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Abstract At any point in space the material properties of the myocardium are characterized
as orthotropic, that is, there are three mutually orthogonal axes along which both electrical and
mechanical parameters differ. To investigate the role of spatial structural heterogeneity in an or-
thotropic material, electro-mechanically coupled modelsof the left ventricle (LV) were used. The
implemented models differed in their arrangement of fibers and sheets in the myocardium, but
were identical otherwise: (i) a generic homogeneous model,where a rule-based method was ap-
plied to assign fiber and sheet orientations, and (ii) a heterogeneous model, where the assignment
of the orthotropic tissue structure was based on experimentally obtained fiber/sheet orientations.
While both models resulted in pressure-volume loops and metrics of global mechanical function
that were qualitatively and quantitatively similar and matched well with experimental data, the
predicted deformations were strikingly different betweenthese models, particularly with regard to
torsion. Thus, the simulation results strongly suggest that heterogeneous structure properties are
playing an important non-negligible role in LV mechanics and, consequently, should be accounted
for in computational models.

1 Introduction

The capability of the heart to efficiently pump blood around the circulatory system is of vital impor-
tance. The underlying electro-mechanical function is governed by an interwoven cascade of events
that interact across a broad range of spatial and temporal scales. Comprehensive, biophysically-
detailed computer models of these multi-scale and multi-physics phenomena play an important role
in a better understanding of integrated electro-mechanical function in health and disease. A key
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factor in such models is the accurate representation of the myocardial tissue structure, in particular
of the left ventricle (LV), which is the main pumping chamber.

In the LV the prevailing myocyte orientations, usually referred to as fibers, follows a right-
handed helical pathway from the endocardium towards the mid-wall, and a left-handed helical
pathway from the mid-wall towards the epicardium, see, e.g., [1, 2]. In addition to this transmural
change in the inclination angle of the fiber, termed ‘fiber rotation’, myocytes are bundled and form
layers of four to six cells, which are referred to as laminae or sheets. Sheet orientations vary as
well, not only transmurally, but also in the apico-basal direction [2, 3]. At any point in space, the
LV is characterized by an orthotropic material with three preferred eigendirections, oriented along
fibers, transverse to the fibers but within a sheet, and orthogonal to the sheets.

Orthotropic material properties in the LV influence both thespread of electrical activation and
re-polarization and the mechanical response to pressure load and active contraction. Electrically,
wavefronts travel fastest along the fibers and slowest in thesheet normal direction, with velocity
ratios of roughly3 : 2 : 1 along the three axes [4]. Via electro-mechanical coupling these spatio-
temporal patterns of electrical activity trigger active stress transients in the myocytes, which are
either modeled as active stresses or strains [5] acting along the orientation of the fibers in a current
configuration [6]. The resulting mechanical deformations are then largely determined by both the
passive hyperelastic orthotropic properties of the tissueand the generated active stresses.

Many numerical studies of ventricular mechanics use a simple generic rule-based approach
to define the fiber and sheet angles, see, e.g., [1, 7–15]. In these studies, the fibers often vary
linearly between the endocardium and the epicardium. When orthotropic models are used, the
sheet angles either follow the radial direction or also varylinearly between the endocardium and
the epicardium. It is with good reason that these studies have chosen such a simple fiber/sheet
structure; as it is often difficult to obtain good detailed fiber/sheet datain vivo. However, it has
been shown that using fiber/sheet angles that do not vary linearly through the thickness yields more
realistic mechanical responses [16, 17].

In the present study we investigate the mechanical effect ofmodels when based on experi-
mentally obtained fiber/sheet orientations and on generic rule-based fiber/sheet orientations, as
frequently used in the literature. We compare the two model results and use an invariant-based
orthotropic constitutive equation [18]. A weakly coupled electro-mechanical model of the LV is
employed where the LV anatomy is approximated as a truncatedellipsoid [9, 19]. The model is
equipped with two sets of fiber and sheet arrangements. In thefirst arrangement, a generic rule-
based dataset is used where fiber/sheet angles vary linearlyin the transmural direction, as seen
previously in, e.g., [1, 7–15]. Several values for the linear change of fiber/sheet anglesare exam-
ined. In the second arrangement, an experimentally-obtained dataset is used [2], where fiber/sheet
angles vary spatially throughout the LV. Simulation results reveal that the generic fiber-sheet setup
predicts an incorrect torsion up to five times larger than what is observed experimentally [20, 21],
as opposed to an experiment-based orthotropic setup where the torsion is found to be close to the
expected range. However, lumped parameter results such as PV loops and cardiac output show
only a small difference between the two setups.
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2 Material and Methods

2.1 Electrophysiological modeling

The spread of electrical activation and re-polarization isdescribed by the mono-domain equation

βmCm
∂Vm
∂t

+ βmIion(Vm,η) = ∇ · (gm∇Vm) + Itr, (1)

whereβm is the membrane surface to volume ratio,Cm is the membrane capacitance,Vm is the
transmembrane potential,Iion is the density of the total ionic current which is a function of Vm and
a set of state variables,η, Itr is a transmembrane stimulus current, andgm is the mono-domain
conductivity tensor given by

gm = gm,f (f0 ⊗ f0) + gm,s (s0 ⊗ s0) + gm,n (n0 ⊗ n0) , (2)

with the eigenaxesf0 oriented along the fibers,s0 perpendicular to the fibers, but within a laminar
sheet, andn0 perpendicular to the sheets, anddiag(gm,f , gm,s, gm,n) are the corresponding con-
ductivities along the tensor axes. The model by Mahajan et al. [22], as developed for the rabbit
ventricular myocytes, is employed to describe cellular dynamics.

