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Abstract

Estimating genetic parameters of quantitative traits is a prerequisite for animal breeding. In honeybees, the genetic variance separates into
queen and worker effects. However, under data paucity, parameter estimations that account for this peculiarity often yield implausible
results. Consequently, simplified models that attribute all genetic contributions to either the queen (queen model) or the workers (worker
model) are often used to estimate variance components in honeybees. However, the causes for estimations with the complete model (col-
ony model) to fail and the consequences of simplified models for variance estimates are little understood. We newly developed the neces-
sary theory to compare parameter estimates that were achieved by the colony model with those of the queen and worker models.
Furthermore, we performed computer simulations to quantify the influence of model choice, estimation algorithm, true genetic parame-
ters, rates of controlled mating, apiary sizes, and phenotype data completeness on the success of genetic parameter estimations. We found
that successful estimations with the colony model were only possible if at least some of the queens mated controlled on mating stations. In
that case, estimates were largely unbiased if more than 20% of the colonies had phenotype records. The simplified queen and worker mod-
els proved more stable and yielded plausible parameter estimates for almost all settings. Results obtained from these models were unbi-
ased when mating was uncontrolled, but with controlled mating, the simplified models consistently overestimated heritabilities. This study
elucidates the requirements for variance component estimation in honeybees and provides the theoretical groundwork for simplified hon-
eybee models.

Keywords: REML estimates; genetic parameters; honeybees; maternal and direct effects; computer simulation; animal model; mating
control

Introduction
Breeding efforts in honeybees, as in other agricultural species,
rely on the fact that selection traits are partly determined by ge-
netic features and that superior animals can thus pass on their
qualities to their offspring. In order to determine the extent to
which this is the case, it is necessary to measure the magnitude
of genetic variance as a contributor to the phenotypic variance in
a population. Thus, estimates of genetic and residual variance
components are important to judge the prospect of success in se-
lective breeding schemes (Lush 1937).

In addition to their importance for evaluating the possibilities
for breeding, genetic and residual variance estimates also belong
to the input data of best linear unbiased prediction (BLUP) breed-
ing value estimation (Henderson 1975) and are thus an integral
part of modern techniques of genetic evaluation, including that
of honeybees (Bienefeld et al. 2007; Brascamp and Bijma 2014;
Hoppe et al. 2020).

Estimates of variance components in livestock populations
typically rely on the animal model (AM), assuming that the phe-
notype yij of an individual j in an environment i is determined by
a fixed environmental effect bi, a random genetic effect uj of the
individual, and a random residual effect eij:

yij ¼ bi þ uj þ eij: (AM)

Based on this model and the relationships between the in-
volved individuals, the variances of uj (additive genetic variance,
r2

A) and eij (residual variance, r2
E) are typically estimated as re-

stricted maximum likelihood (REML) values, assuming that uj

and eij are normally distributed (Patterson and Thompson 1971).
There exist several algorithms to derive REML estimates, the two
most widely used probably being Expectation Maximization
REML (EMREML) (Dempster et al. 1977; Mäntysaari and van Vleck
1989) and Averaged Information REML (AIREML) (Madsen et al.
1994; Johnson and Thompson 1995; Gilmour et al. 1995). The
EMREML algorithm is generally deemed reliable to return exact
REML estimates; however, it often takes many iterations to con-
verge (Meng and van Dyk 1998; Thompson et al. 2005; Misztal
2008). In contrast, AIREML terminates much faster but also
requires a higher degree of regularity of the likelihood function. It
may thus fail to yield accurate REML estimates, particularly if the
data set is small or irregular (Misztal 2008; Masuda 2019).

The application of the AM to the honeybee bears the problem
that, unlike in other livestock species, a phenotype record is usu-
ally not attributed to an individual bee but to a colony, i.e. a
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collective of bees with different genetic properties. In particular,
the distinction between queen and worker group has proven im-
portant, because the same genetic set-up has different influences
on a trait, depending on the caste it is expressed in (Bienefeld and
Pirchner 1990). The model which to date represents the honeybee
biology most accurately was introduced by Brascamp and Bijma
(2014), refining several earlier approaches (Chevalet and Cornuet
1982; Bienefeld et al. 1989, 2007). We call this model the colony
model (CM). It assumes that for a colony, consisting of a queen q
and a worker group w in an environment i, the phenotype yiqw is
determined by

yiqw ¼ bi þ uQ
q þ uW

w þ eiqw: (CM)

The concept is similar to that of maternal and direct effects in
other livestock species (Willham 1963): The genetic effect u splits
up into a (maternal) queen component uQ and a (direct) worker
component uW. The genetic effect of the worker group, uW

w , is
equipped with a bar to indicate that it is formed as the average
genetic effect of the individual worker bees in the colony. When
the CM is used for parameter estimation, REML estimates are cal-
culated for the queen effect genetic variance, r2

AQ , the worker ef-
fect genetic variance, r2

AW , the residual variance, r2
E, as well as the

genetic covariance between queen and worker effects, rAQW .
While r2

AQ and r2
E are precisely the variances of uQ

q and eiqw, re-
spectively, the variance of uW

w , being the variance of an averaged
value, is reduced to awwr2

AW , where the reduction factor aww is the
average relationship between two workers in a colony (Brascamp
and Bijma 2014, 2019). If a queen mates freely with many mutu-
ally unrelated drones, most of her workers are maternal half-sibs
and thus aww is little larger than 0.25. In breeding schemes with
controlled mating on mating stations, the value for aww has been
estimated between 0.317 (Brascamp et al. 2018) and 0.427
(Bienefeld et al. 1989).

