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The flow of a magnetic fluid placed inside a small gap between concentric rotating 

cylinders is investigated for axial, radial and azimuthal magnetic fields. An equation 

of motion is derived phenomenologically to describe the hydrodynamics of magnetic 
fluids. Studied are the changes in the critical Taylor number T~ and wave number kc 

which characterize the instability of primary circular Couette flow towards Taylor vor- 

tices. It is found that all above magnetic fields have a stabilizing effect on circular Couette 

flow and that kc increases or decreases, depending on the direction of the magnetic 

field. Besides this, the influence of the magnetic fields on the correlation length 4o, the 

wave number of maximal growth k,, and the linear growth rate amplitude ao is deter- 

mined. 

I. Introduction 

Magnetic fluids exhibit a wealth of new phenomena 

[1] in comparison to ordinary fluids when magnetic 
fields are applied. This possibility to exert additional 

volume forces on a fluid is already exploited in many 

technical applications [2] and has stimulated also 

basic research [1]. 
Here we shall investigate the effect of magnetic 

fields on a pattern forming hydrodynamic instability 
that is well studied in ordinary, unmagnetic fluids: 

the appearance of Taylor vortices in the flow between 

two concentric cylinders of which the inner one is 
rotating (for a review see e.g. : [3, 4]). Experimental 

investigations of the changes in the first two flow in- 

stabilities in the rotating Couette problem have just 
started [5]. Berkovsky [6] recently studied the effects 

of a steady uniform magnetic field in axial direction 
on the formation of Taylor vortices and determined 

quantitatively the critical Reynolds number Rc by lin- 
ear stability analysis. He observed a decrease of the 
critical wave number, but does not give quantitative 
values. Here we present explicit quantitative results 

6 
on both, the critical Taylor number T~=2R 2 6 + 2  

(6=gap width d/radius of inner cylinder R~) and the 
critical wave number kc for three differently oriented 

steady magnetic fields (axial, radial and azimuthal). 

The analytical results of a linear stability analysis are 

compared with direct computer simulations. Besides 

this, growth rates, correlation length and wave 

numbers of maximum growth for Taylor numbers 

slightly larger than T~ are determined numerically for 

all three magnetic fields. 
In modelling the time-dependent dynamics of a 

magnetic fluid, one has to use a macroscopic equation 

of motion. Up to now at least five derivations can 
be found in the literature [7-10, 12]. A crucial point 

in these models is the equation of magnetization. 1972 

Shliomis [7, 11] proposed a relaxation equation of 

magnetization. He combined this one with an equa- 

tion for conservation of momentum and another one 

for conservation of intrinsic angular momentum and 
used these equations successfully for stationary fluids 

to derive an expression for the additional rotational 

viscosity in magnetic fluids. 

Berkovsky 1980 suggested a partial equilibrium 

model [8] which accounts for both a relaxation of 
magnetization by rotation of the particles (Brownian 

motion) and for a relaxation of magnetization within 
the particle (intrinsic superparamagnetism by Neel- 
fluctuations). But as pointed out by himself, a solution 
of the complete equation does not seem useful if the 
magnetization M is close to the equilibrium magneti- 
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zation M0. This is normally the case since the charac- 
teristic hydrodynamic time scale t in general exceeds 
by far the typical Brownian time scale, zB~ 10 -6 sec, 

for relaxation of the magnetization. In this case he 

obtains an equation relating the deviation /~_~M 

- M 0  to the magentic field H, it's change in time 

d 
d~- H and vorticity g2 - V x v. 

Jansons [12] gives stress tensors for a dilute mag- 

netic liquid in homogeneous and in nonuniform, 
space and time varying magnetic fields. He considers 

spheroidal particles at small Peclet numbers and ar- 

rives at lengthy and complicated formulas. 
A fourth proposition has been given recently by 