2.2 Active and passive mechanical modeling

The Cauchy stress tensorσ is additively decomposed by

σ = σp + σa, (3)

whereσp refers to the passive stresses that occur in the material during a cardiac cycle due to
the intra-ventricular pressure (thereby the myocytes are fully relaxed), andσa refers to the active
stresses intrinsically developed from the contraction of myocytes, when they are appropriately
stimulated. Hence, the stress components are assumed to be represented as the sum of two parts.

2.2.1 Passive stress component

With regard to the mechanical deformation the myocardium ischaracterized as an orthotropic
material with the eigenaxesf0, s0 andn0 in the Lagrangian description. Using the multiplica-
tive decomposition of the deformation gradientF, into a volumetricJ1/3I and an isochoricF
part so thatF = (J1/3I)F, whereJ = detF > 0 is the volume ratio, the Lagrangian direc-
tion vectors are transformed into their isochoric Euleriancounterparts byf = Ff0, s = Fs0 and
n = Fn0. An orthotropic, invariant-based strain-energy function[18] is used for describing the
nonlinear passive behavior of the myocardium, which yieldsa frame-independent stress tensor.
The strain-energy function described in [18] is here extended to include the multiplicative decom-
position of the deformation gradient. Hence, the strain-energy functionΨ = U(J) + Ψiso(Ī1) +
Ψaniso(Ī4 f , Ī4 s, Ī8 fs) is separated into a volumetric functionU(J) and two volume preserving func-
tionsΨi, i ∈ {iso, aniso}, which relate to the isotropic and the anisotropic behavior, respectively.
A standard volumetric functionU(J) = µK ln(J)2/2 is used, where the bulk modulusµK serves
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as a penalty parameter for enforcing incompressibility. The volume preserving functionsΨiso and
Ψaniso are described as

Ψiso =
a

2b
{exp[b(Ī1 − 3)]− 1}, (4)

and
Ψaniso =

∑

i=f,s

ai
2bi

{exp[bi(Ī4 i − 1)2]− 1}+
afs
2bfs

[exp(bfsĪ
2
8 fs)− 1], (5)

respectively, where in total eight material parameters (a, b, a(f, s, fs) and b(f, s, fs)) are needed to
describe the isochoric orthotropic material behavior. By using the modified volume-preserving
right Cauchy-Green tensorC = F

T
F, the isochoric invariants in (4) and (5) are defined as̄I1 =

tr(C), Ī4 f = f0 · (Cf0), Ī4 s = s0 · (Cs0) and Ī8 fs = f0 · (Cs0). As shown in [18], necessary
conditions on (4) and (5) for material stability area, b, a(f, s, fs), b(f, s, fs) ≥ 0 andĪ4 f , Ī4 s > 1. If any
of the invariants are less than one, the term containing it isdropped from Eq. (5). In addition, by
usingĪ4 n = n0 · (Cn0), it can be shown that̄I4 f + Ī4 s + Ī4 n = Ī1 so that only three invariants are
independent; we omit herēI4 n from (5) which is the analogue of the expression provided in [18].
The passive Cauchy stress tensor is then given byσp = 2J−1F(∂Ψ/∂C)FT, and therefore

σp = phI+ 2J−1[ψ1devb+ ψ4 fdev(f ⊗ f) + ψ4 sdev(s⊗ s) +
1

2
ψ8 fsdev(f ⊗ s+ s⊗ f)], (6)

whereph = dU(J)/dJ is used,b = FFT is the isochoric modified left Cauchy-Green tensor
anddev(•) = (•) − (1/3)[(•) : I]I is the deviatoric operator in the Eulerian description [23].
Furthermore, in (6), the definitions

ψi =
∂Ψ

∂Īi
, i = 1, 4 f, 4 s, 8 fs (7)

have been used.

2.2.2 Active stress component

The active stress tensorσa is defined as

σa = J−1Sa(f̂ ⊗ f̂), (8)

whereSa is an active second Piola-Kirchhoff stress component, andf̂ = f/|f | is the normalized
fiber direction vector. As a weakly coupled approach is used (see Section2.5) it is appropriate to
calculate the active stress component in the material configuration; the electrical simulations are
performed on a static mesh. Following [24], in this studySa is calculated using the single ordinary
differential equation of the form

Ṡa = ǫ(Vm)(kSa
∆Vm − Sa), (9)

whereǫ(Vm) is a delay function controlling the rate of activation and relaxation ofSa, andkSa

regulates the amplitude ofSa as a function of the deviation of the transmembrane potential Vm
from the myocyte resting potentialVr, i.e. ∆Vm = Vm − Vr. Instead of the Heaviside function
proposed in [24], we follow [12] and use a smoother delay function

