite material on top of the up to 4-mm-thick composite base, as a result of their low surface hardness and 

modulus of elasticity	
   [13]. High-viscosity bulk-fill resin composites, in contrast, are indicated for use without 
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veneering, and can thus be applied as true single-step bulk-fill materials. Nevertheless, to date, very few studies 

concentrated on high-viscosity bulk-fill resin composites and examined their characteristics	
  [6, 13-15], and only one 

study	
  [16] used Fourier transform infrared spectroscopy (FTIR) to determine the DC of two representatives of non-

flowable bulk-fill materials. To the knowledge of the authors, until now, there are no studies dealing with a 

systematic and thorough investigation on the influence of irradiation time and composite thickness on the DC of 

currently available high-viscosity bulk-fill resin composites. 

The DC has a major impact on the ultimate success of a resin composite restoration [17, 18]. Adequate 

polymerization results in enhanced physical properties	
   [19] and decreased cytotoxicity of dimethacrylate-based 

composites [20]. Different factors such as filler particle size and loading, polymerization initiator concentration [21, 

22], monomer type and amount, the shade and translucency of the material	
  [23], intensity and wavelength of the 

light source, as well as irradiation time [24] can influence the DC of dental composite materials. DC is frequently 

measured to evaluate photopolymerization efficiency by spectroscopic techniques that infer the quantity of 

remaining double bonds, either mid-infrared Fourier transform (FT) spectroscopy	
  [25], Raman spectroscopy	
  [26] or 

near-infrared FT spectroscopy (FT NIR) [27]. Microhardness is one of the indirect methods to determine depth of 

cure [28, 29]. The depth at which a resin composite achieves 80% of its surface hardness [30, 31] or, more 

conservative, 80% of its maximum hardness [14] is generally regarded as the maximum depth at which a resin 

composite should be used. 

The aim of this study was to determine the influence of different irradiation times (10, 20 and 30 s) and 

composite thicknesses (0.1, 2, 4, 5 and 6 mm) on the DC and microhardness of four high-viscosity bulk-fill resin 

composites and one conventional nano-hybrid composite material. The null hypotheses tested were: (1) There would 

be no significant difference within each bulk-fill resin composite and the nano-hybrid composite material in the DC 

and microhardness achieved at different depths. (2) There would be no significant difference within each bulk-fill 

resin composite and the nano-hybrid composite material in the DC and microhardness achieved with different 

irradiation times.  
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2. Materials and methods 

Table 1 represents the materials used in this study, lot numbers and manufacturers’ information. Four high-viscosity 

bulk-fill resin composites [Tetric EvoCeram Bulk Fill – TECBF (Ivoclar Vivadent, Schaan, Liechtenstein), x-tra fil 

– XF (VOCO, Cuxhaven, Germany), QuixFil – QF (Dentsply DeTrey, Konstanz, Germany), SonicFill – SF (Kerr, 

Orange, CA, USA)] and one conventional nano-hybrid composite material [Tetric EvoCeram – TEC (Ivoclar 

Vivadent)] were irradiated for 10, 20 or 30 s with a polywave LED curing unit (Bluephase G2, Ivoclar Vivadent) in 

high-intensity mode. The output light intensity of the curing unit (1170 mW/cm
2
) was measured using a calibrated 

FieldMaxII-TO power meter in combination with a PM2 thermopile sensor (Coherent, Santa Clara, CA, USA), and 

verified	
  periodically during the experiments.
 
The study was conducted in two parts: the first part focused on the DC 

measurements, whereas the second part aimed to evaluate microhardness of the test materials. DC and 

microhardness were recorded after 24-h-dark-storage (37°C) at five measuring depths: 0.1, 2, 4, 5 and 6 mm.  