The CM has yielded unbiased REML estimates of variance
components with simulated data (Brascamp et al. 2014;
Brascamp and Bijma 2019) and has been applied successfully in
the estimation of genetic parameters in real honeybee popula-
tions (Bienefeld and Pirchner 1990; Brascamp et al. 2016; Hoppe
et al. 2020). However, it turned out that this model has high
demands on data quality. In case of imperfect data, algorithms
for parameter estimation in honeybees have repeatedly failed to
converge or yielded unreasonable results. This was observed for
the AIREML algorithm (Andonov et al. 2019; Guichard et al. 2020),
as well as older and supposedly more reliable algorithms, includ-
ing EMREML (Willam and Eßl 1993; Zakour et al. 2012).

As a remedy, several recent studies used simplified honeybee
models for parameter estimations, attributing the entire genetic
component of the phenotype either to the queen (queen model,
QM) or to the worker group (worker model, WM), while ignoring
the other caste (Andonov et al. 2019; Facchini et al. 2019;
Guichard et al. 2020, 2021):

yiq ¼ bi þ uðQMÞ
q þ eðQMÞ

iq ; (QM)

or

yiw ¼ bi þ uðWMÞ
w þ eðWMÞ

iw : (WM)

These simplified models lead to increased numeric stability
of the estimation procedures, also when the data quality is poor
(Willam and Eßl 1993; Guichard et al. 2020, 2021). They are

easily justified for traits that are clearly attributed to only one
caste (de Graaf et al. 2020; Facchini et al. 2021). However, most
commercially important honeybee traits, such as honey yield or
gentleness, are commonly influenced by the queen and her
workers. For these traits it is to date unclear, how parameter
estimates that were obtained with the simplified models QM
and WM compare to estimates using the complete model CM.
Sometimes, uðQMÞ

q from the QM is directly associated with uQ
q

from the CM, although there exists a general sentiment that
uðQMÞ

q likely also captures some worker effect information due to
the close relationship between a queen and her workers
(Guichard et al. 2020, 2021). The same holds for uðWMÞ

w and uW
w . In

simulation studies on mammals, it has been shown that
neglecting existing maternal effects in parameter estimations
can lead to severely biased variance estimates for the direct
effects (Robinson 1996; Cl�ement et al. 2001).

Data paucity, which has been made responsible for the failure
to estimate genetic variance components under the CM in several
honeybee populations, appears in different forms.

• The mating behavior of the honeybee differs from that of
other agricultural species. A young queen mates only once,
soon after hatching, with several drones from other hives and
afterwards uses the collected semen to fertilize eggs for the
rest of her life. For the breeder, this mating behavior is typi-
cally not observable, leading to uncertain paternity and thus
incomplete pedigrees. Several studies for other livestock spe-
cies have shown that incomplete pedigree information can
yield biased estimates of variance components (Cantet et al.
2000; Cl�ement et al. 2001; Id-Lahoucine and Casellas 2017).
The situation for the honeybee can be ameliorated by the use
of artificial insemination or isolated mating stations, which
provide a certain degree of paternal pedigree information
(Bienefeld et al. 1989; Brascamp and Bijma 2014; Uzunov et al.
2017). But although it has been shown that these strategies
substantially enhance genetic response (Plate et al. 2019b; Du
et al. 2021a), many honeybee populations are still bred with-
out or with incomplete mating control (Andonov et al. 2019;
De la Mora et al. 2020; Maucourt et al. 2020).

• Apiary sizes play a crucial role in separating fixed and ran-
dom effects, because colonies from the same apiary are usu-
ally attributed the same fixed effect. In comparison to other
agricultural species, contemporary groups in honeybees tend
to be small (Andonov et al. 2019; Bie�nkowska et al. 2020),
which is likely to harm the accuracy of estimated genetic
parameters (Swalve 1995; Strabel and Swaczkowski 1999;
Vasconcelos et al. 2008).

• Performance tests for some honeybee traits, such as the pin-
test for hygienic behavior, are laborious and therefore not
recorded by all breeders, leading to incomplete phenotype
data (Hoppe et al. 2020). Studies in other agricultural species
have shown that missing phenotype data hampers the esti-
mation of genetic parameters and that the disentanglement
of maternal and direct genetic variances is particularly com-
promised (Gerstmayr 1992; Maniatis and Pollott 2003;
Heydarpour et al. 2008).

While it is known that these factors have a negative influence
on genetic parameter estimations, it is unclear to what extent
this is the case in honeybee populations.

In this study, we derive a theoretical framework that allows
the comparison of genetic parameter estimates under the CM
with those under the simplified queen and worker models (QM
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and WM). Furthermore, we use simulated data to investigate
the influences of model choice, estimation algorithm,
controlled mating, apiary size, and phenotype data complete-
ness on the estimation of variance components in honeybee
populations.

Theory
Projected contributions and variances
In this section, we discuss what to expect if the simplified models
QM and WM are used to estimate variance components from
phenotypes that were created according to the CM. Our approach
is analogous to the theory of transformed variances in other spe-
cies, like they appear for example in sire-maternal grandsire
models (Kriese et al. 1991). However, to our knowledge, none of
the resulting Equations (4a), (4c), (6a), or (6b) have previously
been derived for the honeybee.