Kroh and Felderhof [-9]. In their model for 'electro- 

magnetohydrodynamics of polar liquids and suspen- 

sions' they consider explicitly memory-effects in their 

constitutive equations for polarisation and magneti- 

zation. These memory-effects may be quite small and 

negligible if one is interested in times t>> z, as we 

are here. 
Finally, 'New constituitive equations for conduct- 

ing magnetic fluids with internal rotation' have been 
derived from thermodynamical considerations by Shi- 

zawa and Tanahashi [,10]. Assuming nonconductiv- 

ity, these equations may also be used for the normal, 

nonconducting magnetic fields. In their paper they 

derive a constitutive equation of magnetization which 

is, up to some small difference in the definition of 

the magnetic relaxation time z, identical to the one 

obtained by Berkovsky for steady magnetic fields. 
However, without stating this explicitly, these authors 

implicitly use the difference in time scales z,/t~ 1 
when they assume that the magnetization is always 
parallel to an effective magnetic field which is deter- 

mined in turn by the velocity field. 
Considering only steady magnetic fields, it is 

shown in this paper that the same equation for p 

may be obtained starting directly from the well 

known phenomenological relaxation equation of 

magnetization proposed by Shliomis 1972 and con- 

sidering zB/t ~ 1. Because of the different view points 

of the previous authors and because of slight differ- 

ences in their results we first give a concise derivation 
of a macroscopic equation of motion in Sect. II. Sec- 
tion III contains the stability analysis of primary 
Couette flow and in Sect. IV the influence of magnetic 
fields on parameters of the Ginzburg-Landau equa- 
tion and on the wave number of maximal growth 

are determined. 

IL Ferrohydrodynamic Equation of Motion 

A magnetic fluid is a suspension of single domain 

magnetic particles. Typical particle sizes are 10 nm. 

They are coated by some surfactant to hinder agglo- 
meration and thus stabilize the suspension. Details 

on magnetic fluids may be found in the book of Ro- 

sensweig [1]. 
The magnetic fluid considered here is assumed to 

be incompressible, nonconducting, to have a constant 
temperature and a homogeneous distribution of mag- 

netic particles. The last assumption may be justified 

by an estimate of the drift velocity caused by a mag- 
netic field gradient or a gravitational field. This drift 

velocity is so small [-see e.g. 12] that slippage can 
be neglected on normal experimental time scales. In 

accord with many experimental findings it is assumed 
that the particles do not exhibit intrinsic superpara- 

magnetism. Thus their magnetic moment is rigidly 

locked to the particle, caused by anisotropy effects. 
Within the continuum model, the internal angular 

momentum can serve as a new macroscopic charac- 

teristic of the rotations of the small particles. Its vol- 

ume density S, in the case of small concentrations 

of identical spherical particles, can be written as S = 1 

t~, where 1--nlo is the sum of the moments of inertia 
of the spheres in a unit volume and to is their mean 

ordered angular velocity. 
Now Cauchy's equation of motion is given by 

dv 
p~i=v.T=V.T~v)+V.T ~e~ (11 

d 0 
whered t .  0t +v'V'" 

A fluid with internal angular momentum shows 
an asymmetry of the viscous stress tensor [-1, 11, 13]: 

T~v)=--poI+q((Vv)+(Vv)T)+2~g.(~--ta) (2) 

g is the alternating unit tensor e~jk eiejek. The last 
term describes a coupling of the internal spin rate 

to the fluid motion, given here by the vorticity 

~ =  V • v. The coupling should be proportional to 

the difference of these two rates of rotation. For dilute 

suspensions and spherical particles the coupling con- 
stant ( which has been termed vortex viscosity is relat- 

ed to the viscosity t/ and the volume concentration 
q5 of the suspended particles by 3t/q5 [-1, 7]. Since 

we consider only stationary magnetic fields, electric 
fields are neglected: 

T ~e~ = T ~ = ( -  �89 ~o/_/2 ! + ni l} ,  (3) 

V.B=0, B = # 0 ( H + M ) ,  V x H = 0 ,  (4) 

The conservation law of angular momentum can be 
expressed by (we use the nesting convention of Chap- 
man and Cowley [14] for multiple products of ten- 

SOTS) 
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d ~ S = - ~ : T = # ~ 2 1 5  % (5) 

1 4 ~ .  
where - is the viscous relaxation time being of 

"c s I 
the order of magnitude of 10-11 s. 