2.1. Degree of conversion
 

A thin wafer of composite paste was compressed between two Mylar strips under 10
7
 Pa (Carver press, Specac Ltd., 

Orpington, Kent, UK). For near-surface measurements (0.1 mm), composite specimens (diameter: 10 mm, thickness: 

0.1 mm) were irradiated by pressing the light guide tip of the curing unit against the upper Mylar strip. For 

measurements at a particular depth, uncured overlays (diameter: 10 mm) of the respective composite material were 

placed in appropriate thickness (2, 4, 5 or 6 mm) above the upper Mylar strip, and irradiation was performed in 

direct contact of the light guide tip to a Mylar strip covering the top of the overlay. Additionally, unpolymerized 

specimens were used as a reference to determine the proportion of aliphatic and aromatic bonds in cured and 

uncured material. Soft uncured composite specimens cannot be placed in the sample holder, so they had to be 

homogenized with spectroscopically pure potassium bromide (Merck, Darmstadt, Germany) in an agate mortar and 

then pressed into thin pellets in order to be able to perform measurements in transmission mode.  

DC (n = 5 per group) was measured after 24-h storage in the dark at 37°C by Fourier transform infrared 

spectroscopy (FTIR; Model 2000, Perkin Elmer, Beaconsfield, Bucks, UK)	
   [32]. Recording and processing of 

absorption spectra of the composite specimens were carried out with Spectrum v5.3.1 software (Perkin Elmer). 

Spectra of unpolymerized and polymerized composite specimens were recorded in transmission mode at room 
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temperature (22°C), corrected by subtracting the background, and then converted into the absorbance mode. A total 

of 20 scans per specimen were measured at a resolution of 4 cm
-1

. The peak ratios were calculated according to 

Rueggeberg’s baseline method	
   [33]. DC was calculated from the equivalent aliphatic (1638 cm
-1

)/aromatic 

(1610 cm
-1

) molar ratios of cured (C) and uncured (U) composite specimens according to the following equation: 

DC (%) = (1 – C/U) x 100 

 

2.2. Knoop microhardness 

For microhardness measurements, a stainless steel mold with a semicircular notch (diameter: 4 mm; length: 8 mm) 

was used. The semicircular notch was filled in bulk with one of the five resin composites (n = 8 per group), and 

covered with a Mylar strip. The composite material was made flush with the mold using a glass plate, and, after 

removing the glass plate, the mold was covered with a stainless steel shell	
  [4]. A second Mylar strip was placed on 

the semicircular opening, and the resin composite was irradiated through the semicircular opening (top surface) 

keeping the light tip centered and in contact with the second Mylar strip. After irradiation, the shell and both Mylar 

strips were removed, and the molds containing the resin composite specimens were stored for 24 h in the dark at 

37°C. Knoop microhardness (KHN) was determined on the resin composite specimens at five distances from the 

light-exposed surface (0.1, 2, 4, 5 and 6 mm) using a digital microhardness tester (model no. 1600-6106, Buehler, 

Lake Bluff, IL, USA). A load of 10 g was applied, with a dwell time of 20 s. For each specimen, three indentations 

were performed at each depth (near the middle line), and averaged.  

2.3. Statistical analysis 

ANOVA multivariate analysis and partial eta square statistics were used to investigate the influence of the 

parameters ‘composite material’, ‘measuring depth’ and ‘irradiation time’ on DC. For each composite material 

separately, DC- and KHN-values within each measuring depth and each irradiation time, respectively, were 

compared using one-way ANOVA followed by Bonferroni’s post-hoc test. All analyses were conducted at a pre-set 

global significance level of α = 0.05 (SPSS Version 17, SPSS, Chicago, IL, USA).  
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3. Results 

ANOVA multivariate test revealed that the three factors ‘composite material’ (p < 0.001), ‘measuring depth’ 

(p < 0.001) and ‘irradiation time’ (p < 0.001) significantly affected DC. The composite material was the parameter 

with the strongest influence on DC (η
2 

= 0.992), followed by measuring depth (η
2 

= 0.978) and irradiation time 

(η
2
 = 0.965). Significant interaction effects were observed between the factors ‘irradiation time’ and ‘composite 

material’ (p < 0.001), and between ‘measuring depth’ and ‘composite material’ (p < 0.001). 