We start with the QM, which projects all genetic effects onto
the queen. A worker group w inherits its breeding value uW

w from
its queen q and the drones d that q mated with:

uW
w ¼

1
2

uW
q þ uW

d : (1)

Note that (diploid) queens transmit only half of their genes
to their offspring, while (haploid) drones pass their entire ge-
netic information. Furthermore, no Mendelian sampling is
modeled in the inheritance to a worker group because sam-
pling effects for individual workers cancel out when average
values are taken. For more details on modeling additive genetic
inheritance in honeybees (see e.g. Du et al. 2021b; Kistler et al.
2021). By inserting Equation (1), the model equation of the CM
can be rewritten as

yiqw ¼ bi þ uQ
q þ

1
2

uW
q þ uW

d þ eiqw: (2)

The genetic contribution of q to the phenotype, as it is pro-
jected by the simplified model QM, is therefore not only uQ

q , but

uðQMÞ
q ¼ uQ

q þ
1
2

uW
q : (3a)

Accordingly, the projected residual contribution is

eðQMÞ
iq ¼ uW

d þ eiqw: (3b)

Note that, we assumed that a queen’s breeding value is inde-
pendent from the breeding values of the drones she mated with,
i.e. no assortative mating. The genetic variance projected to the
queen by the QM is thus.

r2
AðQMÞ ¼ varðuðQMÞ

q Þ ¼ r2
AQ þ

1
4

r2
AW þ rAQW : (4a)

The phenotypic variance for honeybee colonies equals
[Brascamp and Bijma 2019; Bernstein et al. 2021, Equation (2)].

r2
P ¼ varðyiqwÞ ¼ r2

AQ þ awwr2
AW þ rAQW þ r2

E: (4b)

In consequence, since uðQMÞ
q and eðQMÞ

iq are independent, the
residual variance projected by the QM is

r2
EðQMÞ ¼ varðeðQMÞ

iq Þ ¼ r2
P � r2

AðQMÞ ¼ aww �
1
4

� �
r2

AW þ r2
E: (4c)

We now turn to the WM, attributing all genetic effects to the
worker group. The calculation of the projected genetic contribu-
tions when using this model is more involved, because the
worker group’s true breeding value uw has nonvanishing cova-
riances with both uq and ud. We present the resulting formulas
here and give their derivations in the appendix:

uðWMÞ
w ¼ 1

2aww
uQ

w þ uW
w ; (5a)

and

eðWMÞ
iw ¼ 1� 1

4aww

� �
uQ

q �
1

2aww
uQ

d þ eiqw: (5b)

Thus, when using the WM to estimate genetic and residual
variance components from phenotypes that were created accord-
ing to the CM, the expected results are:

r2
AðWMÞ ¼

1
aww

varðuðWMÞ
w Þ ¼ 1

4a2
ww

r2
AQ þ r2

AW þ
1

aww
rAQW ; (6a)

and

r2
EðWMÞ ¼ varðeðWMÞ

iw Þ ¼ 1� 1
4aww

� �
r2

AQ þ r2
E: (6b)

The projected variances r2
EðQMÞ ; r2

AðWMÞ , and r2
EðWMÞ (but not r2

AðQMÞ )
depend on the average relationship of workers, aww, and will thus
differ for different mating strategies.

Methods
Parameter estimation with simulated data
We used the program BeeSim (Plate et al. 2019a) to simulate
several honeybee populations over 20 years, for which we then
performed genetic parameter estimations. All populations
comprised 500 queens per year and each year, 50 two-year old
queens were randomly selected to produce ten daughter
queens each. Both controlled and uncontrolled queen mating
strategies were considered. In uncontrolled matings, queens
were paired with nd ¼ 12 drones that were produced by a ran-
dom selection of queens of ages between one and three years.
In controlled matings, queens were paired with nd ¼ 12 drones
on one of ten isolated mating stations. Each mating station
consisted of a sister group of eight drone producing queens,
whose dam was randomly selected among the three-year old
breeding queens. The respective implementations of controlled
and uncontrolled mating were thus identical to earlier simula-
tion studies (Plate et al. 2019b, 2020; Du et al. 2021b). The
resulting values of aww were 0.29 for uncontrolled mating and
0.37 for controlled mating. Six different proportions p of queens
undergoing controlled mating were considered (p¼ 0.0, 0.2, 0.4,
0.6, 0.8, or 1.0). In populations with mixed controlled and
uncontrolled mating of queens, we assumed aww to be a
weighted average between 0.29 and 0.37. Separate simulations
were performed for eight traits, reflecting different ratios be-
tween genetic and residual variance, as well as different corre-
lations rAQW between queen and worker group effects (see
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Table 1). The traits were inherited according to the infinitesi-
mal model and phenotype data were recorded. For each of the
48 combinations of controlled mating rates p and traits, simu-
lations were repeated 500 times.

Afterwards, the genetic parameters were re-estimated from
the simulation data using the program AIREMLF90 (Misztal
et al. 2002), taking honeybee specific pedigree relationships
into account (Brascamp and Bijma 2014; Bernstein et al. 2018).
The relationship matrix held entries for all queens, worker
groups and mating stations, amounting to 20,000–20,200 enti-
ties, depending on mating control. For the variance estimation,
colonies were randomly assigned to one of several apiaries of
equal size sa (sa ¼ 5, 10, 20, 50, or 500) and each combination of
year and apiary was treated as a fixed effect. To investigate the
effect of missing phenotype data, some phenotype records
were randomly deleted prior to the parameter estimation.
Seven rates q of phenotype data completeness were investi-
gated (q¼ 0.1, 0.2, 0.5, 0.7, 0.8, 0.9, or 1), so that variance com-
ponents were estimated based on between 1,000 and 10,000
performance recods. We used both the EMREML and AIREML
algorithms for estimation with true genetic parameters as
starting values. Aitken acceleration (Aitken 1927), which is typ-
ically implemented in EMREML procedures (Laird et al. 1987;
Misztal 2008), was disabled to further improve the reliability of
results for this algorithm. Finally, parameter estimations were
carried out based on the three models CM, QM, and WM. In
consequence, for each of the 48 � 500 ¼ 24000 simulated popu-
lations, 5 � 7 � 2 � 3 ¼ 210 different parameter estimations were
performed, leading to a total of more than 5 million separate
estimation procedures.

