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Influence of magnetic field on the peristaltic flow of a viscous fluid through a finite-length

cylindrical tube
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The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic
field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average
volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical
conductivity (i.e. the Hartmann number) on the mechanical efficiency of a peristaltic pump have also been studied. The
reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and
pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts
more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied
across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged
flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical
values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the
critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make
the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier
to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of
the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different
in the latter cases.
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1. Introduction

Physiological fluids are transported from one place to an-

other by continuous muscle contractions and relaxations.

This type of transportation is called peristaltic transport.

The flow of blood through arteries and veins, the passage of

urine through ureters, the flow of bile from the gall bladder

into the duodenum, the movement of chyme in the entire

gastro-intestinal tract, the transportation of food boluses

through the alimentary canal and the movement of some

worms are some important examples of peristaltic transport.

Magneto-hydrodynamics is the study of dynamics of

magnetic field in electrically conducting fluids. Examples

of such fluids include plasma (blood), liquid metals and

salt or sea water. The idea of magneto-hydrodynamics is

that magnetic fields can induce currents in a moving con-

ducting fluid, which create forces on the fluid, and also

change the magnetic field itself. The equations describing

magneto-hydrodynamic (MHD) fluids are a combination of

Navier–Stokes equations and Maxwell equations of electro-

magnetism.

Recently, several investigators (El-Shehawey and

Husseny 2002; Mekheimer 2004; Hayat and Ali 2006, 2007,

2008; Naby et al. 2006a, 2006b; Hayat et al. 2007a, 2007b,
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2008a, 2008b; Ali et al. 2008; Ebaid 2008; Kothandapani

and Srinivas 2008a, 2008b; Mekheimer 2008; Mekheimer

and Abd-elmaboud 2008; Wang et al. 2008) have stud-

ied the effects of magnetic field on the peristaltic flow of

physiological fluids. Most of them have studied the effects

of the Hartmann number on the pressure and the friction

forces on steady flows in infinite channels or tubes. The

result is that pressure increases as the Hartmann number

increases whether the wall motions are symmetric or asym-

metric. A few authors (Ali et al. 2008; Mekheimer 2008;

Mekheimer and Abd-elmaboud 2008; Kothandapani and

Srinivas 2008a, 2008b) have examined the effects of the

Hartmann number on the fluid trapped. They found that the

size of the trapped bolus decreases as the Hartmann number

increases (Ali et al. 2008).

However, none of the researchers has shown an in-

terest in the reflux and mechanical efficiency in a tube.

Another important fact is that in physiological flows, the

vessels contract and relax but do not expand so that the

wall equations to model such flows will definitely differ

from the ones fluctuating about the boundary line. Several

physiological fluids, such as blood, behave like an MHD

fluid.
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Figure 1. The diagram, based on Equation (1), represents the propagation of a progressive transverse wave along the walls of the tube
containing fluid, which undergoes contraction and relaxation but no expansion beyond the boundary. Here h is the radial displacement of
the wall, c is the wave velocity, l is the length of the tube and x is the axial distance.

Li and Brausseur (1993) studied the peristaltic transport

of a food bolus of the Newtonian type through the oesopha-

gus by considering a finite-length tube, which was followed

by Misra and Pandey (2001), who considered power-law

fluids.

We intend to investigate the peristaltic transport of an

MHD fluid in a cylindrical tube of finite length under the

influence of progressive contraction waves that contract,

relax but do not expand and propagate along its walls. The

model is applicable to swallowing of conducting fluids,

such as saline water, through the oesophagus and blood

flow through the aorta. Both the vessels are small in length.

This model will fit an artificial peristaltic pump carrying a

saline solution for engineering applications.

2. Mathematical model

The wall motion is supposed to be created by waves prop-

agating unidirectionally along the tube walls (cf. Figure 1),

which are mathematically modelled as

h̃(x̃, t̃) = a − φ̃ cos2 π

λ
(x̃ − ct̃ ), (1)

where h̃, x̃, t̃ , a, φ̃, λ and c represent the radial distance of

the wall from the centreline, axial coordinate, time, radius

of the tube, amplitude of the wave, wavelength and wave

velocity, respectively. It is assumed that as soon as the waves

reach the other end of the tube, they die out.