Table 2 represents the DC obtained with 10-, 20- and 30-s irradiation time at depths of 0.1, 2, 4, 5 and 

6 mm. With increasing bulk thickness, DC significantly decreased for TEC with all irradiation times. TECBF and 

SF showed a significant decrease in DC at 4-mm depth in case of 10-s irradiation, but not with 30-s irradiation. XF 

and QF demonstrated no significant decrease in DC at depths up to 6 mm when irradiation was performed for at 

least 20 s. All materials tested achieved more than 80% of their maximum DC-value at depths up to at least 4 mm, 

irrespective of irradiation time (Table 3). In addition, XF and QF satisfied the same criterion up to 6-mm depth with 

all irradiation times. 

KHN-values of all experimental groups are presented in Table 4. KHN of TEC significantly decreased with 

increasing bulk thickness. TECBF and SF showed a significant decrease in KHN at 4-mm depth in case of both 20-s 

and 30-s irradiation, and at 2 mm in case of 10-s irradiation. With 30-s irradiation time, QF showed no significant 

KHN-decrease for depths up to 6 mm, while this was true for XF for depths up to 5 mm. KHN significantly 

decreased at 4 mm when XF was irradiated for 20 s or less, and when QF was irradiated for 10 s. At 4-mm depth, 

only XF and QF irradiated for 30 s achieved at least 80% of maximum KHN-values (Table 5). However, at 2-mm 

depth, all bulk-fill resin composites except TECBF attained significantly higher hardness values than at the 

superficial layer (0.1 mm) in case of 30 s of irradiation (Table 4). 
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4. Discussion 

This study evaluated the influence of different irradiation times and composite thicknesses on the DC and 

microhardness of four high-viscosity bulk-fill resin composites and one conventional nano-hybrid composite 

material. For this purpose, FTIR analysis and KHN evaluation were used. Bulk-fill materials are an emerging class 

of resin-based dental composites, which is claimed to enable the restoration build-up in thick layers up to 4 or even 

5 mm. Depth of cure of light-curing resin composites is a function of filler size and filler composition, shade and 

translucency of the material, intensity of the light source, duration of irradiation exposure, as well as monomer 

composition and polymerization initiator concentration [34-36]. Our results revealed a wide variety of different 

influences on final DC and KHN of the tested bulk-fill resin composites. The composite material was the parameter 

with the strongest influence on DC, followed by measuring depth and irradiation time. Significant interaction effects 

between the irradiation time and the tested material as well as between the measuring depth and the tested material 

were found. This indicates that the DC for different irradiation times and at different measuring depths differed 

between the tested materials.  

The setting process has a major impact on the final mechanical, physical and biological properties of 

dimethacrylate-based dental composites	
  [37]. Resin polymerization depends mainly on intrinsic factors such as the 

chemical structure of the monomer and photoinitiator concentration, and extrinsic factors such as the polymerization 

conditions [1]. Whilst the number of photons that reach the cavity floor is significantly lower than the number of 

photons that reach the surface, there are several approaches aiming to increase the curing depth of resin composites, 

e.g. to improve the absorption spectrum and the initiator's reactivity, to optimize the LED light source, and to 

increase the translucency of the materials	
  [38, 39]. 

Concerning the first approach, the most commonly used photoinitiator is a combination of camphorquinone 

(CQ) and generally different types of tertiary amines	
   [40]. Numerous photoinitiators have been considered as 

alternative curing systems such as phenylpropanedione (PPD), mono- or bis-acylphosphine oxides (MAPO and 

BAPO), benzoyl germanium or else benzil	
   [41-44]. Each converted CQ molecule only generates one free radical 

that will actually initiate polymerization. Other photoinitiators are able to generate several active radicals per 

molecule, e.g. two for MAPO, and four for BAPO [44, 45]. This explains the lower polymerization quantum yield of 
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CQ, which is the amount of monomer polymerized per absorbed photon	
  [44]. New photoinitiators like dibenzoyl 

germanium derivates are far more light-reactive than CQ	
   [46]. Such a germanium-based initiator (Ivocerin) is 

incorporated in TECBF as an additional photoinitiator besides CQ/amine initiator systems, in order to enable the 

material to polymerize more rapidly and with greater depth of cure. In this study, however, QF revealed the highest 