For a wide range of flows the time in which signifi- 

cant changes in the velocity take place, and which 

is therefore the time scale of interest, is larger than 

10 - 6  S. To give an example, the natural time scale 

in the Couette-Taylor-experiment we are interested 

in here is the diffusion time for velocity. This time 
d 2 

is found to be of the order ~ [15], v being the 

kinematic viscosity and d the gap width. Inserting 

reasonable values (d~ 1 cm, v=3.10 -6 mZ/s for hy- 

drocarbon based magnetic fluids) one obtains 5 s. 

Also the time step of 2-3- 10 -z d2/Z~v that we used 

in our numerical investigations is much larger than 

10-6s and therefore surely larger than Zs. Thus one 

can make an adiabatic approximation and neglect 

the inertial term in equation (5) which results in 

S = I  ~-+ Zs/.to M x H (6) 

with the total stress tensor becoming symmetric. 

The 13 equations (1), (4) and (6) do not form a 

complete set to solve for all the 16 unknowns S, v, 

H, M, B, Po. The additional equation used here is 

the phenomenological relaxation equation for magne- 

tism, as proposed by Shliomis [7]. 

d S 1 
d t  M = )- x M - -z (M - Mo). (7) 

The last term describes a relaxation of the magnetiza- 

tion M to the equilibrium magnetization M o in a 

coordinate system Z' which is rotating with angular 

S 
velocity a~ = 7  with respect to a fixed system 2. Thus 

in the fixed frame of reference one obtains the equa- 

tion for magnetization cited above. 

The equilibrium magnetization Mo can be deter- 

mined by a Langevin formula. The relaxation time 

r is determined by the Brownian relaxation time zB 

which is of the order of ~ 1-10 .6 s. Shliomis success- 

fully used this equation to calculate the additional 

anisotropic rotational viscosity in stationary flows. 

This additional rotational viscosity for magnetic 

fluids appears as a result of applied magnetic fields: 

a hindrance of the free rotation of the particles shows 

up if the rotation axis and the magnetic field are not 

oriented parallel. Since Shliomis considered station- 

ary fluids only, he assumed the magnetization to be 

d 
stationary too and neglected the term ~ M. But for 

the Couette-Taylor-System and all other time-depen- 

dent flows showing a typical time scale t of more 

d 
than z ~  10 - 6  S one can neglect the term d-~ M even 

if one is interested in time-dependent flow behavior 

because of adiabaticity. Since ~2~s~ 1 for colloidal 

suspensions [111 (even in high speed magnetic seals 

this is satisfied) and the deviation g = M - M o  caused 

by the flow field is small, if t >>zB, one finds by insert- 

d 
ing equation (6) in (7), neglecting d t  M and expanding 

to first order in p and ~B:  

Mo f~• Tff( H). (8) 

Thus/t  is orthogonal to H; the parallel component 

is (to first order) not influenced by the velocity and 

vanishes identically. %_ is an abbreviation for zB(1 

"~S $'B 
+ - f -  #oMoHo)-1 Up to some differences in the 

definition of z. this is the equation which is obtained 

by Shizawa et al. and the one given by Berkovsky 

for steady magnetic fields. 

Combining the equations given above one obtains 

the ferrohydrodynamic equation of motion 

d 
Pd~V=Vp+~l V2 v+/.to(/~.V)H+�89 V• (pxH) (9) 

= - Vp+~I V 2 v +c'(IU[){(n • I-~ • H3 • VIH]} 

+ c(Ihl){V x (n  x [ n  x ~3) 

- 2 ( [ n  x ~3" V) H} (10a) 

which may also be written in a sometimes more useful 

form (with F = rot v x H = ~ x H): 

d 
p d~V= Vp+~I V 2 v+ c'(Inl){(H x F) • V[nl} 

+c(IhD{F V . H - H  • (V • F ) - H  V. F}, (10b) 

a Mo 
c(IH[) denotes ~Z• ~ -  and c' is its derivative with 

respect to [HI. The pressure p differs from Po by a 

term resulting from (M o �9 V) H which may be rewritten 

as Vp'. Some-times additional magnetic pressure 

terms which account for dipole interactions and mag- 
netostriction are added to the normal pressure. Since 

we consider noninteracting dipoles and a homoge- 

neous incompressible fluid, these terms are neglected 

here (see a detailed discussion of these terms in Ro- 

sensweig, Sect. 4.3 [11). Besides this, magnetic force 

density terms which take the form of a gradient of 
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a pressure have no influence on the incompressible 

magnetic fluids. Note that special care has to be given 

to the boundary conditions. 