We consider the flow of an incompressible MHD

fluid under the effect of the transverse magnetic field

B = (0, B0, 0), vibrating in a small tube. The walls of the

tube are assumed to be electrically insulated, and the in-

duced magnetic field is assumed to be negligible. The equa-

tions governing the motion of MHD fluid in the laboratory

frame are
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∂

∂r̃

)

ũ
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∂ũ

∂r̃

)

+
∂2ũ
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We introduce the following non-dimensional parame-

ters:

x =
x̃

λ
, r =
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a
, t =
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λ
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λ
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where r, u, v, α, p,ψ,Q and ρ, Re, M, σ, B0 denote the

dimensionless counterparts of radial coordinate, axial ve-

locity, radial velocity, wave number, pressure, streamfunc-

tion, volume flow rate and fluid density, Reynolds number,

Hartmann number, electrical conductivity and strength of

the magnetic field, respectively. Applying the long wave-

length and small-Reynolds-number approximation, Equa-

tions (2) reduce to

∂p
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Imposing the boundary conditions

u(x, h, t) = 0, v(r, h, t) =
∂h

∂t
∂u(x, 0, t)

∂r
= finite, v(r, 0, t) = 0

⎫

⎪

⎬

⎪

⎭

, (5)

on the governing Equations (4), the axial and radial veloci-

ties are obtained as

u =
1

M2

∂p

∂x

(

I0(Mr)

I0(Mh)
− 1

)

, (6)
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1
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r
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where I0 and I1 are the modified Bessel functions of the

zero and the first order of the first kind, respectively.

The transverse velocity, at the boundary of wall, is ob-

tained by substituting the third condition of Equation (5)

into Equation (7). It yields

h
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=

1
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2
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. (8)

Integrating Equation (8) once with respect to x, the

pressure gradient is obtained as

∂p

∂x
=

2M3

h

[

G(t) +
∫ x

0
h ∂h

∂t
ds
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2I1(Mh)
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]

, (9)

where G(t) is an arbitrary function of t .

Furthermore, integrating Equation (9) from 0 to x, the

pressure difference is obtained as

p(x, t) − p(0, t) = 2M3

∫ x

0

1

h

[

G(t) +
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0
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ds1
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]

ds.

(10)

The substitution x = l, in Equation (10), readily gives

the pressure difference between the inlet and outlet of the

tube as

p(l, t) − p(0, t) = 2M3

∫ l

0

1

h
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0
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from which G(t) is determined as

G(t) =
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The instantaneous volume flow rate in the laboratory

frame is defined as Q(x, t) =
∫ h

0
2rudr , which, by virtue

of Equation (6), is given as

Q(x, t) =
1

M2

∂p

∂x

{

2hI1(Mh)

MI0(Mh)
− h2

}

. (13)

However, the following relations exist between the av-

eraged flow rate Q̄ and the flow rate q in the wave frame

and also the flow rate Q in the laboratory frame:

Q̄ = q + 1 − φ +
3φ2

8
= Q − h2 + 1 − φ +

3φ2

8
.

(14)

A simple manipulation of Equation (13), followed by an

application of Equation (14), yields the pressure gradient

as

∂p

∂x
=

M2
(

Q̄ + h2 − 1 + φ −
3φ2

8

)

{
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MI0(Mh)
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} , (15)

which, on integration between 0 and x, gives
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∫ x

0
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8
{

2hI1(Mh)

MI0(Mh)
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}

⎤

⎦ds.
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For x = l, it gives the pressure difference between the

inlet and the outlet of the tube as

p(l) − p(0) = M2

∫ l

0

⎡

⎣

Q̄ + h2 − 1 + φ −
3φ2

8
{
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}

⎤
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The local wall shear stress defined as τw =

(∂u/∂r)|r=h, reduces, by virtue of Equations (6) and (9), to

τw =
2M2

h

[

G(t) +
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h ∂h
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MhI0(Mh)
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]
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3. Mechanical efficiency

It is the ratio of the average rate per wavelength at which

work is done by the moving fluid against a pressure head

and the average rate at which the walls do work on the fluid

(cf. Shapiro et al. 1969). It is derived as

E =
Q̄
p1

2φ[I11 + φI12 − (1 + φ)
p1]
, (19)

where 
p1 is the pressure difference for one wavelength,

i.e. p(1) − p(0) and given from Equation (16) in the form

p(1) − p(0) = M2

∫ 1

0

⎡

⎣

Q̄ + h2 − 1 + φ −
3φ2

8
{

2hI1(Mh)

MI0(Mh)
− h2

}

⎤

⎦dx,

(20)

I11 =

∫ 1

0

∂p

∂x
cos(2πx)dx, (21)

I 12 =

∫ 1

0

∂p

∂x
cos4(πx)dx, (22)

and the maximum averaged flow rate, obtained by taking


p1 = 0 in Equation (20), is

Q̄0 = 1 − φ +
3φ2

8
−

∫ 1

0
h2

{

2hI1(Mh)

MI0(Mh)
−h2

}dx

∫ 1

0
1

{

2hI1(Mh)

MI0(Mh)
−h2

}dx
. (23)

4. Reflux limit

Reflux is an inherent phenomenon of peristaltic movement,

which refers to the presence of fluid particles that move,

on the average, in a direction opposite to the net flow (cf.