DC and KHN at deep layers (5 and 6 mm), which is surprising since, according to the information given by the 

manufacturer, it only contains CQ as photoinitiator. Though some photoinitiator systems have advantages over the 

classical CQ system, this should be considered in relation to some intrinsic (co-monomer composition and ratio, 

filler content and size) and extrinsic factors (such as light spectrum, irradiance and irradiation time). This is closely 

connected with the second approach to increase the depth of cure, which deals with light source. “Third-

generation“ LED curing units	
   [38] have the ability to generate multiple wavelengths from a single LED light in 

order to attain necessary peaks and, on the other hand, to possess sufficient intensity and adequate shape and size of 

the light probe. In this study, a polywave light source with high light intensity (1170 mW/cm
2
) was used. However, 

a great impact of irradiation time on DC and hardness was observed, especially in deep composite layers, thus 

confirming previous reports	
  [47-49]. The third approach to increase depth of cure is to increase the translucency of 

resin composites with the aim to ensure that more photons penetrate into deeper areas of the material, where they 

will activate initiator molecules	
  [38]. It seems that reducing filler content together with increasing filler size plays a 

crucial role in achieving higher translucency of bulk-fill resin composites	
   [6]. The amount of light transmitted 

through a composite material depends on the amount of scattered and absorbed light. Light scattering is increased in 

materials with a large filler-matrix interface area, due to differences in the refractive indices between filler particles 

and resin matrix	
   [6, 8]. On the other hand, similar refractive indices of the components of resin composites, as 

demonstrated for Bis-GMA and silica fillers, have been shown to improve translucency in experimental materials, 

and a linear correlation between the percentage of Bis-GMA in the organic matrix and light transmittance has been 

established	
  [50]. The following data on the translucency of the test materials were available from the manufacturers: 

TECBF 15%, QF 17%, XF 23% and conventional TEC around 10%. The results yielded in this study revealed a 

higher DC for the more translucent materials QF and XF compared to TECBF at depths of 2 mm and beyond. In 

such a way the impact of material translucency on curing depth is highlighted. QF and XF contain the largest filler 

particles among the resin composites under investigation with up to 10-µm filler size (Table 1), which lowers the 

specific surface between fillers and organic matrix, thus reducing light scattering and allowing more photons to 
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penetrate the material. Generally, subsurface DC-values of all tested bulk-fill materials were higher compared to the 

conventional nano-hybrid resin composite. Among the tested materials, SF showed high DC-values up to 4 mm (up 

to 77.0%), but also the largest discrepancy from the manufacturer’s recommendation was observed for depth of cure 

of SF based on KHN-data. This finding might be explained by the fact that SF, unlike other bulk-fill resin 

composites, is not more translucent for blue light than conventional composite materials, due to its high filler 

content (84 wt%, 66 vol%) and irregularly shaped particles, which increase light scattering and thus decrease light 

transmittance	
  [6]. Our results are supported by Garcia et al.	
  [51] and Garoushi et al.	
  [52], but in contrast to another 

study [14]. 

The DC is known to evolve up to about 24 h after irradiation	
   [53]. Moreover, the temperature during 

polymerization can significantly affect polymerization efficiency, and a rise from room temperature (22˚C) to mouth 

temperature (35˚C) has been shown to result in increased DC due to improved monomer mobility	
  [54]. Taking these 

parameters that influence the final DC, in the present study, all measurements were conducted after 24-h-dark-

storage at 37°C. Dental polymers based on Bis-EMA and lower viscosity (higher molecular mobility) urethane 

derivates usually exhibit higher DC than the typical Bis-GMA/TEGDMA resins	
   [55, 56]. Consequently, the high 

DC of QF through depth might not only be attributed to the high translucency of the material, but also to its 

favorable resin composition containing Bis-EMA, UDMA and TEGDMA, but no Bis-GMA (Table 1). 