Data analysis
In a first step, we judged the parameter estimation results for
plausibility. An estimation run was interpreted as failed if one of
the following criteria was fulfilled:

• Convergence was not reached after nmax iterations, where
nmax ¼ 3000 for EMREML, and nmax ¼ 1000 for AIREML (con-
vergence criterion <10�12).

• A genetic or residual variance was estimated smaller than
0.01 or larger than 10.

• In case of estimates with the CM, the estimate for the correla-
tion rAQW between queen and worker group effects lay outside
of the interval ½�0:99; 0:99�.

Results from failed estimation runs were deleted from the
data set and the remaining estimates were examined for accu-
racy and bias depending on the population parameters.

Results
Plausibility analysis
With the CM, a total of 74.2% of all EMREML runs and 70.7% of
AIREML runs passed the plausibility test. While 40.7% of all failed
AIREML procedures rendered parameters that lay outside of the
admissible intervals, this effect was much rarer for EMREML,
where 99.6% of all unsuccessful runs did not converge within
3,000 iterations. The success rates for both algorithms depended
heavily on the set-up. The factors with the highest influence
proved to be the rates of controlled mating and phenotype data
completeness (Fig. 1, a and b). When the majority of queens
mated controlled and at least 70% of the phenotype data was
complete, almost all (>98%) parameter estimations yielded plau-
sible results. On the other hand, if mating was entirely uncon-
trolled, 49.2% of EMREML and 99.0% of AIREML procedures failed.
Similarly, if only 10% of all colonies had phenotype records, a
clear majority of estimation runs failed, even with otherwise fa-
vorable parameters. We further observed for both algorithms
that larger apiaries yielded better results, traits with small resid-
ual variance performed better than traits with large residual vari-
ance, and traits with negative correlation between queen and
worker effects performed better than traits with zero or positive
correlation (Fig. 1, c and d). However, apiary sizes and true ge-
netic parameters were only of secondary importance, with far
smaller influences than controlled mating and data complete-
ness.

As expected, the simplified models QM and WM proved more
robust than the CM under compromised data quality: Even in set-
tings with poor phenotype coverage (q � 20%), the majority of
parameter estimations were successful. Here, EMREML per-
formed slightly better than AIREML (Fig. 2, a and b). In both algo-
rithms, we saw a trend that the QM outperformed the WM if
mating was predominantly uncontrolled and the opposite for
mainly controlled mating. In all settings with at least 50% pheno-
type data, 99% or more of AIREML procedures with simplified
models led to plausible results (not shown). The EMREML results
with at least 50% phenotypes were more nuanced. While the QM
always yielded success rates over 98%, several estimation proce-
dures under the WM with good phenotype data did not converge
in time (Fig. 2c).

Estimation accuracy
Colony model
The following results only consider those estimation runs that
passed the plausibility test. The EMREML and AIREML algorithms
showed a qualitative difference regarding the rates of successful
runs in scenarios without controlled mating. While EMREML
yielded plausible results in several cases, virtually all AIREML

Table 1. Genetic parameters of simulated traits.

Trait r2
AQ r2

AW r2
E rAQW rAQW

Uncontrolled mating (aww ¼ 0.29) Controlled mating (aww ¼ 0.37)

r2
AðQMÞ r2

EðQMÞ r2
AðWMÞ r2

EðWMÞ r2
AðQMÞ r2

EðQMÞ r2
AðWMÞ r2

EðWMÞ

T1 1 2 4 0.5 0.35 2 4.08 6.65 4.14 2 4.24 5.18 4.32
T2 1 2 4 0 0 1.5 4.08 4.94 4.14 1.5 4.24 3.83 4.32
T3 1 2 4 �0.5 �0.35 1 4.08 3.22 4.14 1 4.24 2.47 4.32
T4 1 2 4 �1 �0.71 0.5 4.08 1.51 4.14 0.5 4.24 1.12 4.32
T5 1 2 1 0.5 0.35 2.0 1.08 6.65 1.14 2.0 1.24 5.18 1.32
T6 1 2 1 0 0 1.5 1.08 4.94 1.14 1.5 1.24 3.83 1.32
T7 1 2 1 �0.5 �0.35 1 1.08 3.22 1.14 1 1.24 2.47 1.32
T8 1 2 1 �1 �0.71 0.5 1.08 1.51 1.14 0.5 1.24 1.12 1.32
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procedures failed (Fig. 1, a and b, first columns). In a first step, we
thus analyzed the plausible EMREML results in the CM without
controlled mating. Many runs led to genetic variance estimates

r̂2
AQ and r̂2

AW that were close to the true parameters (Fig. 3).
However, substantial misestimations occurred in all scenarios.
Notably, estimation errors for r2

AQ and r2
AW were not independent

but occurred along distinguishable trajectories. This phenome-
non also occurred for the estimates of rAQW and r2

E, albeit less pro-
nounced (not shown). We thus suspect that without controlled
mating, the relationship data was insufficient to distinguish
queen and worker effects. Consequently, the REML likelihood
functions seemed not to have isolated maxima, but values for
r̂2