These equations describe the change of velocity 

as a function of p, I'1, c, c', v and the local magnetic 

field H. In many cases this local field can be approxi- 

mated by the externally applied field Ho. Field pertur- 

bations caused by the magnetic fluid can be neglected 

when the value of the equilibrium susceptibility Z 

= Mo/H o is small. This is frequently observed in prac- 

tice. Then Eqs. (4) reduce to I 7 x Ho = 0 and 17. H0 = 0. 

(If one wants to account for perturbation of Ho, at 

least the demagnetizing field and the Lorentz field 

have to be considered. Both fields depend on the mag- 

netization and counterpart each other, thus the net 

effect will be small; for more details see the electrical 

analogue [-16].) 

All additional terms are proportional to H x rotv. 

This agrees with normal perceptions since one would 

expect a hindrance of the free rotation only in this 

case. If one specializes this equation for stationary 

one-dimensional Couette flow one obtains exactly the 

terms found by Shliomis [11] describing the addition- 

al rotational viscosity of ferrofluids as it should be. 

Summarising, Eq. (10) describes the influence of 

a nonuniform magnetic field on the dynamics of a 

magnetic fluid. The basic assumption is that the time 

t representing the time scale for dynamical changes 

of the flow is larger than 10-6 s. 

III. Stability Analysis of Couette Flow 

Now we are going to use this equation to explore 

the stability boundaries of primary Couette flow for 

a magnetic fluid between two infinite, concentric cyl- 

inders of radius Rx and Ra. The inner cylinder is 

with 121 =R--@ and the outer one is at rest. rotating 

Three differently oriented, axisymmetric magnetic 

fields are applied: an axial field H = iqez, an azimuth- 

O n 
al H = - -  % and a radial one H = - -  % Since both, 

r r 

the primary Couette flow and the Taylor vortices are 

axisymmetric, we investigate only the axisymmetric 

problem. Besides this, we consider the narrow gap 

approximation which means that the gap width d 

=R2- -Ra  is assumed to be small in comparison to 

the radii. So, in lowest order 6 ~ of the gap parameter 

d 
6 = ~ - ~  1, one finds the deviations u=(u, v, w) and 

p from the basic Couette flow having only an azi- 

muthal component Vo(x ) = 1 -  x to satisfy the linear- 

ized equations for the axial magnetic field: 

O , u - ( l  + S)(O2 +O2)u+Oxp = 2 T V o v  

0, v - (1  + s)(0~ + 0~) v + s  0 2 v = u  

O,w-(l+S)(O~x+O~z)W+ozp =o (11) 

azimuthal magnetic field: 

0 t U 2 2 -- (Ox+Oz)u+Oxp=2TVov  

0,v - (1  2 2 +S)(Ox+O,)v =u 

~t W - -  2 2 (0~ +0~) w+O~ p =0 (12) 

radial magnetic field: 

Otu - ( l  + S)(02 +02)u+O~p =2TVov  

0tv - (1+S)(02+0 2) v+SO2v=u 

Otw-- (1 + S)(O 2 + 02) w + 0~p = 0 (13) 

incompressibility condition: 

0xu+0zw=0.  (14) 

Consistent with the narrow gap approximation, the 

magnetic field strength is considered to be constant 

across the gap: changes of this value are of the order 

6. Thus the third term on the right hand side of (10) 

which is proportional to 171HI has been neglected. 