In addition to direct spectroscopic techniques, DC has also been indirectly evaluated by microhardness 

measurements	
  [57], and a good linear correlation has generally been observed between DC and microhardness	
  [28, 

58, 59]. In the present study, however, whereas it was possible to measure DC of the tested materials at all depths, 

this was not the case for KHN, due to softness in the following conditions: TEC at 5 mm (10- and 20-s irradiation 

time) and at 6 mm (all irradiation times), TECBF at 6 mm (10-s irradiation time), and SF at 4 mm (10-s irradiation 

time) and at 5 and 6 mm (all irradiation times). The discrepancies between the DC and KHN results might be 

basically related to the fact that the composite specimens for the FTIR measurements differed from those for the 

hardness tests in their dimensions, geometry, and surface conditions.  

KHN-values recorded in the present study were lower compared to those measured in other studies that 

analyzed microhardness of high-viscosity bulk-fill resin composites [6, 13]. The lower hardness values might be due 
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to the fact that, in order to avoid any heat production, the composite specimens were not ground or polished prior to 

hardness testing, so that measurements were performed on the specimens’ resin-rich outer layer	
  [54]. Furthermore, a 

relatively low indenter load of 10 g was used in this study, which has been shown to result in lower KHN-values 

compared to those recorded after higher indenter load application	
  [60]. Finally, it has been recently established that 

the distribution of KHN is non-uniform within molds and that KHN is substantially lower at or near the mold walls 

than at the center	
  [61]. In the present study, a hemi-cylindrical mold was used, and hardness measurements were 

performed along the surface that had been in contact with the stainless steel shell (and, thus, with the former mold 

wall). It should be pointed out, that the intention of this investigation was not to compare absolute hardness values 

recorded in our study with those of other studies, but to use KHN to study depth of cure. 

Previous studies used the bottom-to-top Knoop hardness ratio to estimate depth of cure of composite 

materials, and if the value exceeded 80%, the specimens were considered to be adequately cured	
  [31, 62]. It should 

be noted, however, that other factors than DC also affect microhardness, notably the degree of crosslinking	
  [63]. 

Thus, higher DC does not necessarily result in higher mechanical properties	
   [64, 65]. In any case, KHN 

measurements do not provide any quantitative information on the actual change in reactive groups. In the present 

investigation, both DC- and KHN-data was used for assessment of depth of cure. Calculations were based on the 

80% level of the maximum DC- and KHN-value for each material, thus providing a more conservative estimate of 

curing depth than if upper surface DC/KHN was used as reference value, which does not take into account that 

maximum conversion/hardness is typically not attained directly at the surface of the specimens, but at a level 

slightly below the surface	
  [8, 66-68]. Current data indicate that all tested bulk-fill resin composites achieved at least 

80% of their maximum DC-value at the manufacturers’ claimed maximum incremental thickness of 4 mm (SF: 

5 mm) or beyond with irradiation times stated by the manufacturers (10 s for TECBF, XF and QF; 20 s for SF). 

Even though all resin composites met the 80% DC-threshold at 4-mm incremental thickness with an irradiation time 

as short as 10 s, the attained DC of TEC, TECBF and SF was nevertheless significantly lower at 4-mm depth than at 

the upper surface, and all materials irradiated for 10 s reached significantly lower monomer conversion at 4-mm 

depth than when irradiation was performed for at least 20 s. Furthermore, at 4-mm depth, only two of the four tested 

bulk-fill materials (QF and XF) achieved at least 80% of maximum KHN-values, under the condition that irradiation 

time was extended to 30 s. In accordance with previous reports	
  [67, 69], our results thus revealed higher depth of 
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cure of the resin composites under investigation when calculations were based on DC-data than when based on 

microhardness. It needs to be emphasized, however, that the two methods used for assessment of depth of cure in the 

present study are means to gain insight into two different aspects of the same material. While depth of cure based on 

conversion refers to the amount of unreacted monomer species and thus implies relative biocompatibility, depth of 

cure based on hardness suggests mechanical stability of a composite material through depth. Both aspects should be 

taken into account when giving clinical recommendations regarding composite layer thicknesses. 

 

5. Conclusions 

Increasing the irradiation time increases the DC and KHN in deeper composite layers. At 4-mm depth, the 

significantly lowest DC and KHN were observed when irradiation was performed for 10 s, irrespective of the bulk-

fill material, thus conflicting with the irradiation time of 10 s recommended by some of the manufacturers. An 

irradiation time of 20–30 s, dependent upon the specific material, with a high-intensity light-curing unit might 

ensure adequate double bond conversion of the tested bulk-fill resin composites at depths up to at least 4 mm. 