AQ and r̂2
AW could be exchanged along the trajectories at a con-

stant likelihood. In this case, the concentration of EMREML out-
puts around the correct values is likely an artifact of starting the
procedure with true parameters. The phenomenon depicted in
Fig. 3 never occurred when at least some queens mated con-
trolled. Due to the irregular behavior of estimates according to
the CM without controlled mating, we excluded these results

a b

dc

Fig. 1. Rates of plausible parameter estimations with EMREML a, c) and AIREML b, d) under the CM. The rates are presented in dependence of
percentages p of controlled mated queens and q of colonies with phenotype data a, b), as well as in dependence on apiary size and true trait parameters
c, d). Lighter background shades signify higher success rates.

a

b

c

Fig. 2. a) Rates of plausible EMREML runs with � 20% of colonies with
phenotype data under the models QM, WM and CM. b) As (a), but with
AIREML. c) Rates of plausible EMREML procedures under the WM
presented in dependence of percentages p of controlled mated queens
and q of colonies with phenotype data.

Fig. 3. Heatmap of estimate bias for r2
AQ and r2

AW with the CM and
EMREML without controlled mating.
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from all further analyses, even when the results passed the plau-
sibility test.

When at least 50% of the colonies had phenotype data,
EMREML estimates for r2

AQ ; r2
AW ; rAQW , and r2

E were on average
unbiased (Fig. 4, a and b), with slight differences between set-
tings. When only 20% or fewer of the colonies had phenotype
records, we observed biased parameter estimates. The genetic
variances r2

AQ and r2
AW were on average overestimated by 0.27

and 0.64, respectively (Fig. 4c), while the genetic covariance rAQW

and the residual variance r2
E were on average underestimated by

0.45 and 0.07, respectively (not shown). However, these biases
were not caused by a general shift of parameter estimates, but
by an excess of outliers in one direction, leading to skewed dis-
tributions. In all cases, the mode of the biases of estimated
(co)variances, i.e. the distribution maximum and thus the most
likely outcome for a single parameter estimation, was close to
zero. When using the AIREML algorithm instead of EMREML, we
obtained closely resembling results, whence we omit a detailed
presentation and only provide Supplementary Fig. 1 as the
AIREML counterpart to Fig. 4.

Despite the overall similar behavior of EMREML and AIREML
results, both algorithms generally converged to nonidentical val-
ues. The median absolute differences between EMREML and
AIREML estimates for r2

AQ ; r2
AW ; rAQW , and r2

E were 0.09, 0.16, 0.10,
and 0.04, respectively. In 56.6% of all scenarios where both algo-
rithms yielded plausible results, the EMREML output for r2

AQ was
closer to the true parameter value. The corresponding percen-
tages for r2

AW ; rAQW , and r2
E were 54.2%, 57.0%, and 52.5%. This

marginal superiority of EMREML estimates was also reflected in
slightly lower realized standard errors, i.e. quadratic means of
differences between estimated and true values, for the respective
variance components. In addition to the realized standard errors,
AIREML allows to intrinsically predict standard errors from the
inverse averaged information matrix (Madsen et al. 1994; Meyer
and Houle 2013). All three types of standard errors were generally
in good accordance, with a slight tendency of the predicted stan-
dard errors to overestimate their realized counterparts (Fig. 5).
The excess of outliers in parameter estimations with � 20% data,
which had caused the biases described above, resulted in vastly
increased standard errors. These were also recognized inherently
by AIREML. When we restricted our analysis to data sets with at
least 50% recorded phenotypes, we found a clear scheme:
Throughout, the residual variance r2

E was estimated the most ac-
curately (overall EMREML standard error 0.12) followed by

r2
AQ ; rAQW , and r2

AW (standard errors 0.30, 0.33, and 0.55). Variance
components were estimated more precisely, when the residual
variance was smaller (traits T5 to T8). This difference showed
strongest for r2

E, where standard errors were halved in compari-
son to the traits T1 to T4. Among traits with equal residual vari-
ance, those with stronger negative correlation between effects
were estimated more accurately. The rate of controlled mating
had a strong effect on the estimates of genetic (co)variances, but
only little influence on estimates of r2

E. Particularly when only
20% of all queens mated on mating stations, the standard errors
for r2

AQ ; r2
AW , and rAQW were much increased. As in the plausibility

analysis, the influence of apiary sizes on the standard errors of
variance estimates was small; yet we saw a trend that larger api-
ary sizes led to slightly better results.

Queen and worker models
Both the QM and WM performed best when mating was uncon-
trolled, i.e. precisely where parameter estimation with the CM
failed. Under free mating conditions, EMREML estimates of r2

AðQMÞ

and r2
EðQMÞ with the QM were unbiased (Fig. 6a), whereas estimates

for r2
AðWMÞ and r2

EðWMÞ with the WM showed a slight tendency to un-
derestimate residual contributions (Fig. 6b). Unlike in the CM,
completeness of phenotype data had almost no influence on the
bias (not shown).

We observed biased results when controlled mating was intro-
duced (Fig. 6, c and d). In contrast to the biases under the CM
with incomplete phenotype data (Fig. 4c), these biases were not
caused by excessive outliers. Instead, the results of the EMREML
runs varied around shifted values and both the QM and WM
showed a clear trend to overestimate genetic variances and un-
derestimate residual variances, and thus made traits appear
more heritable than they actually were. Biases for all traits were
similar in absolute numbers and therefore relatively more severe
when the residual variance r2

E was low or the covariance rAQW be-
tween queen and worker effects was negative. The biases also oc-
curred when only a part of the queens mated controlled but were
less pronounced then (not shown).