Likewise, considering the fourth term, spatial deriva- 

tives are only taken of the unit vectors describing 

the orientation of the magnetic field. In the narrow 

gap limit the Taylor number T reduces to R 2 6, the 

Reynolds number R being defined by R 1 Q1 d/v as 

usual. Besides linearizing, we have introduced x=(r  

-R1) /d .  Length, time, pressure, azimuthal, radial and 
axial velocity are scaled in units of d, d2/v, p (v/d) 2, 

R10  t , and v/d, respectively. The additional rotational 
viscosity vr-c(IHI)-H2/p being an effect of an applied 

field is given in units of the suspension viscosity v 

without any magnetic field: S=vr([H[)/v. So here all 

the information on the magnetic field strength and 

on the specific properties of the magnetic fuid is col- 

lected in this parameter S. Up to now the possible 

range of S is not quite clear: values up to 100 are 

reported for some commercially available magnetic 

fluids [-24]. But since these data show a strong shear 

rate dependence (which should not be the case if vr 

is defined the way we did here following Shliomis), 

they are attributed to interactions of the magnetic 

particles like clustering and chain formation. Rosen- 

sweig [-17] reports values of 1.15 in concentrated fer- 

rofluids being nearly shear rate independent. Much 

smaller values are found by other experimentalists 

(e.g. 0.15 [-18]). So we investigated the range 0 < S <  1 

for all three magnetic fields. 

Appropriate boundary conditions have to be add- 
ed to these equations. The natural boundary condi- 
tions for normal fluids are no-slip-conditions, which 
are u, v, w=0 at x=0,  1. This is not exactly true 
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for magnetic fluids, as Brenner pointed out [19]. Due 

to wall effects the viscous translational and rotational 
motions of a particle are inseparably coupled when 
the particle is near a bounding wall. Although this 

in principle gives rise to a suspension scale slip veloci- 

ty, these effects may be neglected here because they 

are very small. 

Here we first impose idealized conditions as pro- 
posed by Kuhlmann [20] : no slip in azimuthal (v = 0), 

but free slip in axial direction (0~ w = 0). Since there 
are no axial friction forces along the cylinder walls, 

the effect of free slip is to enhance the onset of Taylor 

vortices: T~=1695, kc=3.12 are obtained for rigid 
boundaries and T~ = 654, kc = 2.23 for idealized bound- 

ary conditions. The advantage of applying idealized 
boundary conditions is that the axisymmetric Taylor 

vortex field can be decomposed in trigonometric nor- 

mal modes which simplifies the calculations consider- 

ably. 

u = ~ fi(n, m, t) sin(nTrx) cos(mkz) 
n = l  1 

+ %  z3(n, o, t) sin(n zc x)). (12) 

Truncating this expansion at m = 1 and using an expo- 

nential time dependence e ~t together with the linear- 
ized equations (11)-(14), one is left with a generalized 
eigenvalue problem as outlined in [20]. The solvabil- 

ity condition for o-=0 yields the marginal stability 

curve in the (k, T) plane. Since the trigonometric func- 
tions in radial direction are not eigenfunctions of the 

differential equations, they have to be considered as 

basis functions. It is found that the expansion con- 

verges rapidly with the number of harmonics N in 

x - direction, in accordance with [-20]. For S = 0 and 

N =  1, all three magnetic fields yield the values for 
a normal liquid: 

rc 27 
k (15) 

as it should be. Results obtained for axial, azimuthal 
and radial magnetic fields and N- -1  are given in 

qc(S) 
terms of the reduced quantities q r : = - -  thus 

q c(S = O) 
concentrating on the changes caused by the fields 

ez: T (S) 

= {4(1 + S) + [ / 1  + 8 (1 + S ) -  1]} 2 

. {4 + [l//1 + 8 (1 + S) - 1]}/(108 []//1 + 8 (l + S ) -  1]) 

=.flA + 8(1 + s)-  1p 
k~(S) 

2(1+S)  - - f  ' (16) ( 

%: TdS) = (1 +S)  

kr(S) = 1, 

I + S ~  + S ) [ ] / ~  8 1 ] + 4 }  2 
er: t(1 

�9 {1+  4 8 } 

k, (S) = I + S -  1 

(17) 

(18) 

These formulae correspond to the lines given in Fig. 1 
and Fig. 2; the results for N = 3 and N = 5 (axial field) 

are indicated by small markers and are nearly indis- 
tinguishable from the first order approximation in 

harmonics. The lines in Fig. 1 clearly indicate that 

in any case a magnetic field stabilizes the Couette 

flow. This effect is found to be strongest for the radial 

field and weakest for the azimuthal field. The reduced 

wave number may be shifted to larger or smaller 

values, depending on the orientation of the magnetic 
field, as indicated by the lines in Fig. 2. 