However, not all bulk-fill materials attained the 80% KHN-threshold at 4-mm depth with up to 30 s of irradiation, 

even though the 80% DC-threshold was met. Thus, taking DC- and KHN-results together, the placement of  

4-mm composite increments cannot be generally recommended for all high-viscosity bulk-fill materials under 

investigation, at least at irradiation times ≤ 30 s. The tested null hypotheses were rejected. 
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Table 1 – Manufacturers’ information about the resin composite materials used in the study. 

Composite 

material 

(code) 

Manufacturer  Shade / LOT  Resin composition Filler amount 

(wt%/vol%), 

composition 

and size 

Manufacturers' 

recommended 

composite layer 

thickness 

Manufacturers' 

recommended curing time 

Tetric 

EvoCeram 

(TEC) 

Ivoclar Vivadent, 

Schaan, 

Liechtenstein 

A2 / P80726  Bis-GMA, Bis-EMA, 

UDMA 

76/55  

Barium glass, 

YbF3, mixed 

oxide, PPF 

(0.04–3 µm) 

2 mm ≥ 1000 mW/cm
2
/ 10 s; 

≥ 500 mW/cm
2
/ 20 s 

Tetric 

EvoCeram 

Bulk Fill 

(TECBF) 

Ivoclar Vivadent, 

Schaan, 

Liechtenstein 

IVA / R04686  Bis-GMA, Bis-EMA, 

UDMA 

81/61  

Barium glass, 

YbF3, mixed 

oxide, PPF 

(0.04–3 µm) 

4 mm ≥ 1000 mW/cm
2
/ 10 s; 

≥ 500 mW/cm
2
/ 20 s 

x-tra fil (XF) VOCO, Cuxhaven, 

Germany 

Universal / 

1205222  

Bis-GMA, UDMA, 

TEGDMA 

86/70 

Barium boron 

aluminum 

silicate glass 

(0.05–10 µm) 

4 mm ≥ 800 mW/cm
2
/ 10 s; 

500-800 mW/cm
2
/ 20 s 

QuixFil (QF) Dentsply DeTrey, 

Konstanz, 

Germany 

Universal / 

1202000268  

Bis-EMA, UDMA, 

TEGDMA, di- and 

trimethacrylate resins, 

carboxylic acid 

modified 

dimethacrylate resin 

86/66 

Strontium 

aluminum 

sodium fluoride 

phosphate 

silicate glass  

(1–10 µm) 

4 mm ≥ 800 mW/cm
2
/ 10 s; 

500-800 mW/cm
2
/ 20 s 

SonicFill 

(SF) 

Kerr, Orange, CA, 

USA 

A2 / 4427300  Bis-GMA, Bis-EMA, 

TEGDMA 

84/66 

NP 

5 mm > 550 mW/cm
2
/ 20 s 

Bis-GMA: Bisphenol-A-glycidyldimethacrylate; Bis-EMA: Ethoxylated bisphenol-A-dimethacrylate; PPF: Prepolymerized fillers; TEGDMA: 

Triethylene glycol dimethacrylate; UDMA: Urethane dimethacrylate; YbF3: Ytterbiumtrifluoride; NP: Filler composition and size not provided. 

  



Table 2 – Mean degree of conversion and standard deviations (SD) of the tested composite materials at five measuring depths at 24 h post-

irradiation (n = 5). 