Like in the parameter estimations with the CM, standard
errors were smaller when phenotype data was more complete
(Table 2). Similarly, traits with smaller residual variance were es-
timated with smaller errors as were traits with stronger negative
correlation between queen and worker effects. Throughout, the
standard errors for trait T1 (r2

E ¼ 4; rAQW ¼ 0:5) were about four
times as high as those for trait T8 (r2

E ¼ 1; rAQW ¼ �1). When

a b c

Fig. 4. Accuracy of EMREML variance estimates in the CM. a) Heatmap of bias for r2
AQ and r2

AW with � 50% phenotype data. b) Heatmap of bias for rAQW

and r2
E with � 50% phenotype data. c) Heatmap of bias for r2

AQ and r2
AW with � 20% phenotype data.
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corrected for the described bias, the standard errors for variance
component estimates with (partly) controlled mating were very
similar to those with uncontrolled mating. Furthermore, as in the
CM, the influence of the apiary size was detectable but small.

Standard errors for the residual variances (r2
EðQMÞ and r2

EðWMÞ )
were similar when estimations were performed with either
model. Standard errors for r2

AðQMÞ were on average slightly lower
than a third of the standard errors for r2

AðWMÞ , indicating that r2
AðQMÞ

and awwr2
AðWMÞ could be estimated with similar accuracy.

As in the CM, AIREML estimates showed very similar behavior
to EMREML results. Therefore, we again restrict ourselves to pro-
viding Supplementary Fig. 2 as the analog to Fig. 6.

Discussion
Observations with the CM
This simulation study confirms several observations from pa-
rameter estimation studies with real data. The simplified models
QM and WM proved indeed numerically more robust than the
more complex model CM. In particular, we showed that a reliable
parameter estimation with the CM is impossible in the absence of
controlled mating. This has been claimed in several instances in
the literature (Zakour et al. 2012; Andonov et al. 2019), but so far
only on the basis of singular failed attempts of parameter
estimation.

Furthermore, missing phenotype records made the estimation
algorithms prone to produce outlier results, far off the correct
values, likely caused by flat likelihood functions, whose maxima
were difficult to determine. For instance, the genetic covariance
between queen and worker effects was often estimated strongly
negative even though this was not justified. In the past, genetic
covariances between queen and worker effects in honeybee pop-
ulations have been estimated strongly negative (Bienefeld and
Pirchner 1990), but recently—possibly due to more complete data
records—these negative covariances appeared less pronounced
(Hoppe et al. 2020).

Lastly, the predicted standard errors from the inverse aver-
aged information matrix in AIREML proved to be reasonable.

Thus, it appears good practice to dismiss variance component

estimates if the standard error exceeds the estimated value, as it

was done by Willam and Eßl (1993) or Andonov et al. (2019).

Observations with the QM and WM
Our derivations of projected variances provide the theoretical

base for genetic parameter estimations with the QM and WM.

When mating was uncontrolled, estimated parameters and pro-

jected variances matched well. Under controlled mating, we

detected a bias, but still, in most cases the projected variances

provided a better description of the genetic estimates under the

QM and WM than comparing them to r2
AQ and r2

AW , respectively

(Guichard et al. 2020, 2021). Consequently, the projected varian-

ces r2
AðQMÞ and r2

AðWMÞ should also be used in the numerator of heri-

tability definitions when comparing parameter estimates across

models.
The biased results with the QM and WM under controlled mat-

ing were the most striking observations with these models. We

attribute them to the following modeling issue. Random residual

effects for different colonies are usually thought to be indepen-

dent, and we also assumed this for the projected residual effects

eðQMÞ
iq and eðWMÞ

iw . In the QM, the projected residual effect has a

component uW
d , coming from the drones a queen mated with

[Equation (3b)]. When queens mate freely, it is reasonable to as-

sume that the drone contributions are independent for different

queens. But under controlled mating, queens that visit the same

mating station mate with related drones, inducing positive corre-

lations between the projected residuals, which the model does

not account for. For the WM, similar considerations apply, albeit

slightly more complex, because here, also relationships between

queens are relevant.
It is possible to extend the models QM and WM to account

for residual covariances, similar to the considerations in (Bijma

2006). However, this complexifies the models and it is unclear,

how numerically robust such extended models are with poor

data.

Fig. 5. Influence of population parameters on the realized and predicted standard errors of the parameter estimation. Data for traits, rates of controlled
mating, and apiary sizes is restricted to those data sets with �50% phenotype data to minimize the influence of excessive outliers.

M. Du et al. | 7

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/12/2/jkab450/6500294 by guest on 24 Septem

ber 2023

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab450#supplementary-data


Implications for real data analysis
Model choice
In populations with uncontrolled mating, parameter estimates
with the CM seem impossible and the models QM and WM ap-
pear as viable alternatives. In view of the biases in the WM, also
with uncontrolled mating (Fig. 6b), the QM appears slightly supe-
rior. It provides a general idea of how heritable a trait is in a pop-
ulation. However, it is unclear, how genetic parameters that were
received from the QM or WM should be integrated into modern

strategies of genetic evaluation. In any case, without controlled
mating, the genetic progress in breeding programs will be slow
(Plate et al. 2019b; Du et al. 2021a). When using the QM and WM
in populations with controlled mating, one should bear in mind
that the genetic influence on a trait is likely to be overestimated.