ǫ(Vm) = ǫ0 + (ǫ∞ − ǫ0) exp{− exp[−ζr(Vm − Vs)]}, (10)
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whereǫ0 andǫ∞ are upper and lower bounds for the transmembrane potential,i.e. forVm ≪ Vs and
Vm ≫ Vs, respectively, whereVs is a given phase shift, andζr is the transition rate. Note, however,
that there is an erratum in the delay function shown in Eq. (23) of [24]. With the choiceǫ∞ = 10ǫ0
an electro-mechanical delay between an upstroke of the action potential and the peak active stress,
as illustrated in Figure 2 in [24], cannot be obtained. In order to reproduce the reported time course
of Sa the relationǫ∞ < ǫ0 must hold. The authors in [12] have used the original parameter relation,
i.e. ǫ∞ = 10ǫ0, resulting in a delay function that goes from lower to highervalues and, thus, to
an active stress transient with non-physiologically shortelectro-mechanical delay (see Figure 3 in
[12]). The resulting differences in the shape ofǫ(Vm) and the active stress transients are illustrated
in Figure1.

2.3 Geometry

A simplified LV geometry is modeled as an ellipsoid truncatedat the base using prolate spheroidal
coordinatesξ1, ξ2 andξ3, see Figure2. Using the focal positiondi =

√

a2i − b2i , i ∈ {endo, epi},
whereai andbi are the polar and equatorial axes for the endocardial and epicardial borders, re-
spectively, the prolate spheroidal coordinates may be expressed in a Cartesian coordinate system
by x1 = di sinh ξ1 sin ξ2 cos ξ3, x2 = di sinh ξ1 sin ξ2 sin ξ3 andx3 = di cosh ξ1 cos ξ2. Epicardial
and endocardial dimensions are chosen asaepi = 19.3mm,bepi = 12.7mm andaendo = 18.0mm,
bendo = 6.9mm, respectively, to arrive at a good match with an availableimage-based rabbit LV
geometry [25]. Theξ2-angle has a maximum value of120◦ at the endocardial surface. When going
in theξ1-direction along the epicardial surface the maximumξ2-angle is decreased so that the basal
surface remains flat in the globalX3-direction.

2.3.1 ModelI – Generic fiber-sheet setup

In modelI a generic fiber-sheet setup is implemented. Fibers rotate linearly fromαendo at the
endocardial border toαepi at the epicardial border along the transmural axisξ1, with the inclination
angleα measured in the(ξ2, ξ3) plane, see Figure2. Similarly, a linear rotation of sheet angles
from βendo at the endocardial border toβepi at the epicardial border is imposed in the transmural
directionξ1 with the sheet angleβ measured in the(ξ1, ξ2) plane, see Figure2. Since both fiber
and sheet orientations vary only along the transmural direction ξ1, this setup is homogeneous in
the circumferential and longitudinal directionsξ2 andξ3. We, therefore, label this setup ashomo-
geneous. Different combinations of fiber/sheet orientations, taken from the existing literature, is
examined, see, e.g., [1, 7–15]. The cases examined in this study are as follows:

(i) αendo = −60◦, αepi = +60◦, βendo = 0◦, βepi = 0◦,

(ii) αendo = −45◦, αepi = +45◦, βendo = 0◦, βepi = 0◦,

(iii) αendo = −60◦, αepi = +85◦, βendo = 0◦, βepi = 0◦,

(iv) αendo = −60◦, αepi = +60◦, βendo = −85◦, βepi = +85◦,

(v) αendo = −45◦, αepi = +45◦, βendo = −85◦, βepi = +85◦,

(vi) αendo = −60◦, αepi = +85◦, βendo = −45◦, βepi = +45◦.
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We have here attempted to cover values which are commonly used in the literature, including sheet
directions that are aligned in the radial directionξ1 (i.e. β = 0◦) and inclination anglesα which
lead to a non-symmetry, as seen in the cases (iii ) and (vi).

2.3.2 ModelII – Experimentally-based LV fiber-sheet setup

To study the influence of structural heterogeneity, a fiber-sheet setup, which is based on experi-
mental data, is implemented in modelII. The fiber and sheet orientations are here assigned to fit
the diffusion MRI data of Rohmer et al. [2] (Figure 3), which reported fiber and sheet angles in
eight different regions corresponding to four circumferential segments of the LV,septal, anterior,
lateral andposteriorin each of the two apico-basal segments,basalandapical. A linear weighting
function is used in between these regions to ensure a smooth transition of fiber and sheet angles. In
contrast to modelI, modelII is spatially heterogeneous in all directions, not only in the transmural
direction. We, therefore, label this setup asheterogeneous.

2.3.3 Torsion

To analyze the torsion of the LV we define the long axis to be aligned with the main direction of
the septal wall and the short axis to be perpendicular to the long axis, and chosen to be close to
the endocardial apex, see Figure6(a). Aligning the centroid of the cavity in the short axis images,
taken from end diastolic and end systolic volumes, see Figure6(c)–(d), the torsion is calculated by
tracking the movement of the mesh between these two configurations.