Composite 

material 

Irradiation 

time 

0.1 mm 2 mm 4 mm 5 mm 6 mm 

Mean (%) SD Mean (%) SD Mean (%) SD Mean (%) SD Mean (%) SD 

TEC 10 s 71.0 Aa 0.7 65.9 Ba 1.2 59.8 Ca 0.9 52.5 Da 2.2 41.9 Da 4.8 

20 s 71.2 Aa 0.9 70.4 Ab 1.0 65.1 Bb 1.0 58.9 Cb 1.6 48.4 Cab 3.7 

30 s 70.6 Aa 0.7 70.1 Ab 0.6 66.9 Bb 0.6 63.8 Cc 0.9 52.9 Db 0.6 

TECBF 10 s 69.9 Aa 0.3 68.7 Aa 1.9 64.1 Ba 0.6 60.6 Ca 1.0 57.4 Ca 1.6 

20 s 71.3 Aab 0.6 71.3 Aa 0.7 68.3 Bb 1.0 65.2 BCb 0.9 63.3 Cb 1.1 

30 s 71.9 Ab 0.8 72.1 Aa 0.9 69.4 ABb 1.1 67.7 Bc 0.6 65.5 Cb 0.6 

XF 10 s 70.2 Aa 0.2 71.6 Ba 0.7 71.6 Ba 0.7 67.7 Ca 0.9 63.7 Da 1.3 

20 s 72.1 ABb 0.7 74.0 ABb 0.8 73.9 Ab 0.9 72.6 ABb 1.1 70.8 Bb 0.7 

30 s 71.5 Ab 0.6 74.2 Bb 0.3 74.6 Bb 0.3 74.0 Bc 0.6 72.3 ABb 1.2 

QF 10 s 71.1 ABa 1.6 73.0 Aa 1.0 71.9 ABa 0.8 69.5 Ba 1.5 69.2 Ba 1.0 

20 s 74.1 Aa 0.3 74.7 Aa 0.7 74.7 Ab 1.1 72.6 Aab 0.9 73.9 Ab 1.0 

30 s 74.0 Aa 1.8 74.6 Aa 1.1 75.6 Ab 0.7 74.2 Ab 1.2 74.5 Ab 1.2 

SF 10 s 76.0 Aab 0.4 76.2 Aa 1.4 67.5 Ba 0.9 53.5 Ca 2.1 32.9 Da 6.7 

20 s 74.9 Aa 0.9 78.9 Ba 0.9 75.5 Ab 1.3 67.7 Cb 1.9 56.4 Db 1.9 

30 s 77.4 Ab 0.7 81.1 Bb 1.3 77.0 Ab 0.9 71.6 Cb 1.2 64.1 Dc 3.3 

TEC: Tetric EvoCeram; TECBF: Tetric EvoCeram Bulk Fill; XF: x-tra fil; QF: QuixFil; SF: SonicFill. 

Different uppercase letters in each row, and different lowercase letters in each column, indicate significant differences within the same material 

(p < 0.05; Bonferroni’s post-hoc test). 



Table 3 – Degree of conversion expressed as percentages from the maximum value for each material. 

Composite 

material 

Irradiation 

time 

0.1 mm 

(%) 

2 mm 

(%) 

4 mm 

(%) 

5 mm 

(%) 

6 mm 

(%) 

TEC 10 s 99.7 92.5 84.0 73.7 58.8 

20 s 100.0 98.9 91.4 82.7 68.0 

30 s 99.2 98.4 94.0 89.6 74.3 

TECBF 10 s 96.9 95.3 88.9 84.0 79.6 

20 s 98.9 98.9 94.7 90.4 87.8 

30 s 99.7 100.0 96.2 93.9 90.8 

XF 10 s 94.1 96.0 96.0 90.7 85.4 

20 s 96.6 99.2 99.1 97.3 94.9 

30 s 95.8 99.5 100.0 99.2 96.9 

QF 10 s 94.0 96.6 95.1 91.9 91.5 

20 s 98.0 98.8 98.8 96.0 97.7 

30 s 97.9 98.7 100.0 98.1 98.5 

SF 10 s 93.7 93.9 83.2 66.0 40.6 

20 s 92.3 97.3 93.1 83.5 69.5 

30 s 95.4 100.0 94.9 88.3 79.0 

TEC: Tetric EvoCeram; TECBF: Tetric EvoCeram Bulk Fill; XF: x-tra fil; QF: QuixFil; SF: SonicFill. 



Table 4 – Mean Knoop hardness and standard deviations (SD) of the tested composite materials at five measuring depths at 24 h post-irradiation 

(n = 8). 