In order to investigate the no-slip-case, the full 

ferrohydrodynamic equation of motion has been 

solved numerically. Again it is assumed that the varia- 
tion of the magnetic field strength across the gap is 

negligible. Thus terms like V ]HI and Orr FHI are ne- 

glected in (10). We choose the radius ratio RdR  2 
equal to 0.95. For this value many experiments have 

been done for ordinary fluids and the corresponding 

6 = 0.0526 is still small enough to allow for a compari- 

son with results obtained in narrow gap theory. 

The primitive equations which follow from (10) 

are solved by a finite difference method on a marker- 

and-cell-(= MAC)-grid consisting of 20 cells in radial 
and 40 cells in axial direction [15]. No-slip boundary 

conditions are employed at the cylinders and periodic 

ones in axial direction. A basic wavelength can be 
selected by fixing the periodicity length appropriately. 

To assure V. V (v is scaled in units of 1/1) to be less 
t h a n  10 - 7  in the end, the artificial compressibility 

method following Chorin [21] is used. The three 

codes developed so far are very efficient: 99.8% of 

the arithmetics is done within inner DO-Loops  and 
vectorizes on the Cray-XMP at Jfilich, MFLOP-rates  

of more than 110 have been obtained for the total 
code. As one should expect, the stationary state for 
a given Reynolds number does not depend on wheth- 
er one starts the time-dependent calculation with pri- 
mary Couette flow or from rest. No Taylor vortices 
develop if the axial flow component w is identical 
to zero everywhere within the gap which may also be 
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Fig. 1. Reduced critical Taylor number TJS)/TJS=O) as a function 

of the relative rotational viscosity S = v~/v which is caused by three 

differently oriented magnetic fields. Lines with open symbols repre- 

sent the results of linear stability analysis using idealized boundary 

conditions. The full squares and the arrows pointing up and down 

show the results obtained from numerical simulation for azimuthal, 

axial and radial fields. The dashed line corresponds to data [6] 

for the axial magnetic field. In any case a magnetic fluid stabilizes 

the primary circular Couette flow 

seen from the analytical differential equations. One 

has to disturb the system thus simulating experimen- 

tal noise or thermal fluctuations and it has been found 

that a normalized velocity disturbance of 10 -11 at 

only one point in the w-velocity field is sufficient. 

In determining critical wave numbers and Reyn- 

olds numbers by direct computer simulation one is 

faced with the critical slowing down near the marginal 

stability curve. This difficulty can be bypassed and 

the marginal curve is obtained from the time-depen- 

dent response of the flow to instantaneous changes 

in the Reynolds number R to supercritical and sub- 

critical values. The critical numbers Rc and 2c repre- 

senting the minimum of this curve are Re= 183.777 

and 2~= 2.012 for 6 =0.0526 and no applied magnetic 

field. The differences to the corresponding values ob- 

tained by linear stability analysis for ordinary fluids 

(R~=184.99, 2c=2.0087 [3])are less than 1% and 

0.2%, respectively, and thus are quite small. A second 
method using the square-root-dependence of the max- 

imal radial velocity um, x on 5 ' -R- -Re  as found in 
Rc 

lowest order of e '~ (see e.g. [3]) yields nearly identical 

values for the marginal curve. But since deviations 

from the lowest-order-(=e'~)-predictions by higher 

orders in (e'~) show up even for 5' as small as 0.01 

(see also [22]), the method reported first is used to 
determine the critical numbers and thus investigate 

1.3 
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s J  
" 4  

L? 
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Fig. 2. Reduced critical wave number kc(S)/k~(S=O) as a function 

of the relative rotational viscosity S= v,./v. Lines give the results 

from linear stability analysis in first order, crosses represent higher 

order calculations and circles tile results obtained from numerical 

simulation for each of the three differently oriented magnetic fields. 

Differences are very small. Depending on the orientation of the 

magnetic field, the critical wave number may be enlarged or reduced 

the influence of the three magnetic fields on the forma- 

tion of Taylor vortices. 