2.4 Material parameters

The mono-domain bulk conductivities in Eq. (2) are chosen to begm,f = 0.204 Sm−1, gm,s =
0.102 Sm−1 andgm,n = 0.037 Sm−1, which lead to conduction velocities of0.6ms−1, 0.4ms−1 and
0.2ms−1 along the principal tensor axes. Standard values ofCm = 1µF cm−2 andβm = 1400 cm−1

are chosen for the membrane capacitance and the membrane surface to volume ratio, respectively.
Mechanical material parameters are summarized in Table1. Passive material parameters are

adapted from [18] where the constitutive model was fitted to experimental data reported by Dokos
et al. [26]. Active material parameters are in part adapted from [24] and in part to achieve an
electro-mechanical delay of110ms between the peak action potential and the peak active stress
[27], which leads the parameter relation of the delay function to beǫ∞ = ǫ0/10. The pressure
parameters (see Section2.6.2) are tuned such that realistic pressure-volume loops are obtained,
and to keep the pressure calculations numerically stable.

2.5 Numerical solution

The finite element method is employed for the spatial discretization of the mono-domain equation
(1). Two overlapping finite element meshes of the same ellipsoidal LV geometry are generated,
a fully structured coarser hexahedral mesh for solving the mechanics, and a fully unstructured
hybrid mesh with an average resolution of∼200µm, using an image-based mesh generation tech-
nique [28], as implemented in the commercial mesh generator Tarantula (CAE Software Solution,
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Eggenberg, Austria) for solving the electrics. In both meshes, fiber and sheet orientations are inter-
polated onto the barycenters of the finite elements. The mechanical mesh consists of5 406 nodes
and5 310 hexahedral mixedQ1/P0 finite elements (see, e.g., [29]), whereas the electrical mesh
consists of1 054 146 nodes and1 201 507 hybrid finite elements using linear weighting functions
[30].

Using overlapping grids of different resolutions is a natural choice when considering the vastly
different constraints imposed by the physics of the electrical and the mechanical problems. Elec-
trical transients are fast and act on time scales in theµs range, which translates into steep depo-
larization wavefronts of small spatial extent in the sub-millimeter range, thus necessitating the use
of fine spatial resolutions≪250µm to compute solutions with reasonable accuracy. On the other
hand, mechanical processes tend to occur at larger space andslower time scales, and, thus, coarser
spatial discretizations can be used. In the weakly coupled approach applied in this study, Eq. (1) is
solved on the electrical mesh first, and electrical quantities required for computing the active stress
transients, i.e.Vm, are then transferred to the integration points of the mechanical mesh. This
means that the electro-mechanical coupling is robust and insensitive to any coupling parameters.

Temporal discretization of the mono-domain equations relies on an implicit-explicit (IMEX)
scheme where the diffusion term is treated implicitly and the reaction term explicitly, using a time
step of20µs. The linear system is solved in parallel by employing a block Jacobi pre-conditioner
with an iterative Conjugate Gradient solver, using an Incomplete LU (ILU(0)) factorization as
a sub-block pre-conditioner [31]. The system of ODEs in the model by Mahajan et al. [22] is
solved using the Rush-Larsen method [32] with several optimizations [10]. The Cardiac Arrhyth-
mia Research Package (CARP) [33], which is built on top of the MPI-based library PETSc [31],
is employed to solve Eq. (1). Numerical aspects have been described in detail elsewhere [34].
The equations (3) together with (6) and (8) are implemented and solved using the finite element
software FEAP [35]. Both grids are partitioned for parallel execution using parMETIS [36].

2.6 Initial values and boundary conditions

2.6.1 Electrics

An initial state vector is computed for the model by Mahajan et al. [22] by pacing a single cell at a
pacing cycle length of350ms until arriving at a stable limit cycle. The state vectorη is then used
to populate the LV model. Transmembrane current injection applied to the endocardial surface at
t = 0ms initiates a transmural activation wavefront. With this protocol, the whole endocardium
activates synchronously. Note that we have not included thePurkinje system. An inclusion would
lead to a delay of the electrical propagation (especially inthe longitudinal direction) within the my-
ocardium. Here350ms of activity is simulated to cover one full depolarizationand re-polarization
cycle throughout the entire LV.

2.6.2 Mechanics, circulatory components and pressure-volume loops

All finite elements on the endocardial surface of the LV are subjected to a follower pressure load
p. Displacement boundary conditions (BCs) are imposed over the entire base of the LV, i.e. where
ξ2 = ξ2max for all ξ3 andξ1 (the subindexmax denotes the maximum coordinate value), preventing
any movement in theξ2-direction. Additional displacement BCs are imposed on a subset of nodes
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which are located in the basal plane along the epicardial surface, i.e. whereξ1 = ξ1max, ξ2 = ξ2max

and for allξ3, to restrict the movement in theξ3-direction. These BCs are summarized in Table2.
The endocardial pressure loadp is calculated in five consecutive steps (i)–(v): (i) initialization

phase with linear increase inp to the end diastolic pressure (EDP); before the electrical activation
has started, the pressure increases first linearly from0 to 20mmHg, which is considered the EDP
[37]. (ii) Isochoric LV contraction phase: electrical activation starts the isochoric contraction phase
where both mitral and aortic valves are closed. Following [38] this is implemented by using the
iteration

pn+1 = pn + (Vn+1 − Vn)/Cp, (11)

whereCp serves as a penalty parameter that is chosen to give a robust convergence. The iteration
is considered to be converged using the criterion‖Vn+1 − Vn‖/‖Vn‖ < 0.01, which is achieved
in only a few iterations by choosing an appropriate value forCp. (iii) Ejection phase wherep
reaches95mmHg [37]. The ejection phase starts in response to the opening of theaortic valve.
The pressure is modeled using a two element Windkessel modeldescribed as