Guichard et al. (2020, 2021) used both the QM and WM to esti-
mate genetic parameters in honeybee populations and received
estimates for r2

AðQMÞ ; r2
EðQMÞ ; r2

AðWMÞ , and r2
EðWMÞ . At first glance, it

might appear possible to use the system of linear Equations (4a),

a b

dc

Fig. 6. Accuracy of EMREML parameter estimation with the QM and WM. a) Heatmap of estimates for r2
AðQMÞ and r2

EðQMÞ with 50% or more phenotype data
and uncontrolled mating. b) Heatmap of estimates for r2

AðWMÞ and r2
EðWMÞ with 50% or more phenotype data and uncontrolled mating. c) Heatmap of

estimates for r2
AðQMÞ and r2

EðQMÞ with 50% or more phenotype data and controlled mating. d) Heatmap of estimates for r2
AðWMÞ and r2

EðWMÞ with 50% or more
phenotype data and controlled mating.
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(4c), (6a), and (6b) to retrieve estimates for r2
AQ ; r2

AW ; rAQW , and r2
E.

Unfortunately, this is not possible, since the equations are line-
arly dependent (because r2

AðQMÞ þ r2
EðQMÞ ¼ awwr2

AðWMÞ þ r2
EðWMÞ ).

Estimating reliable genetic parameters was hard when many
phenotype records for a trait were missing. In practice, it is thus
advisable to restrict the estimation procedure to a sub-
population in which phenotype records are well-represented.
Similarly, suitable sub-populations may be chosen to exclude
overly small apiaries.

Estimation algorithms
The general properties of the EMREML algorithm being robust but
slow and AIREML being faster but unstable when applied to irreg-
ular data were reflected in this study. Estimating genetic parame-
ters for a real population is typically not time sensitive. The
higher success rate (Fig. 1) and slightly higher accuracy (Fig. 5) of
EMREML thus suggest a prima facie superiority of this algorithm.
However, Fig. 3 shows that the great numeric stability of EMREML
can also come as a disadvantage. In situations where the data
quality is insufficient to yield meaningful results, EMREML still
produces reasonable output, leading to a false sense of security.
The failure of AIREML to produce plausible results is an indicator
for data quality problems. We therefore recommend to use both
algorithms in parallel in order to obtain genetic parameter esti-
mates at a maximum reliability.

Limitations of the study
In addition to the factors considered in this study, there are fur-
ther parameters which affect variance component estimations
and complexify the process in reality.

In our simulations, queens were randomly chosen for repro-
duction, whereas many real populations undergo directional se-
lection. With complete phenotype and pedigree data, selection
has been shown to have no negative impact on REML parameter
estimations in other species. However, in connection with miss-
ing parental information, biases can occur (Hofer 1998; Cantet
et al. 2000).

In our simulations, phenotype records and pedigree informa-
tion were partly incomplete, but they were always correct. In
practice, misassignments of records can easily occur. In a study
on cassava (Manihot esculenta), Yabe et al. (2018) found changed
variance components resulting from mislabeled phenotypes, and
several studies showed that incorrect pedigree entries have great
influence on the estimation of genetic (co)variances (Lee and
Pollak 1997; Parlato and Van Vleck 2012). When estimating vari-
ance components in practice, it is thus paramount to screen the
data for inconsistencies. For example, breeders may incorrectly
report honey yields of 0 kg, when they did not measure the trait

(Brascamp et al. 2016). With the emergence of breeding-relevant
SNP panels for the honeybee (Spötter et al. 2012; Jones et al. 2020;
Momeni et al. 2021) it may become easier to detect pedigree mis-
takes.

In addition to genetic effects of queens and worker groups and
residual effects, further random effects may be relevant in hon-
eybee populations and ignoring them can affect parameter esti-
mates. For example, Andonov et al. (2019) modeled a random
effect for the interaction between performance test year and
apiary. Furthermore, several studies have shown an improved
performance of locally adapted honeybees over imported stock
(Büchler et al. 2014; Kova�ci�c et al. 2020), suggesting the presence
of random genotype � environment effects (Costa et al. 2012a,b).
Adding meaningful random effects to the CM, QM, or WM can be
beneficial, because reality is modeled more accurately. However,
models with more random effects are more complex and thus
have higher demands on data quality (Masuda 2019).

Our model assumes that genetic and residual variances homo-
geneously apply to all combinations of apiaries and years. In real-
ity, this may not be the case (Hill et al. 1983; Guzzo et al. 2018;
Hoppe et al. 2020). Heterogeneous variances impede the estima-
tion of genetic parameters, because the model does not fit to the
data. Various strategies to mitigate this problem have been devel-
oped (Visscher and Hill 1992; van der Werf et al. 1994). However,
with the exception of (Hoppe et al. 2020), studies on genetic
parameters in honeybees mostly ignore such strategies. We think
that further research on heterogeneous variances in honeybees
can increase the success rates of parameter estimations.

In our simulations, all traits were normally distributed, which
is an a priori assumption of REML estimates. But for many honey-
bee traits, this assumption is unrealistic. In particular for behav-
ior traits, like gentleness, which are measured on a discrete scale
from one to four, observed distributions typically deviate signifi-
cantly from normality (Brascamp et al. 2016; Andonov et al.
2019). Thus, Andonov et al. (2019) suggested to use Gibbs sam-
pling based on a threshold model (van Tassel et al. 1998; Tsuruta
and Misztal 2006) instead of REML estimates for genetic parame-
ters in these traits.

Finally, we assumed relationships to be calculated according
to Brascamp and Bijma (2014) with averaged values for worker
groups. In the literature, parameter estimations in honeybees are
often performed by modeling worker groups as single individuals
(Ehrhardt et al. 2010; Zakour et al. 2012; Andonov et al. 2019;
Maucourt et al. 2020). In this case, the diagonal entry of a nonin-
bred worker group in the relationship matrix is one, as opposed
to aww. Thus, diagonal entries of the alternative relationship ma-
trices will on average be higher. As shown by Legarra (2016), esti-
mated genetic variances with these relationship models will thus

Table 2. Standard errors of EMREML estimates, QM and WM, uncontrolled mating, for different traits and rates of phenotyped colonies.