The results obtained are given in reduced numbers 

by the fat markers in Fig. 1 and Fig. 2. There is an 

excellent agreement in the critical wave numbers kr(S) 

resulting from the two different calculations although 

both different boundary conditions and different 

methods of calculation have been used. As shown 

in Fig. 1, the agreement in reduced Taylor numbers 

is also very good for the case of an azimuthal magnet- 

ic field, but less good for the two other fields. The 

values for the radial field are reduced to the values 

indicated by arrows pointing down and those for the 

axial one are enlarged as shown by the arrows point- 

ing up. The results for the axial magnetic field are 

in good agreement with the numerical findings of Ber- 

kovsky [6] represented by the dashed curve. He 

showed that for a homogeneous axial magnetic field 

the reduced critical Reynolds number can be approxi- 

mated by (1 + 0.725-S) independent of the radius ratio 

of the cylinders. From his figures a decrease of the 

critical wave number with S may be seen too, but 

quantitative predictions are not given. 
The quantitative changes in the reduced Taylor 

numbers T~ may be explained by considering the 

change of the reduced critical numbers (T~ ..... ~ip 

- -  r r ,  i dea l i zed ) / r r ,  idealized as a function of the change in 
the reduced wavelength 2r(S)/2,.(S=0)--1 as is done 

in Fig. 3. If one, by applying an axial field, enlarges 

2c, one also enlarges the length scale on which a differ- 
ence in the boundary conditions is present. Thus in 

the numerical simulation, where no-slip boundary 
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conditions are imposed, additional axial forces arise 

for a single Taylor vortex pair. These forces obviously 

enlarge the critical Taylor numbers and consequently 

the already existing difference in Taylor numbers. 

Therefore, besides an increase caused by the axial 

magnetic field, one should expect an additional in- 

crease caused by the change in the critical wavelength. 

A similar argumentation holds in the case of the radi- 

al field resulting in a decrease of the reduced Taylor 

number. And this is exactly what is found and shown 

in Fig. 1. 

IV. Parameters of the Amplitude Equation 

Many features of hydrodynamic systems in the weak- 

ly nonlinear region just above a bifurcation can be 

described quantitatively by an amplitude equation of 

the Ginzburg-Landau form: 

ao19~ A-~2 C2 a+A(e-IAl2). 
~ t  - - ~ 0  (~Z 2 ~x 

(19) 

The complex amplitude A is related to a stream func- 

tion which contains the information on the velocity 

field. For the Taylor-Couette-system and nonmagnet- 

ic fluids the parameters % and 4o representing the 

growth rate amplitude and the curvature of the mar- 

ginal stability curve have been determined with high 

numerical accuracy by Dominguez-Lerma et al. [23]. 

Stimulated by their investigations, we explored the 

influence of magnetic fields on these values and on 

the wave number of maximal growth rate k,, if a mag- 

netic fluid is placed inside a small gap of 6 = 0.0526. 

a) The curvature of the marginal stability curve is 

determined from a least-squares-parabola using data 

(Re(k), k), k deviating about 1% or less from the 

critical values kc. Taking over the definitions ~o 2 = 
1 32 ~=kc 
2 Ok 2 e~ , ec defined as {Tc(k)- Tc(k~)}/T~(kr [23], 

and scaling 4o in units of d, the value obtained from 

the numerical data is 0.392 (_+ 0.005) for zero magnetic 

field strength. This is in reasonable agreement to 0.382 

as reported by [23]. Within errors resulting from the 

numerical accuracy in determining Re, only for the 

radial field a small influence could be observed result- 

ing in a decrease from 0.395 to 0.347 as S changes 

to 1. 

b) The wave number of maximal growth rate km(~) 

can be obtained as an extremum for a given e from 

the Liapunov exponents ~(e, k) already calculated in 

Sect. II1. For small e the results are expressed in 

=l im k,,(~)-k~, following [23]. The limit e ~ 0 is ap- 
e-*O ~ k c 

proximated by finite differences and extrapolated to 

e = 0 by Richardson extrapolation. Without a magnet- 

ic field, the obtained value of 0.22 ( •  0.04) agrees with 

0.249 [23]. If a magnetic field is applied, this value 

changes to 0.35, 0.19 and 0.18 for axial, azimuthal 

and radial ficld, respectively. Although these changes 

seem to be quite large, one should be careful in inter- 

prctation: even such small errors as 0.05% in the de- 

termination of the wave number may rcsult in relative 

errors as big as 30% in ~ because one has to evaluate 

the difference of two nearly identical numbers. Never- 

theless, considering only the qualitativc statemcnts, 

it is interesting to observe that, if thc critical wave 

number is reduced by the axial field, ~ increases and 

if k~ is increased by the radial field, ~ gets smaller. 