C
dp

dt
+
p

R
= −

dV

dt
, (12)

whereC andR relate to the arterial compliance and resistance, respectively. (iv) Isochoric LV
relaxation phase: whendV/dt becomes positive (reversed blood flow), the aortic valve closes. The
pressure at the instant of flow reversal is considered the endsystolic pressure that starts isochoric
relaxation, again modeled by using the pressure iteration given through Eq. (11). (v) Filling phase
with linear pressure increase to EDP: finally, whenp dropped to12.5mmHg [37], the mitral valve
opens and passive filling starts. Again, this phase is modeled as a linear increase ofp up to EDP.

The specific parametersC, R andCp used in the subsequent analyses are provided in Table1.

2.7 Lumped parameters

The average thickness of the LV wall is calculated using the Gauss divergence theorem. Defining
hed andhes as the wall thickness corresponding to end diastolic volume(EDV) and the end systolic
volume (ESV), respectively, the fractional thickeninghf is calculated ashf = 100 · (hes−hed)/hed.
As a coarse measure for examining incompressibility the fractional change in the myocardial vol-
ume, sayVf , is calculated asVf(t) = 100 · (Vwall(t)− V 0

wall)/V
0
wall, whereVwall(t) andV 0

wall are the
volumes of the myocardial wall at timet and in the initial unloaded configuration, respectively.
The largest change in the volume fractionVf(t) is denoted byV max

f , which may be used as an
approximate metric to gauge how well the incompressibilityconstraint is enforced in the simu-
lation. Furthermore, stroke volumeSV is defined asSV = EDV − ESV, cardiac outputCO is
defined asCO = SV · HR, whereHR is the heart rate, and the ejection fractionEF is defined as
EF = 100 · SV/EDV. Although only one heart beat is simulated,HR is assumed to follow the
simulated activity time of350ms, giving aHR of about171 beats per minute.
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3 Results

3.1 Validation of the implementation

To test the numerical framework, an analytical test case is designed and explored. A unit my-
ocardium tissue cube with orthogonal material directions is considered. The cube has the fiber,
sheet and sheet-normal directions along the global coordinate system(X, Y, Z), and the material
directions are according to[f0] = [1, 0, 0]T, [s0] = [0, 1, 0]T and [n0] = [0, 0, 1]T, as shown in
Figure4(a). The cube can freely deform, and it is subjected to an active stressSa resulting in a
contraction in the globalX-direction, i.e. the fiber direction. The material is assumed to be in-
compressible and, therefore, the cube must expand in the global Y andZ-directions. Thus, the
corresponding deformation gradient isF = diag(λf , λs, λn), where the stretchλf in the fiber di-
rection isλf < 1 and the stretches in the sheet and sheet-normal directions areλs > 1 andλn > 1,
respectively. As the unit cube is free to deform, the stress at equilibrium is zero for all components
of the Cauchy stress matrix and the Lagrange multiplierph is readily determined from the relation
σ33 = 0. Using the condition of a volume preserving incompressiblematerial (J = detF = 1), the
following nonlinear system of equations may be obtained as

σ11 = 2ψ1(λ
2
f − λ2n) + 2ψ4fλ

2
f + Sa = 0, (13)

σ22 = 2ψ1(λ
2
s − λ2n) + 2ψ4sλ

2
s = 0, (14)

λfλsλn = 1. (15)

Keeping in mind thatψ4f vanishes ifλf < 1 (see [18]), which is always the case in this particular
example, the system of Eqs. (13)–(15) can be solved forλf , λs andλn for a given value of the
active stressSa. This system is solved using the MATLAB functionfsolve()(Matlab R2012a,
The Mathworks, Nantucket, USA). The material parameters used are taken from Table1. The
same problem is solved with FEAP, usingQ1/P0 finite elements, and the resulting stretches are
compared to the analytical solution for several values of the active stressSa computed using a linear
increase of the transmembrane potentialVm from the resting potentialVm = Vr to Vm = +50mV.
The results are summarized in Figure4(b) and show a good agreement between the analytical result
and the numerical solution; the different stretches in the figure are abbreviated byλ.

3.2 Effect of fiber/sheet arrangement upon mechanical contraction

To study the effect of the arrangement of fibers and laminae, pressure-volume (PV) loops are
computed for a full cardiac cycle by using the modelsI andII. Both models are subjected to
the same stimulation protocol and boundary conditions; theonly difference is the fiber and sheet
arrangement.

