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Abstract - Microcavity organic light emitting diodes (OLEDs) 

have attracted great attention because they can reduce the width 

of emission spectra from organic materials, enhance brightness 

and achieve multipeak emission from the same material. In this 

work, we have fabricated microcavity OLEDs with widely used 

organic materials, such as N,N′′′′-di(naphthalene-1-yl)-N,N′′′′-

diphenylbenzidine (NPB) as a hole transport layer and tris (8-

hydroxyquinoline) (Alq) as emitting and electron transporting 

layer. These organic materials are sandwiched either between 

two thick silver mirrors or one thin copper and one thick silver 

mirrors. The influence of total cavity length (from 164 nm to 

243nm) and the cavity Q-factor to the emission behavior has been 

investigated. In all cases, an OLED without bottom mirror, i.e. 

with the organic materials sandwiched between indium tin oxide 

and a thick silver mirror, has been fabricated for comparison. 

We have characterized the devices with photoluminescence, 

electroluminescence, and reflectance measurements. Multiple 

peaks have been observed for some devices at larger viewing 
angles.  

Keywords- microcavity, OLED  

I. INTRODUCTION

Organic materials have been found useful in applications, 
such as organic light emitting diodes (OLEDs). However, the 
emission spectrum of organic materials is typically broad. For 
example, the emission spectrum of Alq covers the range from 
480 nm to 650 nm. Microcavity OLEDs have been attracting 
lots of attention in order to achieve spectral narrowing, 
brightness enhancement, or multipeak emission from the same 
emitting layer [1-6]. 

In this work, we have demonstrated multipeak emission 
with commonly used materials, N,N′-di(naphthalene-1-yl)-
N,N′-diphenylbenzidine (NPB) as hole transporting material
and tris (8-hydroxyquinoline) (Alq) as emissive/electron 
transporting material. The two materials are sandwiched 
between two mirrors, either thin Cu and thick Ag mirrors or
two thick Ag mirrors. Devices with different thickness of 

organic materials have been fabricated. The devices are
characterized by photoluminescence (PL), electroluminescence 
(EL), and reflectance measurements. We found that both EL 
and PL spectra are significantly affected by the cavity length 
(organic layer thickness) and the cavity Q-factor. 

The paper is organized as follows. Experimental details are 
described in Section II followed by Results and discussion. 
Finally conclusions are drawn. 

II. EXPERIMENTAL DETAILS

A. Sample and device fabrication 

High purity NPB and Alq were purchased from H. W. 
Sands Corp. They were further purified by sublimation before 
device fabrication. The microcavity OLEDs were fabricated on 
cleaned quartz substrates by thermal evaporation under high 
vacuum (~10-6 Torr). The thickness of the films was monitored 
by a quartz thickness monitor during deposition, and verified
by step profiler and spectroscopic ellipsometry after deposition. 
Different bottom mirrors, thin Cu (25 nm) and thick Ag (80
nm), were fabricated on top of the quartz substrates as anode.
The different thickness of NPB and Alq filmswere deposited. 
Then the devices were completed with 70 nm Ag cathode. The 
devices with different bottom mirrors were fabricated at the 
same time in order to eliminate possible effects of the thickness 
variation of the organic layers. Microcavity OLEDs containing 
Alq layer only with the same total thickness were also
fabricated in order to exclude possible effects of NPB and
confirm that the observed emission originates from the 
interplay of a cavity and Alq. 

B. Measurement and characterization 

Photoluminescence (PL), reflectance, and 
electroluminescence (EL)  for the devices have been measured. 
The excitation source for PL measurements was HeCd laser 
(325 nm). The PL spectra were collected using a double 
monochromator (1.4 m Oriel 77225) with Peltier-cooled 
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photomultiplier detector (Hamamatsu R636-10). A deuterium-
tungsten lamp was used as an excitation source for reflectance 
measurements, and the spectra were collected using the same 
system as for the PL. The OLEDs were biased with Keithley 
2400 source-measurement unit and the electroluminescence 
spectra are measured with using a fiberoptic spectrometer 
PDA-512-USB (Control Development Inc). 

III. RESULTS AND DICUSSIONS

Figure 1. Structure of microcavity OLED, the bottom mirror is either 25 nm 
Cu or 80 nm Ag. 

          a)    b) 

Figure 2. a) EL and b) PL spectra of MOLEDs with different NPB and Alq 

thickness sandwiched between 25 nm Cu bottom mirror at normal 
incidence from the bottom mirror. 

The device structure is shown in Figure 1. The microcavity 
devices are labeled according to the NPB and Alq3 thickness, 
i.e 53/125 represents device with 53 nm NPB and 125 nm Alq. 
Figure 2 shows the EL spectra and PL spectra of devices with 
different thickness of NPB and Alq. Multiple emission peaks 
have been observed for all the devices, which is not expected 
since emission from Alq films exhibits a single peak at ~540 
nm. One of the devices (53/125) also exhibits emission in the 
near-infrared spectral range, which is surprising considering 
the fact that Alq emission above 700 nm is negligible. The PL 
spectra consist of the emissions from both NPB and Alq. Both 
EL and PL spectra are strongly affected by the thickness of the 
organic layers, which is expected as the cavity mode emission 
is dependent on the cavity length between the two mirrors. 