c) The linear growth rate defined by O-o =l im ~(s, k) 
e~0 ,~ 

is easily obtained from a(e, k) already used in Sect. III. 

Since ~(e, k) is found to depend linear on ~ near the 

marginal curve, % can be approximated by finite dif- 

ferences o-(ei, k)/ei. The errors are very small and the 

value obtained numerically, 13.03, is in excellent 

agreement with the high precision result [23] which 

is ~o = 13.09 [v/d 2] for ordinary fluids. The magnetic 

field dependence is shown in Fig. 4. For all three mag- 

netic fields a strong increase is observed. This increase 

is not related to the increase in Taylor numbers in 

a simple way since then the axial values should be 

larger than those of the azimuthal field and in addi- 

tion near to the values of the radial field. Therefore 

a simple picture of a somehow delayed instability 

which develops the faster the more it is delayed does 

not fit here. However, we want to mention here that 
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the propagation velocity of a Taylor vortex front e A 

is proportional to the product 40O-o [22]. Thus it is 

interesting to investigate cA in magnetic fluids. 

V. Conclusions 

A crucial point in modelling the flow of a magnetic 

fluid is a macroscopic equation describing the devia- 

tion of the magnetization from its equilibrium value. 

Here we start from the well known and successfully 

used phenomenological relaxation equation of mag- 

netization proposed by Shliomis [7]. Realizing that 

the time scale of interest in many flows is larger than 

10 .6 s, we directly derive an equation of magnetiza- 

tion for instationary flows. Combined with Cauchy's 

equation of motion and an equation for the intrinsic 

angular momentum, we arrive at a ferrohydrodynam- 

ic equation which describes the flow of an incompress- 

ible magnetic fluid in a nonuniform steady magnetic 

field. 
This equation has been used to investigate the 

influence of magnetic fields on the formation of Tay- 

lor vortices of ferrofluids in the small gap between 

concentric rotating cylinders. Means of investigation 

have been linear stability analysis and direct com- 

puter simulation of the flow using finite differences. 

Summarizing the main results we find the following: 

�9 all three investigated magnetic fields (axial, radial 

and azimuthal) have a stabilizing effect on the primary 
circular Couette flow. 

�9 the critical wave number may be enlarged or re- 

duced by applying a radial or an axial magnetic field, 

respectively. An azimuthal field does not change the 

wave number. 

�9 the curvature of the marginal stability curve could 

be determined in accordance with the high precision 

numerical data of Dominguez-Lerma et al. [23]. A 

change of this value caused by a magnetic field could 

not be observed for axial and azimuthal ones; for 

radial fields there are some hints towards a small de- 

crease. 

�9 calculations of the growth rate amplitude ~o with- 

out a magnetic field are in excellent agreement (0.5%) 

with the data of Dominguez-Lerma et al. A magnetic 

field enlarges this value significantly. 

One should stress here that a magnetic fluid offers 

the new possibility to influence the critical wave 

number by an external control parameter (magnetic 

field). This makes it favourable to use ferrofluids in 

studies of pattern selection mechanism. 

The present work is intended as part of a Ph.D.-Thesis. In this 

context I wish to thank Prof. H. Miiller-Krumbhaar and Prof. M. 

Liicke for suggesting this investigation and for their care. 
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Note Added in Proof 

After this work has been accepted for publication, we noticed a 
recent paper of Vislovich, A.N., et al.: J. Appl. Mech. Tech. Phys. 
(USA), 27, 72 (1986). Starting from the model equations of ([8]), 
they obtain analogous results concerning the influence of magnetic 
fields on the critical Taylor number and wave number. Since they 
use Galerkin methods, this provides an additional evidence for the 

correctness of the effects presented 