The PV loops predicted by the modelsI andII are in good agreement with those observed
experimentally [37]. Figure5(a) shows a comparison between modelII and experimental data.
Volume transients for this comparison are normalized to account for the difference in the initial LV
volumes. Figure5(b) compares the PV loops predicted by modelI (case (i), Section2.3.1, chosen
as a representative case for the generic distributions), and modelII. Overall, both models predict
very similar PV loops. The only minor difference is that model II exhibits a noticeably larger EDV
while no significant differences are found in ESV. Moreover,no major differences are observed in
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other lumped metrics that characterize the mechanical performance globally. A comparison of the
parametershf , V max

f , HR, SV, EF andCO is summarized in Table3, again using case (i), Section
2.3.1, as a representative case for modelI. The stroke volumeSV is slightly lower with model
I, and thus, sinceHR is the same,CO is lower too. The relatively small change in the volume
fractionV max

f of the wall indicates that the chosen bulk modulus is large enough to enforce the
prescribed incompressibility constraint.

While PV loops and some other metrics of the global mechanical function are qualitatively and
quantitatively similar, in several other aspects the modelpredictions are strikingly different. In the
modelI the apex moves only along the apico-basal direction, aligned with the globalX3-direction
in our setup, whereas in the modelII a significant shift of the apex towards the septal wall occurs,
see Figure6(b). A significant quantitative difference is observed withregard to torsion. While
the average torsion, measured in the short axis plane, predicted by modelII is 4.5◦ (Figure6(c)),
a vastly larger torsion is predicted by the generic fiber and sheet setups used in modelI, which
results in, e.g., a torsion of51◦ for case (i), Section2.3.1(see Figure6(d)). A summary of the
torsion which results from all generic fiber/sheet setups isshown in Table4, where the values range
from 33–72◦. The radial contractions from EDV to ESV, i.e. the local changes of the endocardium
and epicardium in the radial direction visible in Figure6(c)-(d), are analyzed along the septal-
lateral and posterior-anterior directions. In both modelsI andII, this contraction is quite similar
and match experimental data quite well [39], except in the septal-lateral direction at the epicardial
border where modelII is significantly closer to the experimental values than model I (all cases).

A further fundamental difference is observed with regard tothe first principal stressσI . Model
I predicts a higher stress in the mid-myocardial band, whilstmodelII predicts a gradient of stress
from lower to higher transmurally from endocardium to epicardium. This is illustrated in Figure7,
which visualizesσI in a cross section through the septal and lateral wall, againusing case (i), as a
representative case for modelI.

4 Discussion

A computational model of LV electro-mechanics has been usedto investigate the influence of spa-
tial heterogeneity of the structural (orthotropic) components on mechanical contraction. Two mod-
els (I andII) are designed so that they differed only in terms of the fiber and sheet arrangements.
As in virtually all recent modeling studies of ventricular electro-mechanics, see, e.g., [6, 9, 24],
several simplifying assumptions are made, which may resultin model predictions that deviate from
experimental observations in one or the other aspect. Whilethese shortcomings warrant caution
when drawing general physiological conclusions, it is possible to study whether a given factor is a
relevant contributor to the overall response of the system or not.

Although the notion that tissue orthotropy and its spatial structural heterogeneity may play an
important role in ventricular mechanics is widely accepted[40], most organ-scale modeling stud-
ies reported in the literature refrained from accounting the inherent heterogeneity. To the best of
our knowledge, there are only a handful of studies that modelthe LV as an orthotropic material,
see [18] for a review. In fact, most of the modeling studies represent both electrophysiology and
mechanics of the ventricles as transversely isotropic materials and, thus, ignore the influence of
orthotropy. One reason for this may be the inherent difficulty in the measurements of electrical
conductivity and mechanical stress, which has led to an ongoing debate on the ‘exact’ ratios be-
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tween the eigenvalues and the material parameters along theaxesf0, s0 andn0. However, due to
the convincing evidence provided by various studies using histological [41–43] and MRI-based
imaging techniques [2, 44], and measuring the mechanical properties of the passive ventricular
myocardium [26], there is a broad consensus that electrical and mechanicalproperties of cardiac
tissue are best characterized as orthotropic.

In this work we studied the relative influence of heterogeneous orthotropic fiber/sheet struc-
tures on mechanical contraction. While the predictions of both models (homogeneous and hetero-
geneous) are similar and matched fairly well with the experimental data in terms of most lumped
system parameters such as PV loops, strikingly different mechanical responses are observed in
several other aspects. Most notably, this is the case with torsion, which turns out to be significantly
smaller when the structure is considered as heterogeneous.

The simulation results strongly suggest that heterogeneity of the fiber/sheet structure plays an
important (non-negligible) role in the mechanical LV contraction and, consequently, should be
accounted for in computational models.

4.1 Effects of structural heterogeneity

Simulations using modelI predicted a torsion which is much higher than the average torsion of
4.5◦ predicted by modelII. For example, case (i) (Section2.3.1), predicted an end systolic torsion
of 51◦. Experimental measurements suggest that the end systolic torsion is in the range of∼ 8-
12◦ [20, 21]; hence modelII slightly underestimates torsion whereas modelI led to a significant
overestimation.