Shapiro et al. 1969).

The dimensional form of the streamfunction in the wave

frame is defined as

dψ̃ = 2πR̃(ŨdR̃ − Ṽ dX̃), (24)

where ψ̃, R̃, X̃, Ũ and Ṽ are the streamfunction, coordi-

nates and velocity components, respectively. We use the

transformations between the wave and the laboratory frame

defined as

X̃ = x̃ − ct̃, R̃ = r̃ , Ũ = ũ − c, Ṽ = ṽ,

q̃ = Q̃ − ch̃2, �̃ = ψ̃ − r̃2, (25)

where the parameters on the left-hand side are in the wave

frame and those on the right-hand side are in the laboratory

frame. We obtain the streamfunction by solving Equations

(6), (7), (24) and (25) in the form

ψ =

{

Q̄ − 1 + φ −
3φ2

8
+ h2

2hI1(Mh)

MI0(Mh)
− h2

}

{
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MI0(Mh)
− r2

}

− r2.

(26)

At the wall

ψ |r=h = ψw = Q̄ − 1 + φ −
3φ2

8
. (27)

The reflux flow rate Qψ (x) is defined as

Qψ (x) = ψ + r2(ψ, x). (28)

Averaging the above equation for one cycle, we get

Q̄ψ = ψ +

∫ 1

0

r2(ψ, x)dx. (29)

In order to evaluate the above integration, using the

perturbation method, r2(ψ, x) is expanded in a power series

in terms of a small parameters ε about the wall as

r2(ψ, x) = h2 + a1ε + a2ε
2 + · · · . (30)

Solving Equations (26) and (27), for a small value of

M and comparing the coefficient of ε, ε2,. . . , we get

a1 = −1, a2 = −
M2

8

⎡

⎣

(

Q̄ + h2 − 1 + φ −
3φ2

8

)

h2 −
2hI1(Mh)

MI0(Mh)

⎤

⎦ .

(31)

Reflux occurs when the reflux condition, i.e. (Q̄ψ/Q̄) >

1, as ε → 0 satisfies. Therefore, the reflux limit is obtained

by using Equations (29)–(31) as

Q̄ < 1 − φ +
3φ2

8
−

∫ 1

0
h2

h2−
2hI1(Mh)

MI0(Mh)

dx

∫ 1

0
1

h2−
2hI1(Mh)

MI0(Mh)

dx
. (32)

5. Numerical results and discussion

We now investigate temporal influence and the effect of

the Hartmann number, M, on the flow behaviour. To this

end, we consider the fluid in a tube trapped within a train

of two waves propagating along the walls at a time. The

peristaltic characteristics can be precisely understood if the

pressures at the two ends of the tube are considered to be

zero. This can be achieved by a straightforward substitu-

tion p(l, t) − p(0, t) = 0 in Equation (12), which simpli-

fies Equation (10) to a great extent. Graphs based on the
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Figure 2. Pressure vs. axial distance. Dotted lines represent the position of bolus and solid lines show the pressure distribution, based on
Equation (10), across the length of the tube passing the Newtonian and MHD fluids for different Hartmann numbers (M = 1.0, 2.0, 3.0),
φ = 0.9 and l = 2.0.

simplified Equation (10) between the tube length and the

positional pressure indicate the following facts.

The pressure distribution along the tube length favours

the flow, which is clear from the diagrams of Figure 2 at

t = 0.0 − 1.0. Furthermore, in the first half of the temporal

cycle (t = 0.0 − 0.5), there is a tendency for the pressure

to take positive values, while in the latter half (t = 0.5 −

1.0.) the pressure takes negative values. This effect may

be attributed to activities taking place at the inlet and the

outlet, where the fluid is pulled and pushed, respectively.

Having kept the other parameters constant, if the Hart-

mann number M is increased, the pressure difference is

found to rise in magnitude all along the tube to push the

fluid content. As M → 0, the fluid turns Newtonian. This

can, on the other hand, be interpreted that the pumping has

to be more efficient. Thus, the fact that M =
√

(σ/µ) aB0

is a function of B0 and σ reveals that for higher values of the

transverse magnetic field B0 and the electric conductivity

σ , the pump has to exert more pressure to move the same

amount of fluid; however, the effect of the latter is less and

it precisely varies as its square root. Since the expression is

implicit, an exact variation cannot be given.