We have also investigated the influence of cavity Q-factor 
on the emission spectra of the devices by using different 
bottom mirrors. Since 53/125 device shows the strongest EL 
intensity which extends to IR range, we have chosen this 
device for further investigation. Angular dependence of the EL 
spectra of 53/125 devices with 25 nm Cu bottom mirror, 80 nm 
Ag bottom mirrors, and ITO are shown in Figure 3. With low 
cavity Q-factor (25 nm Cu bottom mirror), the yellow emission 
peak (~574 nm) can couple out of the microcavity. The cavity 
mode (~750 nm) emission exhibits blue shifting with 
increasing viewing angle. When 80 nm Ag is used, the 
emission is dominated by the near-infrared resonant cavity 
mode which shows blue shift with the increasing viewing angle, 
similar to the devices with thin Cu mirror. On the other hand, 
the emission of the non-cavity devices is dominated by the 
yellow emission peak and no near infrared  emission can be 
observed. 

Figure 3. Angular dependence of the EL spectra for 53/125 devices with 

different bottom mirrors, a) 25 nm Cu bottom mirror, b) 80 nm Ag,  
and c) ITO. 

Figure 4 shows the angular dependence of the PL spectra of 
53/125 devices with different bottom mirrors. In this case, the 
emission is dominated by the blue emission peak from the NPB 
layer. The fact that this peak originates from the NPB is 
confirmed by the absence of the blue emission in the cavities 
containing Alq only. Apart from the absence of the NPB 
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emission, the cavities with Alq only exhibit very similar 
behavior to those with NPB/Alq layers, so that it can be 
concluded that the yellow and near infrared emissions arise 
from the interplay of the Alq and the cavity. 

Figure 4. Angular dependence of the PL spectra for 53/125 devices with a) 
25 nm Cu bottom mirror, b) 80 nm Ag bottom mirror and c) ITO. 

To further investigate unusual behavior of these devices, 
reflectance measurements were performed. Figure 5 shows the 
reflectance of 53/125 devices with 25 nm Cu bottom mirror. 
Since the reflectance of 80 nm Ag is very high in the visible 
range, we did not measure the reflectance of Ag devices. Three 
reflectance dips can be resolved in the devices with thin Cu 
mirrors, in agreement with three peaks observed in the 
photoluminescence. The origin of these peaks, however, is not 
fully clear. Even though the emission from the Alq is broad, 
the emission above 700 nm is negligible and thus the dominant 
emission at ~750 nm from cavities with two Ag mirrors in 
unexpected. 

The multiple peak emission in microcavities can originate 
from several different causes, such as wide angle interference 
[7],  TE-TM mode splitting [8], and strong coupling [9]. The 

interference phenomena could not fully explain the obtained 
experimental results in NPB/Alq based non-cavity OLEDs. TE-
TM mode splitting is responsible for the near infrared peak 
splitting at larger viewing angles in the devices with two thick 
Ag mirrors, which is supported by the polarization dependent 
measurements. On the other hand, the yellow emission peak 
and the corresponding reflectance dip ~560-570 nm cannot be 
explained by the polarization mode splitting. There are two 
possible causes for the yellow emission: one is the uncoupled 
emission from Alq modified by the transmission of the bottom 
mirror, while the other is polariton emission. Polariton 
emission in organic materials was demonstrated previously 
[10-13], but the studies have been confined to the materials 
with narrow excitonic resonance. However, it should be noted 
that, from the expression for the splitting, a finite positive Rabi 
splitting will exist in the microcavities where the width of the 
exciton and photon modes are equal [13]. However, this 
splitting could be observed only if it is larger than the sum of 
the broadenings of the exciton and photon modes [9]. 
Therefore, further study is needed to establish whether such 
phenomena contribute to the unusual spectra observed in the 
microcavities with thin Cu mirror. Also, the origin of the near 
infrared emission, in particular clarification of the role of the 
defect states and subband gap absorption in Alq, requires 
further study.      

400 500 600 700 800 900

60
o

50
o

40
o

30
o

20
o

15
o

R
e

fl
e

c
ta

n
c
e

 (
%

)

Wavelength (nm)

Figure 5. Angular dependence of the reflectance of 53/125 devices with 25 
nm Cu bottom mirror. 

IV. CONCLUSIONS

In conclusion, we have demonstrated multipeak emission 
from MOLEDs using conventional bilayer structure with NPB 
and Alq. The bottom mirror is either 25 nm Cu or 80 nm Ag 
and the top mirror is 70 nm Ag. The emission properties were 
strongly dependent on the thickness of organic layers and the 
Q-factor of the cavity. The origin of the multiple peak emission 
in some of the devices requires further study. 
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