When compared to physiological measurements both models suffered from shortcomings. The
pronounced torsion predicted by modelI may be attributed to the simplified representation of the
LV geometry and the absence of the right ventricle, which would likely restrain torsion signifi-
cantly, particularly in the septal region. On the other hand, despite the more realistic end systolic
torsion in modelII, it led to some non-physiological predictions that are not present in modelI. In
particular, modelII predicted a longitudinal elongation of the LV, which is in contradiction to the
longitudinal shortening, as it is observed in experiments [45]. Potential reasons are: (i) the fiber
angles according to Rohmer et al. [2], as used in the modelII, tend to be smaller than those ob-
served in histological studies [1] upon which most approaches are built. Thus, due to the reduced
fiber component along the long axis of the LV the maximum active stress generated, regulated by
the parameterkSa

, was not sufficiently large and the cavitary pressure of the LV may have been the
dominating factor; (ii) the mapping of orthotropic data from an anatomically realistic model onto
a simplified ellipsoidal model may have led to distortions due to the geometrical differences be-
tween an idealized ellipsoid and a real ventricular geometry. This difficulty could be circumvented
by using a dataset that provides both anatomical accurate representations of the ventricles obtained
via high-resolution MRI, and structural information acquired by, e.g., diffusion tensor MRI. A fur-
ther potential discrepancy stems from the fact that the complex trabeculation of the endocardium
remains unaccounted for in our model, a limitation that is shared with all other modeling studies
on ventricular mechanics; (iii) the mean values as presented in [2] are used and they are linearly
interpolated, however, the noise and variance in these dataare big. The data were averaged over
large sectors of the ventricles – more detailed data on a per voxel base is not available.

A further difference between the models is the first principal stressσI , as illustrated in Figure7.
This seems to be an indirect effect of the reduced torsion in the modelII, which, in turn, attenuated
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the influence of the applied boundary conditions.
Stroke volumeSV, ejection fractionEF and cardiac outputCO are all close to experimentally

obtained values, as seen in Table3. Thus, by using these lumped material parameters and the PV
loops, it is only possible to partially differentiate between, or determine the accuracy of, the mod-
els given the large variations seen in, e.g., the torsion. The discrepancy between experimentally
observed and simulated values for the compressibility of wall volume V max

f is explained by the
fact that ventricular vascularization is not represented in the model. While myocardial tissue is
nearly incompressible and, therefore, it is modeled as an incompressible material, the ventricles as
a whole are not since the wall volume reduces during systole due to blood being squeezed out of
the coronary arteries [46].

4.2 Limitations of the study

In our models we have made a few simplifying assumptions and these have to be considered when
interpreting the reported results. One limitation is the use of a stylized geometry in which the LV
anatomy is approximated by an ellipsoidal shape. Further, amono-ventricular, not a bi-ventricular
geometry is used, thus, the LV is modeled in absence of the right ventricle. Apart from the simpli-
fied representation of the macro-anatomy, the complex structure of the ventricular endocardium,
consisting of structures such as trabeculae and papillary muscles, is approximated by a smooth
endocardial surface. Unlike in electrophysiological modeling studies, where these structures are
included in models [47], there have not been any reports yet in the mechanical modeling. Most
likely this is due the significant increase in mesh density required to resolve these finer anatomical
details, which entails a substantial increase in computational costs [48]. Considering the limited
performance of current solver techniques used in modeling ventricular mechanics it suggests that
this is not feasible yet.

In the literature a simplified phenomenological model of electro-mechanical coupling is pro-
posed where the generated active stress depends only on the transmembrane potential [12, 24],
ignoring all major physiological factors implicated in theprocess of active stress generation such
as calcium transients, the interactions of calcium with myofilaments and metabolic aspects as well
as length and velocity dependencies [49]. Finally, as in most previous studies [14, 19, 38], the elec-
trical and mechanical models are weakly coupled. While strongly coupled approaches are likely
to be key when subtle electro-mechanical effects have to be captured, most modeling studies opted
for implementing a weak coupling approach. This is mainly due to the increased complexity of
computation schemes and potential problems with numericalinstabilities, although those issues
are being addressed [6].

In this study, we have focused on the heterogeneity of the myocardial structure components.
Another factor which may alter the simulation results significantly is a heterogeneity of the my-
ocardial material parameters. Such varying material properties, both transmurally, longitudinally
and circumferentially could be included in a future study. However, due to the lack of experimental
data available on regional-specific myocardial material properties such a study is not feasible at the
moment. We have tried to use data from only one species, namely the rabbit. However, due to the
limited experimental data available that was not always possible. For example, it was necessary to
use the passive material parameters from a porcine myocardium [26]. However, this limitation does
not affect the conclusions drawn from varying the fiber/sheet angles. Despite the numerous limita-
tions, which are shared with many contemporary modeling studies on cardiac electro-mechanics,
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the relative difference when using rule-based versus experiment-based data on fiber and sheet ar-
rangements is a clear indication that heterogeneity in the orthotropic structure property is a relevant
factor and, as such, it should be accounted for in computational models of ventricular mechanics.
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Passive stress Active stress Pressure term