Phenot.

Queen model Worker model

Standard error r̂2
AðQMÞ Standard error r̂2

EðQMÞ Standard error r̂2
AðWMÞ Standard error r̂2

EðWMÞ

10–20% 50–70% 80–100% 10–20% 50–70% 80–100% 10–20% 50–70% 80–100% 10–20% 50–70% 80–100%

T1 0.79 0.25 0.20 0.81 0.22 0.17 2.53 0.85 0.64 0.87 0.24 0.18
T2 0.63 0.22 0.17 0.66 0.20 0.15 2.19 0.75 0.56 0.75 0.22 0.16
T3 0.51 0.18 0.13 0.55 0.18 0.13 1.68 0.63 0.45 0.59 0.20 0.14
T4 0.45 0.13 0.09 0.49 0.15 0.11 1.29 0.48 0.33 0.46 0.16 0.12
T5 0.47 0.19 0.15 0.45 0.14 0.10 1.91 0.55 0.45 0.60 0.13 0.10
T6 0.36 0.15 0.12 0.33 0.11 0.08 1.41 0.50 0.95 0.44 0.12 0.21
T7 0.26 0.10 0.08 0.26 0.08 0.06 0.96 0.33 0.24 0.30 0.08 0.06
T8 0.26 0.07 0.05 0.26 0.06 0.04 0.65 0.23 0.17 0.21 0.06 0.04
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generally be lower. This expectation is in accordance with the
results of a simulation study by Brascamp et al. (2014).

Intuitively, it may seem obvious that modeling a worker group
as a single bee is biologically less accurate than the averaging
ansatz of Brascamp and Bijma (2014). But for some traits, such as
gentleness, this is not so clear. Due to alarm pheromone release,
the sting of a single bee triggers aggressive behavior of the entire
colony even though the majority of workers may have a docile pre-
disposition (Nouvian et al. 2016). The ideal way to model worker
groups is likely to be trait-dependent and requires further research.

Data availability
The complete data from all parameter estimations is uploaded
on figshare at https://doi.org/10.25387/g3.17206265. The source
code of the simulation program BeeSim is available at https://doi.
org/10.5061/dryad.1nh544n.

Supplemental material is available at G3 online.
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Appendix
We calculate, which part of a colony’s phenotype yiqw, formed
according to the CM, is projected to the worker group’s genetics if
the simplified model WM is used for the analysis. Therefore, the
random contributions to the phenotype, riqw ¼ uQ

q þ uW
w þ eiqw,

have to be split up into a part that can be expressed in terms of
uQ

w and uW
w thus is attributed to the worker group, and a part that

is uncorrelated to these variables and is thus interpreted as a re-
sidual. In analogy to Equation (1), the worker group’s breeding
value for the queen effect, uQ

w, is inherited from the queen q and
the drones d that mated with q:

uQ
w ¼

1
2

uQ
q þ uQ

d : (7)

With varðuQ
wÞ ¼ awwr2

AQ and varðuQ
q Þ ¼ r2

AQ , Equation (7) yields
(because uQ

q and uQ
d are independent):

varðuQ
d Þ ¼ aww �

1
4

� �
r2

AQ : (8)

As the following calculation shows, uQ
w is therefore uncorre-

lated to the linear combination u?w ¼ 1
2 uQ

q � 1
4aww�1 uQ

d :

cov uQ
w;u

?
w

� �
¼Eq: 7 cov

1
2

uQ
q þ uQ

d ;
1
2

uQ
q �

1
4aww � 1

uQ
d

� �

¼Eq: 8 1
4

r2
AQ �

1
4aww � 1

aww �
1
4

� �
r2

AQ

¼ 0:

Indeed, also uW
w is uncorrelated to u?w:

covðuW
w ; u

?
wÞ ¼

1
4

rAQW � 1
4aww � 1

aww �
1
4

� �
rAQW ¼ 0:

Thus, by writing uQ
q as

uQ
q ¼

1
2aww

� 1
2

uQ
q þ

1
2aww

uQ
d þ 2� 1

2aww

� �
1
2

uQ
q �

1
2aww

uQ
d

¼ 1
2aww

uQ
w þ 2� 1

2aww

� �
u?w;

we arrive at the desired decomposition

riqw ¼ uQ
q þ uW

w þ eiqw

¼ 1
2aww

uQ
w þ uW

w þ 2� 1
2aww

� �
u?w þ eijk

¼ uðWMÞ
w þ eðWMÞ

iw ;

with uðWMÞ
w and eðWMÞ

iw as defined in Equations (5a) and (5b).
The above considerations can be formulated more concisely

in the language of Hilbert spaces. An inner product of random
effects with expectation zero is defined by hv1; v2i ¼ covðv1; v2Þ.
Then uðWMÞ

w is the orthogonal projection of the combined ran-
dom effects riqw ¼ yiqw � pi onto the subspace spanned by uQ

w

and uW
w . An orthogonal basis of this subspace is given by the

Gram-Schmidt procedure and consists of v1 ¼ uQ
w and

v2 ¼ uW
w �

huQ
w ;u

W
w i

huQ
w ;u

Q
wi

uQ
w. Then, uðWMÞ

w can be calculated as

uðWMÞ
w ¼

hv1; riqwi
hv1; v1i

v1 þ
hv2; riqwi
hv2; v2i

v2; (9)

and

eðWMÞ
iw ¼ riqw � uðWMÞ

w : (10)
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