In Figure 3, we have considered the propagation of a

non-integral number of waves (l = 1.8) in the train, which

is an inherent characteristics of finite-length tubes. Some

significant differences are observed between the integral

and non-integral number of waves present in the train prop-

agating along the container wall. Figure 3 shows the tem-

poral effects on the pressure distribution along the tubular

length under magnetic field. The more is the symmetry of

distribution of boluses in the tube, the less is the difference

between the pressure peaks (cf. Figure 3c). The effects of the

Hartmann number, M, on the pressure distribution for the

two distinct wave propagations (integral and non-integral)
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Figure 3. Pressure vs. axial distance. Dotted lines represent the position of bolus and solid lines show the pressure distribution, based on
Equation (10), across the length of the tube passing the Newtonian and MHD fluids for different Hartmann numbers (M = 1.0, 2.0, 3.0),
φ = 0.9 and l = 1.8.

are similar. The most significant difference is that the peaks

of the pressure are identical in the integral case and differ-

ent in the non-integral case. Furthermore, Figure 4 shows

that at all temporal positions, the local wall shear stress

increases with M .

Moreover the efficiency increases with M , and hence

also with B0 and σ, to maintain the same flow rate. It may be

physically interpreted that the fluid requires a better pump

to maintain the same flow rate under an increased magnetic

field and electrical conductivity (cf. Figure 5). Precisely, the

flow rate decreases with increasing magnetic field and elec-

trical conductivity. This endorses the findings given above.

Figure 6 shows that the averaged flow rate decreases

linearly with increasing pressure (
p �= 0). The flow rate

can be checked by applying a particular pressure at the

outlet. This is true for all fluids. When M is increased,

the gradient of the linear relation diminishes. There is a

particular point, say a critical value of pressure and flow

rate, which does not change with M . Above the critical

value, the pressure required to check the flow rate is greater

for increasing M and below that less pressure can check a

higher flow rate. Obviously, B0 and σ have similar effects

on the flow. This is similar to the observation of Ali et al.

(2008) for MHD fluids with variable viscosity in an infinite

channel.

Restrictions on the tube walls to move only in one direc-

tion play a vital role in bringing about quantitative changes

(cf. Misra and Pandey 2001).

Finally, the reflux region increases very slightly for an

MHD fluid when M is increased (cf. Figure 7). The in-

significant change is also due to the small value of M that

has been considered in the analysis.
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Figure 4. Local wall shear stress vs. axial distance along the
finite-length tube at five time instants. Dotted lines represent the
position of wave, whereas solid lines represent the local wall shear
stress distribution, based on Equation (18), for the Newtonian fluid
and different Hartmann numbers (M = 1.0, 3.0 ), φ = 0.9 and
l = 2.0.

Figure 5. Mechanical efficiency vs. ratio of the averaged flow
rate and maximum averaged flow rate, different lines represent
efficiency of peristaltic pump, based on Equation (19), for cor-
responding different Hartmann numbers (M = 1.0, 2.0, 3.0) and
φ = 0.4.

Figure 6. Pressure difference across one wavelength vs. av-
eraged flow rate, different lines represent pressure, based on
Equation (20), for corresponding different Hartmann numbers
(M = 1.0, 2.0, 3.0), and φ = 0.4.

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

Reflux region

No reflux region

φ

Q

M = 0.001

M = 0.1

Figure 7. Averaged flow rate vs. amplitude, the different lines
represent reflux limit, based on Equation (32), for corresponding
Hartmann numbers (M = 0.001, 0.1).
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6. Conclusion

On the basis of the above discussion, if M =
√

(σ/µ) aB0,

and the transverse magnetic field, B0, and the electric con-

ductivity, σ , increase, the pumping machinery has to exert

more pressure for pushing the fluid forward. In other words,

pumping has to work more efficiently. Thus, the MHD fluid

requires more effort to be pumped in comparison to Newto-

nian fluids. Therefore, the swallowing of saline water in the

oesophagus requires more effort than that of water. Also, the

local wall shear stress increases with the Hartmann number.

Furthermore, the gradient of the linear relation between

the pressure for 
p �= 0 diminishes when M is increased.

Critical values of pressure and flow rate do not change with

M . The pressure required to check the flow rate above the

critical value is greater for increasing M and less below the

critical value. Obviously, B0 and σ have similar effects on

the flow.

It is also inferred that MHD parameters make the fluid

more prone to flow reversal and so saline water is more

likely to flow in the retrograde direction near the wall than

normal water under similar circumstances.
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