Composite 

material 

Irradiation 

time 

0.1 mm 2 mm 4 mm 5 mm 6 mm 

Mean 

(KHN) 
SD 

Mean 

(KHN) 
SD 

Mean 

(KHN) 
SD 

Mean 

(KHN) 
SD 

Mean 

(KHN) 
SD 

TEC 10 s 15.1 Aa 0.6 6.8 Ba 0.5 0.6 Ca 0.1 - - - - 

20 s 18.5 Ab 2.0 11.7 Bb 1.2 2.6 Cb 0.3 - - - - 

30 s 16.9 Aab 1.2 14.5 Bc 0.9 4.4 Cc 0.3 1.4 Da 0.2 - - 

TECBF 10 s 16.5 Aa 1.2 12.0 Ba 0.7 3.8 Ca 0.3 1.5 Da 0.2 - - 

20 s 19.9 Ab 1.8 20.1 Ab 1.2 9.2 Bb 0.8 4.5 Cb 0.7 2.0 Da 0.4 

30 s 20.5 Ab 2.0 22.8 Ac 1.4 13.0 Bc 0.7 7.6 Cc 0.5 4.1 Db 0.2 

XF 10 s 22.6 Aa 1.4 20.4 Aa 2.0 11.0 Ba 1.2 6.1 Ca 1.1 3.2 Da 0.7 

20 s 28.3 Ab 2.2 32.6 Ab 2.2 20.2 Bb 0.8 14.2 Cb 2.1 8.7 Db 1.4 

30 s 24.6 Ac 1.4 36.7 Bc 1.7 30.7 Cc 2.0 21.7 Ac 1.6 14.6 Dc 1.5 

QF 10 s 21.6 Aa 1.0 21.3 Aa 0.7 12.6 Ba 1.0 9.2 Ca 0.8 5.1 Da 0.5 

20 s 26.2 Ab 1.5 31.7 Bb 1.4 25.0 Ab 1.3 17.5 Cb 2.0 13.4 Db 1.8 

30 s 22.4 Aa 0.9 36.5 Bc 0.9 31.0 Cc 2.5 26.9 ACc 2.7 23.6 Ac 2.0 

SF 10 s 21.7 Aa 1.2 16.7 Ba 1.8 - - - - - - 

20 s 26.1 Ab 2.4 29.5 Bb 1.5 9.6 Ca 0.8 - - - - 

30 s 28.9 Ac 2.5 36.0 Bc 3.0 15.3 Cb 2.7 - - - - 

TEC: Tetric EvoCeram; TECBF: Tetric EvoCeram Bulk Fill; XF: x-tra fil; QF: QuixFil; SF: SonicFill. 

Different uppercase letters in each row, and different lowercase letters in each column, indicate significant differences within the same material 

(p < 0.05; Bonferroni’s post-hoc test).



Table 5 – Knoop hardness expressed as percentages from the maximum value for each material. 

Composite 

material 

Irradiation 

time 

0.1 mm 

(%) 

2 mm 

(%) 

4 mm 

(%) 

5 mm 

(%) 

6 mm 

(%) 

TEC 10 s 81.6 37.0 3.1 - - 

20 s 100.0 63.4 14.0 - - 

30 s 91.6 78.3 24.1 7.8 - 

TECBF 10 s 72.2 52.8 16.7 6.4 - 

20 s 87.4 88.1 40.2 19.7 8.9 

30 s 90.0 100.0 57.2 33.5 17.8 

XF 10 s 61.6 55.6 29.9 16.7 8.7 

20 s 77.1 88.9 55.1 38.7 23.7 

30 s 67.0 100.0 83.6 59.2 39.7 

QF 10 s 59.0 58.4 34.4 25.2 13.9 

20 s 71.8 86.9 68.6 47.8 36.6 

30 s 61.4 100.0 84.9 73.7 64.6 

SF 10 s 60.3 46.5 - - - 

20 s 72.5 81.9 26.7 - - 

30 s 80.4 100.0 42.6  -  - 

TEC: Tetric EvoCeram; TECBF: Tetric EvoCeram Bulk Fill; XF: x-tra fil; QF: QuixFil; SF: SonicFill. 
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