µK = 3333 kPa kSa
= 0.50 kPa mV−1 C = 0.2 ml mmHg−1

a = 0.333 kPa Vr = −86.796 mV R = 750mmHg ms ml−1

b = 9.242 (-) Vs = −80.0 mV Cp = −900mmHg ml−1

af = 18.535 kPa ǫ0 = 1.0ms−1

bf = 15.972 (-) ǫ∞ = 0.1ms−1

as = 2.564 kPa ζr = 0.1mV−1

bs = 10.446 (-)
afs = 0.417 kPa
bfs = 11.602 (-)

Table 1: Material parameters used in both analytical and numerical calculations. The parameters
for the passive state are adapted from [18], the parameters for the active state are adapted from
[24], and the pressure term is chosen to give a realistic pressure-volume response.
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BC Coordinates Description

tn = −p ξ1 = ξ1min for all ξ2, ξ3 Endocardial surface

uξ2 = 0 ξ2 = ξ2max for all ξ1, ξ3 Basal surface

uξ3 = 0
ξ1 = ξ1max for all ξ3

Outer boundary at
ξ2 = ξ2max the basal surface

Table 2: Mechanical boundary condition (BC) for the LV in terms of prescribed tractiont and
displacementu. The componenttn of t is the normal to the endocardial surface on which the
pressurep acts. The componentsuξ1, uξ2, uξ3 of u are the displacements in the directionsξ1, ξ2,
ξ3 shown in Figure2, where the indexmax andmin denotes the maximum and minimum possible
coordinate in the respective direction.
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Result ModelI Model II Experiment

hf (%) 33 29 35.2a

V max
f (%) −0.42 −0.51 −7.2b

HR (bmp) 171 171 198c

SV (ml) 2.7 3.1 1.8c

EF (%) 61 63 53c

CO (l/min) 0.46 0.53 0.421c

Table 3: Comparison of results between the modelsI, II and the experimental data:hf = fractional
thickening,V max

f = largest change in volume fraction of the wall,HR = heart rate,SV = stroke
volume,EF = ejection fraction,CO = cardiac output. Experimental values are taken from:a[50];
baverage value of the through-the-thickness volume change [46]; c[51].

20



Case (i) Case (ii ) Case (iii ) Case (iv) Case (v) Case (vi)

51◦ 72◦ 35◦ 47◦ 62◦ 33◦

Table 4: Resulting torsion using the cases as outlined in Section 2.3.1.
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Figure 1: (a) Transmembrane potentialVm, dotted curve, and corresponding delay in the active
stress value usingǫ∞ > ǫ0, dash-dotted curve, andǫ∞ < ǫ0, solid curve; for clarity the values are
scaled in the image; (b) shape of the delay functionǫ(Vm) usingǫ∞ > ǫ0, dash-dotted curve, and
ǫ∞ < ǫ0, solid curve, when shifted byVs = −30mV with the parameterζr = 0.3mV−1.

Figure 2: Ellipsoidal model representing a rabbit LV with both the globalX1, X2 andX3 coordi-
nates and the prolate spheroidal coordinatesξ1, ξ2 andξ3; whereaendo, bendo, aepi, bepi are the polar
and equatorial axes, anddendo anddepi are the focal positions for the endocardial and epicardial
borders, respectively. The plane separating the basal and apical regions is half of the LV heighth.
The septal region lies in theX1, X2 quadrant, the anterior region lies in theX1,−X2 quadrant, the
lateral region lies in the−X1,−X2 quadrant and the posterior region lies in the−X1, X2 quadrant.
The fiber and sheet directions (Lagrangian form) are characterized byf0 ands0, respectively. The
inclination angle, measured in the(ξ2, ξ3) plane, and the sheet angle, measured in the(ξ1, ξ2) plane,
are characterized byα andβ, respectively.

Figure 3: Fiber and sheet angles through the wall thickness of the LV starting from the endo-
cardium, adapted from [2].

Figure 4: (a) Deformation of a unit cube before deformation and after activation in the fiber direc-
tion (X), shown in gray; (b) stretch responses as a function of the membrane potentialVm. Fiber,
sheet and sheet-normal stretches are illustrated by solid,dashed and dotted curves, respectively,
and the circles show the corresponding finite element results.

Figure 5: (a) Comparison of pressure-volume (PV) loops between modelII and experimental
data [37]. Volume transients for this comparison are normalized to account for the difference in
the initial LV volumes; (b) comparison of PV loops between the modelsI andII. As a representa-
tive case for modelI the fibers and sheets vary linearly betweenαendo = −60◦, αepi = +60◦ while
βendo = βepi = 0◦, respectively (case (i), Section2.3.1).

Figure 6: Geometries at EDV shown by dashed curves, and at ESV shown by solid curves filled
with gray areas: (a) the short axis plane is perpendicular tothe long axis plane, which is always
aligned with the main direction of the septal wall; (b) the outlined epicardial surface viewed from
the apex towards the base of the LV. The apex in both EDV and ESVare marked with a circle and
show the movement of the apex towards the septal region; (c) torsion at the short axis plane for the
modelII. The average torsion is4.5◦; (d) torsion at the short axis plane for the modelI, case (i)
(Section2.3.1). The torsion is the same for all regions and is51◦.

Figure 7: First principal stressσI : (a) in modelI; (b) in modelII.
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